distance parcourue temps mis pour la parcourir

Dimension: px
Commencer à balayer dès la page:

Download "distance parcourue temps mis pour la parcourir"

Transcription

1 CH IV VITESSE - DEBIT - MASSE VOLUMIQUE - DENSITE RAPPELS DE COURS QUESTION 26 Conversion de m/s en km/h : il fut à l fois onvertir les mètres en kilomètres et les seondes en heures. On : 1 m = 0, 001 km 1 1 s = h don : x m / s = x 0, km / h = x 0, km / h = 3, 6 x km / h Conlusion : Une vitesse de x mètres pr seonde orrespond à une vitesse de 3, 6 x kilomètres pr heure. QUESTION 27 Clul d'une vitesse moyenne : vitesse = distne prourue mis pour l prourir Soustrtion de 2 durées érites sous forme sexgésimle : Lorsqu'il n'y ps de prolème, on soustrit séprément les nomres d'heures, de minutes, de seondes. Exemple : 13 h 45 mn 17 s - 7 h 22 mn 4 s = 6 h 23 mn 13 s Lorsqu'il y un prolème sur les seondes, on prend une minute qu'on trnsforme en seondes ; lorsqu'il y un prolème sur les minutes, on prend une heure qu'on trnsforme en minutes. Exemple : 17 h 32 mn 15 s - 4 h 48 mn 39 s = 17 h 31 mn 75 s - 4 h 48 mn 39 s = 16 h 91 mn 75 s - 4 h 48 mn 39 s = 12 h 43 mn 26 s Conversion de km/h en m/s : il fut à l fois onvertir les kilomètres en mètres et les heures en seondes. On : 1 km = m 1 h = s don : x km / h = x m / s = x 1 3,6 m / s = x 3, 6 m / s Conlusion : Une vitesse de x kilomètres pr heure orrespond à une vitesse de x 3,6 mètres pr seonde. QUESTION 28 Clul d'une distne prourue : distne prourue = vitesse mis pour l prourir.

2 Il onvient de fire ttention u hoix des unités qui doivent être ohérentes : si l vitesse est en km/h, le devr s'exprimer en heures ; pr ontre, si l vitesse est en m/s, le devr s'exprimer en seondes. Soustrtion de 2 durées érites sous forme sexgésimle : Lorsqu'il n'y ps de prolème, on soustrit séprément les nomres d'heures, de minutes, de seondes. Exemple : 13 h 45 mn 17 s - 7 h 22 mn 4 s = 6 h 23 mn 13 s QUESTION 29 Clul d'un : on sit que : vitesse = distne prourue mis pour l prourir Don : = distne prourue vitesse Pssge d'une durée érite sous forme déimle à une durée érite sous forme sexgésimle : on trnsforme l prtie déimle du nomre d'heures en minutes, puis l prtie déimle du nomre de minutes en seondes. Exemple : 4,39 h = 4 h + 0,39 h ; or : 1h = 60 mn, don : Finlement : 0,39 h = 0,39 60 mn = 23, 4 mn = 23 mn + 0,4 mn ; or : 1 mn = 60 s, don : 0,4 mn = 0,4 60 s = 24 s 4,39 h = 4 h 23 mn 24 s Addition de durées sous forme sexgésimle : on dditionne séprément les heures, les minutes et les seondes. Si, dns le résultt, les seondes dépssent 60, on rjouter 1 mn et on enlèver 60 s. Si, dns le résultt, les minutes dépssent 60, on rjouter 1 h et on enlèver 60 mn. Exemple : 3 h 51 mn 37 s + 4 h 31 mn 48 s = 7 h 82 mn 85 s = 7 h 83 mn 25 s = 8 h 23 mn 25 s. QUESTION 30 h Volume du ylindre : V = π r 2 h r

3 Prendre une frtion d'un nomre N, 'est onsidérer le nomre : N A prtir de l définition du déit : déit = volume, on tire : = volume déit QUESTION 31 Volume du prllélépipède : V = Soustrtion de 2 durées érites sous forme sexgésimle : Lorsqu'il y un prolème sur les seondes, on prend une minute qu'on trnsforme en seondes ; lorsqu'il y un prolème sur les minutes, on prend une heure qu'on trnsforme en minutes. Exemple : 17 h 32 mn 15 s - 4 h 48 mn 39 s = 17 h 31 mn 75 s - 4 h 48 mn 39 s = 16 h 91 mn 75 s - 4 h 48 mn 39 s = 12 h 43 mn 26 s A prtir de l définition du déit : déit = volume, on tire : volume = déit Rppel 4 Clul d'un prix T.T.C. : Prix T.T.C. = Prix H.T. + T.V.A. ve T.V.A. = Prix H.T. Tux de l T.V.A. QUESTION 32 Volume du prllélépipède : V =

4 A prtir de l définition du déit : déit = volume, on tire : = volume déit QUESTION 33 Conversions : 1 tonne = kg et 1 m = 100 m A prtir de l définition de l msse volumique : msse volumique = msse volume On tire : volume = (Attention à hoisir des unités ohérentes) msse msse volumique Volume du prllélépipède : V = QUESTION 34 Prendre une frtion d'un nomre N, 'est onsidérer le nomre : N Définition de l densité : densité d ' un liquide = msse volumique du liquide msse volumique de l ' eu Pr suite, une densité n' ps d'unité, mis omme l msse volumique de l'eu est de 1 kg / dm 3 ou 1 kg/litre, onnître l densité d'un liquide revient à onnître s msse volumique : il suffit de rjouter kg / dm 3 omme unité à l densité pour otenir s msse volumique. Exemple : si un liquide pour densité 1,12, s msse volumique est de 1,12 kg / dm 3.

5 x + y = Résolution d'un système linéire de deux équtions à deux inonnues : ' x + ' y = ' Méthode : pr sustitution A l'ide d'une éqution, on exprime une inonnue en fontion de l'utre, pr exemple y en fontion de x : x + y = (1) ' x + ' y = ' (2) y = f (x) ' x + ' y = ' (2) On remple lors dns l seonde éqution ette inonnue pr s vleur en fontion de l'utre inonnue (ii, y pr f(x)) : x + y = (1) ' x + ' y = ' (2) y = f ( x) ' x + ' f( x) = ' (2) On résout lors l'éqution (2), e qui permet de onnître ii l vleur de x ; on détermine pour finir l vleur de l'inonnue y à l'ide de l'éqution y = f (x). Remrque : on utiliser ve à propos ette méthode lorsqu'il est file d'exprimer une inonnue en fontion de l'utre. QUESTION 35 h Volume du ylindre : V = π r 2 h r r Volume de l sphère de ryon r : V = 4 3 πr 3 Résolution de l'éqution x 3 = A où A est un réel quelonque : x 3 3 = A x = A x = A ( ) 1 3

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Chapitre 3 Intégrale double

Chapitre 3 Intégrale double Chpitre 3 Intégrle oule Nous llons supposer le pln usuel muni un repère orthonormé (O,i,j). 3. Aperçu e l éfinition formelle e l intégrle oule Soit =[, [, (

Plus en détail

10. Trigonométrie. - 1 - Trigonométrie du triangle quelconque. 10.1 La mesure de l angle

10. Trigonométrie. - 1 - Trigonométrie du triangle quelconque. 10.1 La mesure de l angle - 1 - Trigonométrie du triangle quelonque 10.1 La mesure de l angle 10. Trigonométrie Les quatre unités prinipales de mesure d'un angle géométrique sont le degré, le radian, le grade et le tour. Le degré

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE

INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE POUR LES SERRURES D ENTRÉE À CLÉ EXTÉRIEURES VERROUILLABLES, À POIGNÉE DE BRINKS HOME SECURITY. POUR LES PORTES DE

Plus en détail

3.2 Succession d intégrales simples - Théorème de Fubini

3.2 Succession d intégrales simples - Théorème de Fubini 8 Intégrle oule. Suession intégrles simples - Théorème e Fuini Soit R = [, [, (

Plus en détail

= L.a DVD 2.D et l = L.a BR. l DVD 2.D. .l BR. = 4,8 3,0 405 = 6,5 102 nm. 1 = 3,5.10 4 m 1 ; = 2,0.10 2 rad) 2.D L BR = L DVD. l BR 2.D.

= L.a DVD 2.D et l = L.a BR. l DVD 2.D. .l BR. = 4,8 3,0 405 = 6,5 102 nm. 1 = 3,5.10 4 m 1 ; = 2,0.10 2 rad) 2.D L BR = L DVD. l BR 2.D. Corretion exerie. Évolution des idées sur l lumière.. es ondes méniques néessitent un milieu mtériel (solide, liquide ou gz) pour se propger tndis que les ondes lumineuses peuvent se propger en l bsene

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

TD : Arbres Binaires de Recherche (A.B.R.)

TD : Arbres Binaires de Recherche (A.B.R.) TD : Arres Binires de eherhe (A.B..) Olivier ynud rynud@isim.fr http ://www.isim.fr/rynud ésumé Dns e Td nous proposons trois exeries. Le premier est onsré à l implémenttion du T.D.A. Ensemles dynmiques

Plus en détail

Calculs d incertitudes

Calculs d incertitudes Cluls d inertitudes Déinitions - Erreur solue - Inertitude solue Soit l vleur doptée près mesure de l grndeur A. On ppelle erreur solue l diérene entre l vleur vrie n et l vleur mesurée : Erreur solue

Plus en détail

Arbre des suffixes - Recherche de répétitions

Arbre des suffixes - Recherche de répétitions Arre des suffixes - Reherhe de répétitions Arre des suffixes: Struture de données reflétnt les rtéristiques internes des séquenes Applition nturelle: Reherhe exte dns un texte Phse de prétritement: Constrution

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

GÉOMÉTRIE VECTORIELLE ET ANALYTIQUE

GÉOMÉTRIE VECTORIELLE ET ANALYTIQUE GÉOMÉTRIE VECTORIELLE ET ANALYTIQUE 1 L notion de veteur Le nom de veteur fut utilisé l première fois pour les éléments de l'espe IR 3 (ou IR 2 ) et générlisé plus trd à d'utres ensemles. Nous llons d'ord

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

Berceau de stockage Doka

Berceau de stockage Doka 11/2010 Notie d instrutions originles 999281803 fr à onserver pour une utilistion ultérieure ereu de stokge ok es tehniiens du offrge Notie d instrutions originles ereu de stokge ok esription du produit

Plus en détail

LES CONIQUES. 1) Différentes approches des «coniques». page 2. 2) Equation focale d une conique.. page 4

LES CONIQUES. 1) Différentes approches des «coniques». page 2. 2) Equation focale d une conique.. page 4 LES CONIQUES Tle des mtières COURS ) Différentes pprohes des «oniques». pge ) Eqution fole d une onique.. pge 4 3) Axe fol de Γ. pge 6 4) Sommets de Γ. pge 6 5) Equtions rtésiennes réduites d une prole.

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

1 ère S Relations métriques dans le triangle

1 ère S Relations métriques dans le triangle ère S Reltions métriques dns le tringle Pln du hpitre I. Théorème de Pythgore générlisé (formule du ôté ou d l-kshi) II. ire d un tringle quelonque III. Formule des sinus IV. Formule de l médine L démonstrtion

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

I. Rappel : Vocabulaire & définitions

I. Rappel : Vocabulaire & définitions Chpitre I. Rppel : Voulire & définitions ) Quotient de deux nomres. Une division peut s érire de plusieurs fçons Ex :,5,5 :,5/ Le résultt de l division est s ppelle le quotient. 6 6 q ) Définition : q,5,5

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

4. Logique séquentielle asynchrone

4. Logique séquentielle asynchrone Liene d Informtique MARSEILLELUMINY. Logique séquentielle synhrone. Introdution.. Représenttion de fontionnement : les étts.. Équivlene et pseudoéquivlene d étts.. Rédution du système.. Attriution de vriles

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Fiche récapitulative des notions de Mathématiques

Fiche récapitulative des notions de Mathématiques Fihe répitultive des notions de Mthémtiques Th Si ABC est un tringle retngle en A Alors AB 2 + AC 2 = BC 2 Th Si deux droites (AB) et (AC) sont séntes en A et sont oupées pr (MN) (BC) Alors on 3 rpports

Plus en détail

Transformations géodésiques en France Métropolitaine

Transformations géodésiques en France Métropolitaine Trnsformtions géodésiques en Frnce Métropolitine 1 Processus de chngement de système... 1.1 Définitions... 1. Similitude 3D à 7 prmètres... 1.3 Modèle «à 7 prmètres»... 3 1.4 Coordonnées géogrphiques (,,h)

Plus en détail

Travaux Dirigés de Langages & XML - TD 2

Travaux Dirigés de Langages & XML - TD 2 TD Lngges - XML Exercices Corrigés TD 2 Trvux Dirigés de Lngges & XML - TD 2 Automtes deterministes Exercice Dns chcun des cs suivnts, donner un utomte déterministe reconnissnt le lngge sur l lphet {,

Plus en détail

QUESTIONS. Questions de test diffusées, Test de mathématiques, 9 e année Cours théorique. Lis les instructions qui suivent.

QUESTIONS. Questions de test diffusées, Test de mathématiques, 9 e année Cours théorique. Lis les instructions qui suivent. Questions e test iffusées, 05 QUESTIONS Test e mthémtiques, 9 e nnée Cours théorique Lis les instrutions qui suivent. Assure-toi voir les eu hiers (Questions et Réponses) et l Feuille e formules. Dns es

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

CHAPITRE VII. 1 - Définition

CHAPITRE VII. 1 - Définition CHAPITRE VII Résumé Nous llons déouvrir dns e hpitre une notion ux innombrbles pplitions physiques. Compte tenu du peu d heures dont nous disposons, nous nous ontenterons d un survol rpide en srifint l

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

éme b 3x² 2x 5 a[( x )² ] ( a 3 ;b 2et c 5 ) =(-2)²

éme b 3x² 2x 5 a[( x )² ] ( a 3 ;b 2et c 5 ) =(-2)² éme Equtions et Inéqutions du degré à une inonnue II) Equtions du éme degré à une inonnue : ) Définitions : On ppelle éqution du éme degré à une inonnue, toute églité de l forme ² + + = Ave *, et Eemple

Plus en détail

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales Utiliser l inverse d une mtrice pour résoudre un système d équtions & coures polynomiles Exercice : Dns une ferme, il y des lpins et des poules. On dénomre 58 têtes et 60 pttes. Comien y -t-il de lpins

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

CALCUL LITTÉRAL (Partie 1)

CALCUL LITTÉRAL (Partie 1) CALCUL LITTÉRAL Prtie 1 1 Frnçois Viète 10,160 ; onseiller d Henri IV est à l origine du lul ve des lettres. L idée étit ingénieuse de onsidérer dns les luls l inonnue omme si elle étit onnue. En 180,

Plus en détail

QUESTIONS. Textes de lecture et questions de test diffusés. Test provincial de compétences linguistiques (TPCL) 2015

QUESTIONS. Textes de lecture et questions de test diffusés. Test provincial de compétences linguistiques (TPCL) 2015 Textes e leture et questions e test iffusés QUESTIONS Test provinil e ompétenes linguistiques (TPCL) 2015 Lis les iretives qui suivent ve ton enseignnte ou ton enseignnt : Vérifie les pges e e hier et

Plus en détail

Le transformateur triphasé

Le transformateur triphasé Le trnsformteur triphsé I. Prinipux prmètres de l plque signlétique L puissne pprente ou ssignée S, elle s exprime en Voltmpère S = 3.U.I Fréquene Tension et intensité u primire Tension et intensité u

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

La loi des sinus. Z, auctore. 22 février 2006

La loi des sinus. Z, auctore. 22 février 2006 L loi des sinus Z, utore février 006 1 Nottions trditionnelles On rppelle ii les nottions générlement employées pour désigner un ertin nomres d éléments dns un tringle ABC. Fig. 1 Tringle ABC les longueurs

Plus en détail

Chapitre IV- Induction électromagnétique

Chapitre IV- Induction électromagnétique 37 Chapitre IV- Indution életromagnétique IV.- Les lois de l indution IV..- L approhe de Faraday Jusqu à maintenant, nous nous sommes intéressés essentiellement à la réation d un hamp magnétique à partir

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

vapeur santé, tous les jours

vapeur santé, tous les jours vpeur snté, tous les jours L cuisson vpeur ux micro-ondes ide à mintenir l'humidité, l tendreté et le goût, u summum de l vleur nutritive. Tel qu'ppru dns le progrmme nglis The Dr. Oz. Show! 40 Consultez

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

3 : FONCTIONS TRINOMES DU SECOND DEGRE

3 : FONCTIONS TRINOMES DU SECOND DEGRE 3 : FONCTIONS TRINOMES DU SECOND DEGRE. DEFINITIONS Un trinôme du seond degré est une fontion de la forme trois réels donnés ave a a + + a où a, et sont Résoudre l'équation a + + = ( ave a ), 'est trouver

Plus en détail

Valorisation en sidérurgie des fils d acier issus du déchiquetage fin des pneus en fin de vie

Valorisation en sidérurgie des fils d acier issus du déchiquetage fin des pneus en fin de vie Vloristion en sidérurgie des fils d ier issus du déhiquetge fin des pneus en fin de vie. Générlités Philippe RUSSO ARCELOR RESEARCH Industril Opertion Reserh Center Voie Romine - BP 30320-57283 Mizières

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Exercice 1: Câble coaxial et Théorème d'ampère

Exercice 1: Câble coaxial et Théorème d'ampère UTBM PS1 / Examen Final P8 Pour tenir ompte de la longueur de l'énoné, le total des points possibles est 33, mais la note finale sera ramenée à une note sur points Exerie 1: Câble oaxial et Théorème d'ampère

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

PROPORTIONNALITE VITESSE MOYENNE

PROPORTIONNALITE VITESSE MOYENNE PROPORTIONNALITE VITESSE MOYENNE 1) Remplir un tableau de proportionnalité (Rappels) 3 kg de pommes coûtent 5,40. Combien coûtent 5 kg de pommes? Les grandeurs en jeu sont : la masse des pommes en kg ;

Plus en détail

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Recherche des prmètres de préréglge en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Appliction et utilistion des préréglges : Les données de

Plus en détail

Feuille 4 : Quelques rappels, corrections et exercices supplémentaires.

Feuille 4 : Quelques rappels, corrections et exercices supplémentaires. Université de Poitiers Mthémtiques L1 SPIC, Module L0 010/011 Feuille 4 : Quelques rppels, orretions et exeries supplémentires Rppels : 1 Mtrie d une pplition linéire Soient E, F deux K-espes vetoriels,

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Notice d instructions originales 11/2010. à conserver pour une utilisation ultérieure. Bac de rangement. Réf. 583010000. Les techniciens du coffrage

Notice d instructions originales 11/2010. à conserver pour une utilisation ultérieure. Bac de rangement. Réf. 583010000. Les techniciens du coffrage 11/2010 Notice d instructions originles 999281403 fr à conserver pour une utilistion ultérieure c de rngement Réf. 583010000 escription du produit escription e c de rngement ok est un ccessoire de levge

Plus en détail

RD/IQL Afficheur d Intérieur

RD/IQL Afficheur d Intérieur Importnt : Grder es instrutions DÉBALLAGE 1Fihe d Instlltion RD/IQL Affiheur d Intérieur RD/IQL Fihe d Instlltion TG200576FRA Feuillet 1 Feuillet 2 STOCKAGE -10 C +50 C 0 %HR 95 %HR 0 L instlltion de e

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

1ère partie «COMMISSARIAT A L'ENERGIE ATOMIQUE DEFINITIONS ET TRAITEMENTS DES FONCTIONS BINAIRES. René-Louis VALLEE

1ère partie «COMMISSARIAT A L'ENERGIE ATOMIQUE DEFINITIONS ET TRAITEMENTS DES FONCTIONS BINAIRES. René-Louis VALLEE O '.v.v.v.v..v.v.v.v. «' V.V.V.V _ _ - -' """ ^ " " REMIER MINISTRE «OMMISSRIT L'ENERGIE TOMIQUE IU (J E -R. 3534 (I) 9. NLYSE INIRE ère prtie EINITIONS ET TRITEMENTS ES ONTIONS INIRES pr René-Louis VLLEE

Plus en détail

TD: Ondes électromagnétiques stationnaires

TD: Ondes électromagnétiques stationnaires TD: Ondes életromgnétiques sttionnires 1 Position du prolème On onsidère une vité prllélépipèdique, de ôtés,, à prois prfitement ondutries Dns ette vité règne un hmp életromgnétique ( E, B) sinusoïdl,

Plus en détail

Une gamme de formes et de coloris

Une gamme de formes et de coloris Une gmme de formes et de oloris 8 oloris Brun Flmmé Rouge Flmmé Vert Flmmé Rouge Noir Ardoisé Gris Lihen Terre Cuite MASTER 4 oloris Gris Pierre Brun Noyer Ardoisé Brun Liège QUEUE DE CASTOR 4 oloris Ardoisé

Plus en détail

Normes graphiques. Dans les règles de l art

Normes graphiques. Dans les règles de l art Normes grphiques Dns les règles de l rt Dns e hier des normes grphiques se trouvent toutes les règles indispensbles à l reprodution des éléments d identifition de l mrque TrukPro. Ces éléments donnent

Plus en détail

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)?

Rattrapage. 4 ] Quelle est la complexité dans le pire cas de l algorithme de tri fusion (pour trier n éléments)? IN 02 6 mrs 2009 Rttrpge NOM : Prénom : ucun document n est utorisé. ce QCM outit à une note sur 42 points. L note finle sur 20 ser otenue simplement en divisnt l note sur 42 pr 2. Il suffit donc de donner

Plus en détail

Proposition du Conseil-exécutif

Proposition du Conseil-exécutif Proposition du Conseil-exéutif 8. Projet (proédure de onsulttion) Loi sur les déhets (LD) (Modifition) Le Grnd Conseil du nton de Berne, sur proposition du Conseil-exéutif, rrête: I. L loi du 8 juin 00

Plus en détail

Calcul des primitives

Calcul des primitives Université Joseph Fourier, Grenoble Mths en Ligne Clul des primitives Bernrd Yrt L objetif de e hpitre est purement tehnique : l théorie de l intégrtion est supposée onnue ou dmise. Le seul but est d eposer

Plus en détail

CENTRALE TSI 2000 MATH 2

CENTRALE TSI 2000 MATH 2 CENTRALE TSI 2 MATH 2 PREMIERE PARTIE I.A.) M 2 S 2 (C) si et seulement si il existe 3 omplexes (;b;) tels que M S 2 (C) V et(a;b;c) ve A ;B ;C.Don De plus es trois mtries forment un système libre A +

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12

FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12 1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Plus en détail

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 3 7 1 2 5 12 4 9 10 8 18 20 21 22 23 24 25 26 28

Plus en détail

Fiche de Données Techniques. Pression Température Humidité Vitesse d air Débit d air Combustion MANOMETRES A COLONNE DE LIQUIDE INCLINEE SERIE HP

Fiche de Données Techniques. Pression Température Humidité Vitesse d air Débit d air Combustion MANOMETRES A COLONNE DE LIQUIDE INCLINEE SERIE HP Fiche de Données Techniques Pression Tempérture Humidité Vitesse d ir Déit d ir Comustion MANOMETRES A COLONNE DE LIQUIDE INCLINEE SERIE HP Les mnomètres à colonne de liquide inclinée de l gmme HP, développés

Plus en détail

TRIANGLES QUELCONQUES

TRIANGLES QUELCONQUES hpitre 3 TRINGLES QUELONQUES 3. Rppels : TRINGLES RETNGLES Figure de référene γ Nottions β = longueur du ôté opposé u sommet L ngle de sommet se nomme α. = longueur du ôté opposé u sommet L ngle de sommet

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a :

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : Proportionnalité I) Proportionnalité et produit en croix 1) Propriété Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : a b c

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Introdution edatenq est une pplition qui permet ux entreprises de ompléter et d'envoyer leurs délrtions sttistiques pr internet. Il s'git d'une pplition internet totlement séurisée du SPF Eonomie. Les

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Calcul intégral. Supposons tout d abord une fonction f continue et non décroissante sur [a, b] et telle que f(a) 0.

Calcul intégral. Supposons tout d abord une fonction f continue et non décroissante sur [a, b] et telle que f(a) 0. Mster ynmique terrestre et risques nturels Mthémtiques pour géologues Clul intégrl Rppel de ours. Intégrle de Riemnn Supposons tout d ord une fontion f ontinue et non déroissnte sur [, ] et telle que f().

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

GRANDEURS COMPOSEES. Cette grandeur peut être le produit de deux grandeurs de même nature ou de deux grandeurs de natures différentes.

GRANDEURS COMPOSEES. Cette grandeur peut être le produit de deux grandeurs de même nature ou de deux grandeurs de natures différentes. THEME : GRANDEURS COMPOSEES Grandeurs simples : Une longueur, une masse, une capacité, sont des grandeurs simples. Ces grandeurs s expriment avec une ( et une seule) unité. longueur : mètre ( ou centimètre,

Plus en détail

I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.

I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a. OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Support des cours dispensés en 5G Math 6hau Lycée Martin V en novembre 2005 par G. Nguyen

Support des cours dispensés en 5G Math 6hau Lycée Martin V en novembre 2005 par G. Nguyen Support des ours dispensés en G Mth 6hu Lée Mrtin V en novemre pr G. Nguen TBLE DES MTIERES Chpitre. CLCUL MTRICIEL.... Introdution... B. Définitions... C. Églité de deu mtries...6 D. Opértions sur les

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

QUESTIONS. Questions de test diffusées, 2015. Test de mathématiques, 9 e année Cours appliqué. Lis les instructions qui suivent.

QUESTIONS. Questions de test diffusées, 2015. Test de mathématiques, 9 e année Cours appliqué. Lis les instructions qui suivent. Questions e test iffusées, 15 QUESTIONS Test e mathématiques, 9 e année Cours appliqué Lis les instrutions qui suivent. Assure-toi avoir les eux ahiers (Questions et Réponses) et la Feuille e formules.

Plus en détail