11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :"

Transcription

1 Langags régulirs Ls langags régulirs sont ls langags ls plus simpls. Ils sont néanmoins très utilisés n informatiqu.. utomats finis Ils sont obtnus à partir ds langags finis n ffctuant la frmtur par ls opérations d union, d concaténation t étoil. Ils coïncidnt avc l nsmbl ds langags décrits par ls xprssions régulièrs. Il xist un moyn ffctif pour rconnaîtr ls élémnts d un langag régulir donné. 2 utomats finis Ls automats finis sont ds «machins abstraits» qui savnt décidr d l appartnanc d un mot à un langag régulir donné. utomat fini Un automat fini st la donné d un quintuplt (S, Q, d, q, F) tl qu : Cs machins abstraits constitunt un modèl théoriqu d référnc. Dans la pratiqu, nombruss sont ls applications qui implémntnt la notion d automats finis ou ss variants (cla va du compilatur... à la machin à café). Un automat «lit» un mot écrit sur son ruban d ntré. Il part d un état initial t à chaqu lttr lu, il chang d état. Si, à la fin du mot, il st dans un état final, on dit qu il rconnaît l mot lu. S st un alphabt Q st un nsmbl fini d états d st un nsmbl d règls d transition d Õ ( Q ( S»{ ) Q ) q st l état initial F st un sous-nsmbl d Q applé l nsmbl ds états finals 3 4

2 Rprésntation L étiqutag d un graph st un application d l nsmbl d ss arêts/arcs dans un nsmbl d étiqutts qulconqu. On associ à un automat fini (S, Q, d, q, F) un graph * orinté t étiquté G = (S, ) ainsi défini : ls sommts d S sont xactmnt ls états d Q à chaqu triplt (q, a, q ) d d on associ un arc (q, q ) étiquté par a. Enfin, sur l schéma, on apposra un sign distinctif sur l état initial t sur ls états finals. * Précision : c st n fait un multigraph, car ntr dux sommts q t q, il put y avoir plusiurs arcs (q,q ). Rconnaissanc Un mot m st rconnu ou accpté par un automat fini s il xist un chmin étiquté par l mot m mnant d l état initial q à un état final d F. L chmin st alors un suit d arcs étiqutés ((k i,a i,k i+ )) pour i d à m. L mot m st égal à la concaténation ds étiqutts: a a m. k st égal à l état initial q, k m + st un état final. L nsmbl ds mots accptés par un automat fini form l langag rconnu par ct automat. On l not : L() 5 6 utomat fini = (S, Q, d, q, F) Exmpl, q S = {, Q = {q, d = {(q,, q ), ( q,, ), ( q,, q ) q st l état initial F = { accpt un mot m s il xist un chmin d q à un état d F étiquté par ls lttrs d m. Ici, rconnaît l langag L() décrit par l xprssion régulièr : (+) * utomats finis détrminists Un automat fini st détrminist si t sulmnt si la rlation d st un fonction d transition tll qu : d : Q S Æ Q On n put plus ffctur d transition sur. D un état donné, il part au plus un sul arc étiquté par un lttr donné. En informatiqu, l détrminism st l fait d n jamais avoir l choix ntr plusiurs xécutions

3 Exmpl Tabl d transition utomat fini détrminist B = (S, Q, d, q, F) Pour un automat fini détrminist, on put écrir la fonction d transition sous la form suivant : S = {, Q = {q, d = {(q,, ), (q,,q ), (,, ) q st l état initial F = { B accpt ls mots du langag L (B ) décrit par l xprssion régulièr : * * q B d : (q,) Æ (q,) Æ q (,) Æ ou ncor, sous la form d un tabl d transition : q q - q B 9 utomats finis complts Exmpl Un automat fini détrminist st complt si t sulmnt si d st un fonction total sur Q S. D chaqu état, il part alors xactmnt un arc étiquté par chacun ds lttrs d l alphabt S. Quand la fonction n st pas total, l automat fini put s trouvr bloqué lors d la lctur d un mot. utomat fini complt C = (S, Q, d, q, F) S = {, Q= {q,,q 2 d = {(q,, ), (q,,q ), (,, ), (,,q 2 ), (q 2,,q 2 ), (q 2,,q 2 ) q st l état initial F = { C q 2, q Un automat fini complt n sra jamais bloqué, quitt à contnir ds états surprflus : ls états-poublls. C accpt ls mots du langag L(C ) = L(B ) (décrit par * * ). L état q 2 complèt l automat B n l automat C. 2 3

4 Non-détrminism Détrminism / non-détrminism Dans un automat fini non-détrminist, il put y avoir l choix ntr plusiurs chmins lors d la lctur d un mot. Pour qu un mot soit accpté, il suffit qu ss lttrs étiquttnt un chmin allant d un état initial à un état final. ttntion! la lctur d un mot dans un automat non-détrminist n st pas forcémnt uniqu. insi, pour un mot accpté par un automat, il put xistr d autrs chmins issus d q mais n mnant pas à un état final. Notz qu ls transitions puvnt êtr étiqutés par l mot vid, c qui srait xclu dans un automat fini détrminist. Théorèm si un langag st rconnu par un automat fini, alors il st égalmnt rconnu par un automat fini détrminist. si l automat fini du départ st détrminist, c st évidnt si l automat d départ n st pas détrminist, on s propos d construir un automat fini détrminist B qui intègr tous ls choix xistant dans l automat d départ par l algorithm d détrminisation. il rstrait à prouvr formllmnt qu l nouvl automat B accpt xactmnt ls mots accptés par. 3 4 lgorithm d détrminisation (vrsion sans -transition) Soit = (S, Q, d, q, F) un automat fini non-détrminist sans -transition, on construit l automat fini détrminist B = (S, Q, d, q, F ) Q sra alors un sous-nsmbl d P(Q) : d q {q Q {q pour tout état q d Q non ncor considéré fair pour tout lttr s d S fair q" { y / il xist x Œ q t y Œ Q tls qu (x,s,y) Œ d d d» { (q, s, q") Q Q» {q" F {q Œ Q tls qu q «F Exmpl utomat fini non détrminist : = (S, Q, d, q, F) S = {, Q = {q, d = {(q,, q ), (q,, ), (q,, q ) q st l état initial F = { On construit D = (S, Q, d, q, F ) q = { q st l état initial Q = { {q, {q, d = {({ q,, {q ({ q,, {q, ({ q,,, {q ({ q,,, {q, ) F = {{ q, q q, q, q D q, q, q q 5 6 4

5 lgorithm d détrminisation = (S, Q, d, q, F) automat fini non-détrminist, on construit l automat fini détrminist B = (S, Q, d, q, F ) (n vrt l traitmnt ds -transitions) : d q {q» { ls états q tls qu (q,,q) Œ d Q {q pour tout état q d Q non ncor considéré fair pour tout lttr s d S fair q" { y / il xist x Œ q, y Œ Q tls qu (x,s,y) Œ d si q" alors q" q"» {z / il xist y Œ q" t z Œ Q tls qu (y,,z) Œ d d d» { (q, s, q") Q Q» {q" F {q Œ Q tls qu q «F Exmpl utomat fini non détrminist : = (S, Q, d, q, F) S = {, Q = {q, d = {(q,, q ), (q,, ), (,, ) q st l état initial F = { On construit D = (S, Q, d, q, F ) q = { q st l état initial Q = { {q, { d = {({ q,,, { ({ q,,, {q, ({,, { ) F = { {q,, { q q q D q q q Théorèm d Kln * Pruv r sns Théorèm un langag sur un alphabt S st régulir si t sulmnt si il st rconnu par un automat fini. Esquiss d la démonstration : On sait construir un automat pour chaqu élémnt d la bas. Pour chacun ds 3 opérations, on sait construir un automat lui corrspondant à partir ds automats rconnaissant ls langags d départ. Réciproqumnt, on put passr d un automat fini à un langag régulir (admis pour ctt anné). * Stphn Kln, , logicin américain (B) (I) Œ R { Œ R {a Œ R, pour tout a Œ S si L, M Œ R alors L» M Œ R L.M Œ R L * Œ R rappl définition inductiv ds langags régulirs Un langag régulir st rconnu par un automat fini (non-détrminist). Pruv par induction on part d la définition inductiv ds E.R. plutôt qu d cll ds L.R. Ë L st régulir donc il xist un xprssion régulièr E qui l décrit. Ë Pour ls élémnts d la bas : quls sont ls automats finis corrspondant? (B) (I)... Œ ER Œ ER a Œ ER, pour tout a Œ S Définition inductiv ds xprssions régulièrs a 9 2 5

6 Suit pruv (opération +) Suit pruv (opération.) Ë Hypothès d induction : il xist dux automats finis a t b tls qu L( a ) st l langag décrit par a t L( b ) clui décrit par b. Ë Put-on construir un automat rconnaissant l langag décrit par ( a + b )? (B)... (I) si a, b Œ ER alors ( a + b ) Œ ER... Définition inductiv ds xprssions régulièrs Ë rconnaît l langag décrit par ( a + b ) a b Ë put-on construir un automat pour rconnaîtr l langag décrit par ( a.b )? (B)... (I)... si a, b Œ ER alors ( a. b ) Œ ER... Définition inductiv ds xprssions régulièrs Ë rconnaît l langag décrit par ( a.b ) a b 2 22 Suit pruv (opération * ) Ë Put-on rconnaîtr l langag décrit par a *? (B)... (I) si a Œ ER alors ( a ) * Œ ER Définition inductiv ds xprssions régulièrs a Ë rconnaît l langag décrit par ( a ) * 23 6

VII. La méthode ESPRIT

VII. La méthode ESPRIT Patrick VAUDON Introduction à la détction ds angls d arrivés d un ond élctromagnétiqu. Mastr Rchrch Tchniqus hyprfréquncs élctroniqus t optiqus 4 VII La méthod ESPRIT ESPRIT st un acronym formé à partir

Plus en détail

Interpolation & Intégration Numérique. Laydi M.R. Rédaction provisoire 2004-ENS2M

Interpolation & Intégration Numérique. Laydi M.R. Rédaction provisoire 2004-ENS2M Intrpolation & Intégration Numériqu Laydi M.R. Rédaction provisoir 4-ENSM Sommair I Intrpolation Généralités 7. Exmpl introductif......................... 7. Cadr abstrait............................

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

Exemple d automate fini

Exemple d automate fini 8. Automates finis Automates finis Les automates finis sont des «machines abstraites» qui savent reconnaître l appartenance ou la non-appartenance d un mot à un langage régulier donné. Ces machines abstraites

Plus en détail

Arbres couvrants : gloutonnons

Arbres couvrants : gloutonnons Arbrs couvrants : gloutonnons G. Aldon - J. Grmoni - J.-M. Mény mars 2012 IREM d LYON () Algorithmiqu mars 2012 1 / 6 Arbr couvrant d un graph Un arbr st un graph connx sans cycl. Un arbr couvrant d un

Plus en détail

TD 1 Rappels mathématiques et expressions rationnelles

TD 1 Rappels mathématiques et expressions rationnelles L Informtiqu Lyon- 0 08 LifLF Théori ds lnggs formls Exrcics d TD TD Rppls mthémtiqus t xprssions rtionnlls A. Notions mthémtiqus d s. Prouvz l prmièr loi d D Morgn : A (B C) = (A B) (A C). Ls nsmls suivnts

Plus en détail

Proposition Soit H un sous-groupe de G. Les conditions suivantes sont équivalentes : 1

Proposition Soit H un sous-groupe de G. Les conditions suivantes sont équivalentes : 1 SOUS-GROUPES NORMAUX ET GROUPES QUOTIENT ALEXANDRE GIROUARD 15. Conjugaison t sous-groups normaux Soit G un group. Dux élémnts x, y G sont conjugués si il xist g G tl qu y = gxg 1. La class d conjugaison

Plus en détail

7.B ANNEXE: RÉGULATEURS ANALOGIQUES

7.B ANNEXE: RÉGULATEURS ANALOGIQUES 7.B ANNEXE: ÉGULATEUS ANALOGIQUES 7.B. Généralités Pour réalisr un régulatur analogiqu, on adoptra un montag à amplificatur qui prmt d réalisr la fonction d transfrt souhaité dans un larg gamm d'utilisation.

Plus en détail

Loi exponentielle. Rappels sur le chapitre précédent :

Loi exponentielle. Rappels sur le chapitre précédent : TS Loi ponntill Rappls sur l chapitr précédnt : On st parti d la loi uniform sur l intrvall [ ; ] puis sur un intrvall [a ; b] qulconqu (formul donnant la probabilité d un intrvall [ ; ] inclus dans [a

Plus en détail

TS Exercices sur la fonction exponentielle (1)

TS Exercices sur la fonction exponentielle (1) TS Ercics sur la fonction ponntill () 4 a. 4 4 b. Simplifir ls prssions suivants : p( ) a. A = p () p () b. B = p () p ( ) c. C p( ) d. D p( ) 4 5 6 (on pourra posr X ) 4 Simplifir ls prssions suivants,

Plus en détail

Préposée ou préposé aux renseignements

Préposée ou préposé aux renseignements Pag 1 sur 5 Préposé ou préposé aux rnsignmnts Numéro 24910RS93470001 Ministèr ou organism Fonction publiqu du Québc Région Touts ls régions Corps-class d'mplois 249.10 - Préposé aux rnsignmnts Catégori

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

.., signal (X(t),t R), ex: sinusoïde. .., tout signal est une somme de sinusoïdes. .., filtre passe-bas idéal et filtre à moyenne mobile

.., signal (X(t),t R), ex: sinusoïde. .., tout signal est une somme de sinusoïdes. .., filtre passe-bas idéal et filtre à moyenne mobile Information, Calcul t Communication Lçon 2.2: Echantillonnag d signaux (2èm parti) Information, Calcul t Communication O. Lévêqu Faculté Informatiqu t Communications Modul 2 : Information t Communication

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

IMPÉDANCES D ENTRÉE ET DE SORTIE

IMPÉDANCES D ENTRÉE ET DE SORTIE MPÉDNCE D ENTÉE ET DE OTE. DÉFNTON On s plac n régim sinusoïdal forcé. oit Q un quadripôl. Nous allons modélisr c quadripôl n utilisant ls impédancs d ntré t d sorti. quadripôl Q V V. Point d vu du génératur

Plus en détail

Polynésie 2012 BAC S Correction

Polynésie 2012 BAC S Correction Polynési 1 BAC S Corrction 1 / 6 Exrcic 1 1. a. L point B appartint à la courb Γ donc f() c'st-à-dir a + b Par conséqunt a + b 1 t donc a + b L point C appartint à la courb Γ donc f(5) 5 c st-à-dir 5 +

Plus en détail

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande.

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande. Numérisation A. Définition La figur suivant illustr l princip d un systèm numériu d contrôl-command. Cluici, à gauch, st chargé d contrôlr crtains comportmnts, par xmpl la tmpératur, d un systèm physiu.

Plus en détail

LES ERREURS DE MESURE

LES ERREURS DE MESURE Chapitr 2 LES ERREURS DE MESURE OBJECTIFS Général Fair acquérir à l apprnant ls notions d rrur t d incrtitud. Spécifiqus Connaîtr ls différnts typs d rrurs t d incrtituds, ainsi qu lurs méthods d calcul.

Plus en détail

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 4 ÉTUDE DES CHAÎNES FERMÉES : DÉTERMINATION DES LOIS ENTRÉE SORTIE Trainr Solo Sport [1] Modèl CAO d un motur d modélism [2] Modélisation

Plus en détail

2- Le nucléide On appelle un nucléide l'ensemble des atomes dont les noyaux ont même valeur de nombre de charge Z et de nombre de masse A.

2- Le nucléide On appelle un nucléide l'ensemble des atomes dont les noyaux ont même valeur de nombre de charge Z et de nombre de masse A. PHYSIQUE / Unité :2 TRNSFORMTIONS NUCLEIRES I- L noyau atomiqu - L noyau Un noyau st composé d nucléons, qui rassmblnt ls protons t ls nutrons. La rprésntation symboliqu du noyau d un atom st la suivant

Plus en détail

Définition SYNTHESE D AUTOMATES D ETATS FINIS. Représentation. Equivalence d automates Graphe d états

Définition SYNTHESE D AUTOMATES D ETATS FINIS. Représentation. Equivalence d automates Graphe d états SYNTHESE D AUTOMATES D ETATS FINIS Automat d états finis (vu dans d autr nsignmnt? ) Spécification très utilisé n Informatiqu (Circuits, Résaux, Pruv...) Réalisation matérill d un automat à l aid d circuits

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycé Municipal d Adults d la vill d Paris Mardi 5 févrir 04 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Duré d l épruv : 4 HEURES Ls calculatrics sont AUTORISÉES corrction obligatoir t spé L candidat doit

Plus en détail

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points)

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points) TS Contrôl du mardi 7 mai 206 (50 min) rénom : Nom : Not :. / 20 arti (5 points : ) point ; 2 ) 4 points) L tmps d incubation, xprimé n hurs, du irus put êtr modélisé par un ariabl aléatoir X suiant un

Plus en détail

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points)

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points) 1 èr S1 ontrôl du mardi 7 mars 017 (50 minuts) Prénom t nom :... Not :.. / 0 III. (7 points : 1 ) 4 points ; ) points) On considèr un résau pointé dont la maill élémntair st un triangl équilatéral d côté

Plus en détail

Atomic Absorption. Spectroscopy

Atomic Absorption. Spectroscopy Chimi Analytiqu Atomic Absorption Spctroscopy Crost Elliott - Frnandz Samul - Tissot Guillaum (Group 2) Univrsité d Gnèv, Scincs II 17 Janvir 29 Résumé L but du laboratoir consist dans un prmir tmps à

Plus en détail

Une extension pleine de tendresse par Antoine Bauza & Corentin Lebrat

Une extension pleine de tendresse par Antoine Bauza & Corentin Lebrat Un xtnsion plin d tndrss par Antoin Bauza & Corntin Lbrat CHIBIS_rgls_09032015.indd 1 13/03/2015 15:44:50 P L t M REPRODUCTION DES PANDAS La saison ds accouplmnts ds pandas s étal d mars à mai. En captivité

Plus en détail

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages IUT ds Pays d l Adour - RT2 Informatiqu - Modul IC2 - Algorithmiqu Avancé Contrôl d TP Dictionnair & Arbrs Binairs mrcrdi 20 mars 2013 duré : 3h 6 pags Ls programms d corrction orthographiqu ont bsoin

Plus en détail

L INDICE DE RÉFRACTION PAR ÉLEVATION APPARENTE; LA MÉTHODE DE CHAULNES

L INDICE DE RÉFRACTION PAR ÉLEVATION APPARENTE; LA MÉTHODE DE CHAULNES L INDICE DE RÉFRACTION PAR ÉLEVATION APPARENTE; LA MÉTHODE DE CHAULNES ) L but du travail Détrminr l indic d réfraction du vrr, du plastiqu t ds différnts liquids par élévation ) Rappls théoriqus : L indic

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat S Nouvll-Calédoni mars 7 EXERCICE Commun à tous ls candidats 5 points On considèr la fonction f défini t dérivabl sur [ ; + [ par f (x)= x x. Parti A. On justifi ls informations

Plus en détail

La programmation à l école. Circonscription de Beauvais Sud 60

La programmation à l école. Circonscription de Beauvais Sud 60 La programmation à l écol. Circonscription d Bauvais Sud 60 1 u q -c t t s n o u i t Q a m r m a r n g g i la pro oi l ns u q r? u o l p o c à l é s d c av s é t i v i Act robots c n r fé é r d r d a C

Plus en détail

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c UTOMTIQUE Lçon : 4 Objctifs : Décrir un systèm assrvi n fonctionnmnt. Modélisr un systèm assrvi par un schéma fonctionnl. Détrminr la fonction d transfrt d un systèm assrvi Mttr n œuvr un systèm assrvi

Plus en détail

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES I OBTENTION GÉNÉRALE DE L ÉQUATION DIFFÉRENTIELLE Dans un réactur, ont liu plusiurs réactions mttant n ju plusiurs spècs Soit A un spèc On va voir sur da un xmpl

Plus en détail

SUJET DE BACCALAURÉAT (MAROC, Juin 2004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH

SUJET DE BACCALAURÉAT (MAROC, Juin 2004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH SUJET DE BACCALAURÉAT (MAROC, Juin 004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH Solution proposé par El Khalil AIMAD-EDDINE, Hicham BASSOU (Evarist) & Saïd BENLAADAM http://wwwmathslandcom Ercic

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU MÉTHODES DE ÉSOLUTION DES ÉSEUX LINÉIES EN OUNT ONTINU I. DEUX FÇONS DE POSE LE POLÈME On considèr l circuit suivant. Nous chrchons à connaîtr l état élctriqu du circuit, c st à dir connaîtr ls potntils

Plus en détail

Chapitre 4: Graphes connexes

Chapitre 4: Graphes connexes CHAPITRE 4 GRAPHES CONNEXES 23 Chpitr 4: Grphs onnxs Introution À qul momnt un résu inormtiqu stisit-il à l propriété qu tous ls orinturs u résu, pris ux à ux, puissnt prtgr l'inormtion? Ds mssgs puvnt-ils

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Chapitre 5. La fonction exponentielle

Chapitre 5. La fonction exponentielle Ensignmnt spécifiqu Chapitr 5 La fonction ponntill I Eistnc t unicité Théorèm : Il ist un uniqu fonction f dérivabl sur tll qu : f = f t f(0) = Ctt fonction st applé fonction ponntill t noté p : Ainsi

Plus en détail

Correction du devoir sur les situations de conjectures

Correction du devoir sur les situations de conjectures Corrction du dvoir sur ls situations d conjcturs no 1. n étant un nombr ntir... a. n + 1 b. n - 1 c. n d. n + 1. (n + 1) f. 5n + (5n + 5) g. 4 possibilités : i. n + 1 t n + 11 ii. n - 1 t n + 9 iii. n

Plus en détail

Théorie des machines thermiques

Théorie des machines thermiques héori ds machins thrmiqus I 7 éfrigératur trithrm, d'après concours Icar 997 ) Définir la notion d machin thrmiqu dans l langag d la thrmodynamiqu ) applr sans démonstration l théorèm d arnot régissant

Plus en détail

L3 informatique Lyon Théorie des langages formels. Support de cours

L3 informatique Lyon Théorie des langages formels. Support de cours L3 informtiqu Lyon 1 2015 2016 LIF15 Théori ds lnggs formls Théori ds lnggs formls NOTIONS MATHEMATIQUES DE BASE... 2 I. Trminologi nsmlist... 2 II. Fonctions pplictions ijctions crdinl... 3 III. Alphts

Plus en détail

REDRESSEMENT COMMANDE

REDRESSEMENT COMMANDE EDEEMENT COMMANDE I. INTODUCTION..Définition. i Un montag rdrssur commandé prmt d obtnir un tnsion continu réglabl (d valur moynn non null) à partir d un tnsion altrnativ sinusoïdal (d valur moynn null).

Plus en détail

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes.

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes. EXERIES 3 La duré T, n minuts, d un convrsation téléphoniqu suit un loi xponntill d moynn 4 minuts. ) alculr P(T>5) ) alculr P( < T < 8). Pour un variabl T, xprimé n minuts, qui rprésnt un duré d vi t

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

LENTILLES EPAISSES LENTILLES MINCES

LENTILLES EPAISSES LENTILLES MINCES AEP / ptiqu géométriqu / Lntills / Pag sur 0 LETILLES EPAISSES LETILLES MICES. Lntill épaiss. Vocabulair Lntill biconvx Lntill équiconvx Lntill biconcav Lntill équiconcav Lntill plan convx Lntill plan

Plus en détail

Daniel Abécassis. Année universitaire 2010/2011

Daniel Abécassis. Année universitaire 2010/2011 Danil bécassis. nné univrsitair 00/0 COURS L UE Chimi Physiqu. Chapitr VII : Chimi analytiqu. Calcul du ph VII.. Transormations associés à ds réactions acido-basiqus. Dans c paragraph, nous allons étudir

Plus en détail

Physique - électricité : TC1

Physique - électricité : TC1 Ministèr d l Ensignmnt Supériur, d la chrch Scintifiqu t d la Tchnologi Univrsité Virtull d Tunis Physiqu - élctricité : T Ls condnsaturs oncptur du cours: Jilani Lamloumi t Monjia Bn Braik Attntion! produit

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e Chapitr 2 Rprésntation ds fonctions logiqus 26..9 Ch 2 : Rprésntation ds fonctions logiqus Réalisation avc ds intrrupturs : a b +5 V Intrruptur a ouvrt (inactif) : a Intrruptur b frmé (actif) : b a Intrruptur

Plus en détail

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+

Plus en détail

notice ET DES HABITATS

notice ET DES HABITATS RNVO RÉFÉRENTIEL DES NOMS DE LA VÉGÉTATION notic ET DES HABITATS d utilisation c n a r F la d t s d l'ou Vous trouvrz dans ctt notic ls élémnts sur la nouvll intrfac d consultation t ls nouvlls fonctionnalités

Plus en détail

Traitement du Signal. Echantillonnage des Signaux

Traitement du Signal. Echantillonnage des Signaux Traitmnt du Signal Jams L. Crowly Duxièm Anné ENSIMAG 2000/2001 Séanc 5 : 20 octobr 2000 Echantillonnag ds Signaux Formul du Jour :... 1 Echantillonnag ds Signaux... 2 L modèl général d'un échantillonnur

Plus en détail

Physique Générale IV, solution série 3

Physique Générale IV, solution série 3 Phsiqu Général IV, solution séri 3 Ercic Du virations d mêm fréqunc, slon du as t prpndiculairs, avc un différnc d phas / : (t) = a sin (ωt) M(t) (t) = sin (ωt + /) = cos (ωt) où a t sont ls amplituds

Plus en détail

FONCTION LOGIQUE FONCTIONS DE LOGIQUE COMBINATOIRE

FONCTION LOGIQUE FONCTIONS DE LOGIQUE COMBINATOIRE P PABO PICAO FONCTION OGIQUE Définitions: FONCTION DE OGIQUE COMBINATOIRE Fonction : grndur qui dépnd d un utr grndur suivnt un systèm d vrils. ogiqu : conform ux règls d l logiqu, cohérnt. Comintoir :

Plus en détail

CHAPITRE IV EQUATIONS DIFFERENTIELLES

CHAPITRE IV EQUATIONS DIFFERENTIELLES CHAPITRE IV EQUATIONS DIFFERENTIELLES Objctifs Un équation différntill st un équation dans laqull l inconnu st un fonction f. D plus, ctt équation fait intrvnir la fonction f ainsi qu ss dérivés, d où

Plus en détail

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010 Baccalauréat S obligatoir) Antills-Guyan sptmbr 00 EXERCICE Commun à tous ls candidats 7 points PARIE A - Rstitution organisé ds connaissancs Soit > 0. Considérons la fonction [ p) ] =. En dérivant cs

Plus en détail

TS Exercices sur la fonction exponentielle (2)

TS Exercices sur la fonction exponentielle (2) TS Ercics sur la onction ponntill () Dans ls rcics à, on dmand d détrminr ls nsmbls d déinition d t d dérivabilité d puis d calculr la dérivé d. Lundi 8--06 Délia El Chatr (TS) Ercic sur ls ponntills ()

Plus en détail

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B Ercic 4 Amériqu du Sud. Novmbr 007 La fonction f st défini sur ]0 ; [ par f = ln ln. La figur ci-dssous donn la courb rprésntativ d f. _ Absciss d B. L point B st un point d'intrsction d la courb d f t

Plus en détail

Les chèques vacances ne sont valables que dans les établissements agréés chèques vacances.

Les chèques vacances ne sont valables que dans les établissements agréés chèques vacances. B60 MAJ.06-2015 path%/1/0 path%/1/1/0 path%/1/2/3 path%/1/2/4 path%/1/3/4 path%/1/1/1 path%/1/1/2 path%/1/1/3 path%/1/1/4 path%/1/2/1 path%/1/2/2 path%/1/3/1 path%/1/3/2 path%/1/3/3 path%/1/3/5 path%/1/3/6

Plus en détail

1 ère L Exercices de statistiques

1 ère L Exercices de statistiques 1 èr L Exrcics d statistiqus 1 Détrminr la médian d chacun ds séris suivants n rédigant a) b) x i 8 10 1 15 x i 150 160 140 130 n i 1 4 3 n i 1000 100 1100 1050 Pour chaqu séri indiqué, calculr, sans utilisr

Plus en détail

TP Filtrage numérique

TP Filtrage numérique TP Filtrag On chrch à réalisr un filtrag pass-bas puis pass-band d un signal périodiqu t à mttr n évidnc la limitation introduit par l échantillonnag. I. Introduction I.1. Du filtrag au filtrag Jusqu à

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministèr d l Ensignmnt Supériur, d la Rchrch Scintifiqu Univrsité Virtull d Tunis Ls systèms assrvis linéairs échantillonnés Echantillonnag instantané d un signal Mohamd AKKARI Attntion! C produit pédagogiqu

Plus en détail

U.C.P. S.T.P. le 100 % Technicien

U.C.P. S.T.P. le 100 % Technicien U.C.P. S.T.P. l 100 % Tchnicin Etud comparativ ntr ls catégoris B Tchniqu t Ouvrièr au sin d la Vill d Paris Documnt rmis l 9 Juin 2004 à Monsiur François DAGNAUD adjoint au Mair d Paris chargé d l'administration

Plus en détail

Les trois questions de l exercice sont indépendantes.

Les trois questions de l exercice sont indépendantes. Pondichéry Avril 00 Séri S Exrcic Un urn contint 0 bouls blanchs t n bouls rougs, n étant un ntir naturl supériur ou égal à On fait tirr à un jouur ds bouls d l urn A chaqu tirag, touts ls bouls ont la

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Franc métropolitain 03. Ensignmnt spécifiqu EXERCICE 7 points) commun à tous ls candidats) Sur l graphiqu ci-dssous, on a tracé, dans l plan muni d un rpèrorthonormé rprésntativ C d un fonction f défini

Plus en détail

ETAPE 3 : Modélisation d un pignon arbré patron

ETAPE 3 : Modélisation d un pignon arbré patron ETAPE 3 : Modélisation d un pignon arbré patron Il s agit ici d un cas d paramétrag fonctionnl, étant donné qu l résultat obtnu sra un famill d solutions (arbr qui transmt ou non un coupl n sorti avc un

Plus en détail

dq dt Chapitre 7 : les courants électriques 7.1 Intensité et densité de courant

dq dt Chapitre 7 : les courants électriques 7.1 Intensité et densité de courant Chapitr 7 : ls courants élctriqus 7.1 Intnsité t dnsité d courant Ls courants élctriqus sont produits par l déplacmnt ds porturs d chargs. L courant élctriqu dans un fil st un msur d la quantité d charg

Plus en détail

Baccalauréat S Métropole 20 juin 2013

Baccalauréat S Métropole 20 juin 2013 Baccalauréat S Métropol 0 juin 0 EXERCICE Commun à tous ls candidats 4 points Puisqu l choix d l arbr s fait au hasard dans l stock d la jardinri, on assimil ls proportions donnés à ds probabilités.. a.

Plus en détail

3.1 La valeur actualisée des profits anticipés

3.1 La valeur actualisée des profits anticipés Univrsité Paris Oust Nantrr La Défns Anné univrsitair 25-26 Licns Economi-Gstion Grands Fonctions Macroéconomiqus Ensignants : Alain Ayong L Kama, Draman Coulibaly, Patricia Crifo, Elna Dimitrscu, Michl

Plus en détail

RETROACTION NEGATIVE DE L AMPLIFICATEUR

RETROACTION NEGATIVE DE L AMPLIFICATEUR RETROCTION NEGTIVE DE L MPLIFICTEUR Philipp ROUX 24 RETROCTION NEGTIVE DE L MPLIFICTEUR. PRINCIPE DE L RETROCTION NEGTIVE Pour s placr dans l cas général on considèrra un ampliicatur ayant un onction d

Plus en détail

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices Séri d rcics d Mathématiqus : Étud d fonctions à variabl réll dansr : Énoncé ds rcics Ercic Soit la fonction numériqu f défini par : f )= 3+ 5 +. a) Détrminr l nsmbl d définition D f t ls its au borns.

Plus en détail

XVIII. Un devoir par chapitre

XVIII. Un devoir par chapitre XVIII. Un dvoir par chapitr. Enoncés. Etuds d fonctions : rappls t prolongmnts.. En utilisant la méthod la plus fficac, donnr touts ls caractéristiqus ds fonctions suivants t tracr l graphiqu d cs fonctions

Plus en détail

1 1/ x 1 1 f '( x) 2 2

1 1/ x 1 1 f '( x) 2 2 Fonctions Logarithms Ercics corrigés Vrai-Fau Fsic, rcic Soit f la fonction défini par f( ), D son nsmbl d définition t C sa courb ln( ) rprésntativ a On a D = ], +[ b La courb C admt un droit asymptot

Plus en détail

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés Trminal ES Problèms d'étuds d onctions avc ds logarithms - Corrigés Problèm : st déini sur [;9] par ()= 4 ln. V st la courb rprésntativ d. ) D'après l'allur du graphiqu, il smbl qu soit conv sur [;9].

Plus en détail

Exponentielles. Mr Zribi. Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I

Exponentielles. Mr Zribi.  Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I Eponntills 4 ér Maths Solutions Ercic : Parti I. g st défini pour tout [ ; [ par g. a Pour tout, g t g > équivaut à > > >. car la fonction p st strictmnt croissant sur R. g ' > pour tout > t g'. Il s'nsuit

Plus en détail

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3.

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3. Polynési sptmbr 009 EXERCICE points Commun à tous ls candidats On considèr l cub OABCDEFG d'arêt d longuur rprésnté ci-dssous. Il n'st pas dmandé d rndr l graphiqu complété avc la copi. Soint ls points

Plus en détail

TP HF Manipulation 6 CARACTERISATION D UN AMPLIFICATEUR MICRO ONDE

TP HF Manipulation 6 CARACTERISATION D UN AMPLIFICATEUR MICRO ONDE TP HF Manipulation 6 CARACTERIATION D UN AMPLIFICATEUR MICRO ONDE I. Introduction Ls amplificaturs micro onds sont aujourd hui utilisés dans ls chaîns d transmission ds systèms d télécommunications. Il

Plus en détail

Mesure de la vitesse orbitale de la Terre

Mesure de la vitesse orbitale de la Terre Msur d la vitss orital d la rr I - Démarch concptull d la msur. Du fait d son mouvmnt autour du olil, la rr s approch d un étoil pndant six mois d l anné puis s n éloign pndant ls six autrs mois. Pour

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N.

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N. SESSION 7 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES I Ls suits α t β I. Etud d la suit α I.. α =, α = α =, α = α + =, α 3 = 3α = t α 4 = 4α 3 + = 9. α =, α =, α = α 3 =

Plus en détail

Calcul des éléments de charpentes métalliques

Calcul des éléments de charpentes métalliques Calcul ds élémnts d charpnts métalliqus III.1 Elémnts Soumis à la Traction Simpl Soumis à un traction suivant sa sction, un barr n acir s allong uniformémnt jusqu à un crtain limit, applé limit d élasticité.

Plus en détail

THÉORIE DES GRAPHES (2)

THÉORIE DES GRAPHES (2) THÉORIE DES GRAPHES (2) Michl Rigo http://www.discmath.ulg.ac.b/ Anné 2007 2008 CHEMINS DÉFINITION Soit G = (V, E) un multi-graph non orinté. Un chmin d longuur k 1 st un suit ordonné ( 1,..., k ) d k

Plus en détail

Je cède des DPB Quelles clauses choisir?

Je cède des DPB Quelles clauses choisir? Dirction Départmntal ds Trritoirs t d la Mr Finistèr J cèd Qulls clauss choisir? Mis à jour : Av r i l 0 à r s o ép t l d t à van n o a s s 9 0 us TM ai a l s c la DD m L Dirction Départmntal ds Trritoirs

Plus en détail

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points)

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) BAC S Liban 014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) L problèm posé par la natur ds «rayons cathodiqus» à la fin du XIX èm siècl fut résolu n 1897 par l'anglais JJ Thomson : il

Plus en détail

Application de Gestion des Congés de Formation Professionnelle Guide du Candidat

Application de Gestion des Congés de Formation Professionnelle Guide du Candidat Application d Gstion ds Congés d Formation Profssionnll Guid du Candidat I - GENERALITES Conditions d accès à l application d candidatur : Ctt application s adrss aux nsignants titulairs t non titulairs

Plus en détail

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS J AUVRAY Systèms lctroniqus LS OMPOSANTS ATIFS L TRANSISTOR IPOLAIR Il st constitué d 3 couchs d smi-conductur rspctivmnt N P t N (ou PNP).La couch cntral, la bas,st minc, sa largur doit êtr très infériur

Plus en détail

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m Problèm : Stockag intr saisonnir d chalur. (Thèm : équation différntill du 1 r ordr, résolution xact t avc GoGbra) L résau d chalur d la vill d Marstal au Danmark utilis 33 000 m² d capturs solairs thrmiqus

Plus en détail

TS - FONCTION EXPONENTIELLE

TS - FONCTION EXPONENTIELLE Cours t rcics corrigés d mathématiqus - TS - documnt gratuit disponibl sur JGCUAZ.FR TS - FONCTION EXPONENTIELLE C documnt totalmnt gratuit (disponibl parmi bin d'autrs sur la pag JGCUAZ.FR rubriqu mathématiqus)

Plus en détail

FONCTIONS D UNE VARIABLE COMPLEXE

FONCTIONS D UNE VARIABLE COMPLEXE Unvrsté du Man - Faculté ds Scncs! Rtour Varabl complx FONCTIONS D UNE VARIABLE COMPLEXE Ls nombrs complxs ont été ntroduts vrs 55 par ls talns Cardano t Frrar comm racns ds équatons du èm dgré dont l

Plus en détail

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00 Mastr1 Msurs, Instrumntation t Procédés U.E. M15 : Capturs, Chaîns d msur 2 èm sssion Judi 18 Juin 29-9H Anné Univrsitair 28-29 Duré : 2H Documnts t calculatric autorisés Ls 2 partis sont indépndants t

Plus en détail

SYSTEMES DE PRODUCTION DES SEMENCES DE COTON EN AFRIQUE DE L OUEST ET DU CENTRE. IYA Mohammed. Sodecoton, Cameroon

SYSTEMES DE PRODUCTION DES SEMENCES DE COTON EN AFRIQUE DE L OUEST ET DU CENTRE. IYA Mohammed. Sodecoton, Cameroon SYSTEMES DE PRODUCTION DES SEMENCES DE COTON EN AFRIQUE DE L OUEST ET DU CENTRE IYA Mohammd Sodcoton, Camroon 1 INTRODUCTION La smnc constitu un élémnt ssntil pour la réussit d la production cotonnièr

Plus en détail

CH V : Fonction exponentielle

CH V : Fonction exponentielle TSTID CH V : Fonction ponntill A la décovrt d n novll fonction d référnc Ls calclatrics possèdnt n toch On not ctt fonction : p. L imag d n rél par la fonction ponntill st noté qi corrspond à n fonction

Plus en détail

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY Rodica Vilcu *, A. Dobrscu abstract: Ctt publication st consacré à l établissmnt d un modèl adéquat du domain oscillant d la réaction

Plus en détail

La facturation. 607 Achat de marchandises HT TVA déductible sur biens et services TVA 512 Banques (ou fournisseur) TTC

La facturation. 607 Achat de marchandises HT TVA déductible sur biens et services TVA 512 Banques (ou fournisseur) TTC I Ls princips d bas d la facturation A / Généralités La facturation - La chaîn ds documnts commrciaux. Un factur st un documnt comptabl émis par l fournissur à dstination du clint. L dvis st un documnt

Plus en détail

noyau aimant enroulement

noyau aimant enroulement hapitr 2 : Théori général ds convrtissurs élctromagnétiqus Laboratoir virtul : Étud un haut-parlur élctrodynamiqu La figur donn un vu n coup d'un haut-parlur élctrodynamiqu. dispositif, qui présnt un symétri

Plus en détail

Transferts thermiques

Transferts thermiques IUT d St Dnis Départmnt Géni Industril t Maintnanc Modul THERMb (S2) Transfrts thrmiqus corrction ds xrcics Exrcic 1 01 01 01 01 01 01 01 01 01 01 01 isolant Flux thrmiqu00 11 Flux thrmiqu Rsistanc lctriqu

Plus en détail