CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE 4 LA TRANSFORMÉE DE F OURIER"

Transcription

1 CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble sur tout intervlle fermé borné contenu dns I. C est à dire, f est loclement intégrble sur I, si quelque soit [, b I, lors b f (x)dx existe. Remrque 4.. Il est clir que toutes les fonctions continues sont loclement intégrbles. On note pr Loc(I, R) ={ f : I R : f loclement intégrble}. On lorsc(i,r) Loc(I,R) et l inclusion est stricte. Comme exemple l fonction f (x)=[x, (prtie entière de x) est loclement intégrble mis non continue. Proposition 4.. L ensemble Loc(I, R) est un sous-espce vectoriel de F (I, R), (espce de toutes les fonctions définies de I dnsr). 4.2 L intégrle de F ourier Pour conclure l étude de l théorie des séries de F ourier, on exminer le cs ite où l intervlle,l[, dns lequel on étudie l série de F ourier, tend vers, [, c est à dire lorsque l. Soit f :R R une fonction loclement intégrble surret telle que I= f (t) dt converge. On suppose que f stisfit ux conditions de Dirichlet et dmet un développement en série de F ourier dns l intervlle [, l, l >. Donc il existe une fonction g : R R périodique, de période T=2l=, vérifint les hypothèses de Dirichlet (donc développble en série ω de F ourier) telle que l restriction g [,l = f. 6

2 LA TRANSFORMÉE DE F OURIER Alors pour tout x [,l on : () f (x)= 2 + (b) (c) n = ω π b n = ω π n= π/ω π/ω π/ω π/ω [ n cos(nωx)+b n sin(nωx) = 2 + f (x) cos(nωx)dx= l f (x) sin(nωx)dx= l l l f (x) cos n= [ ( ) ( ) nπ nπ n cos l x + b n sin l x ( nπ l x ) dx ( ) nπ f (x) sin l x dx En remplçnt les quntités (b) et (c) dns (), on : f (x)= l f (x)dx+ l ( ( ) ( ) ( ) ( )) nπ nπ nπ nπ 2l l f (t) cos l t cos l x + sin l t sin l x dt = n= l f (x)dx+ 2l l n= l Nous llons étudier cette dernière intégrle qundl. ( ) nπ f (t) cos l (t x) dt () Posonsα = π l, α 2= l,...,α n= nπ l et α n=α n α n = π l. En reportnt dns l expression () ci-dessus, on obtient : f (x)= +l f (t)dt+ l 2l π f (t) cosα n (t x)dt α n Posonsϕ(α n )= +l Pr conséquent n ϕ(α k ) α k = n n= f (t) cos (α n (t x)) dt. Il résulte de cel π/l n n ( l ) ϕ(α k ) α k = f (t) cos(α k (t x)dt) α k k= k= ϕ(α)dα (l intégrle de Riemnn.) k= n n ( l ) Donc ϕ(α k ) α k = n π n f (t) cos(α k (t x))dt) α k π k= k=. Ainsi π π/lϕ(α)dα= ( l ) f (t) cos(α(t x))dt dα. π π/l Comme l π π/lϕ(α)dα= ϕ(α)dα π [ l f (t) cos(α(t x))dt dα= l π π/l π On finlement l reltion pour f continue : f (x)= π [ f (t) cos(α(t x))dt dα. [ f (t) cos(α(t x))dt dα M er AMROUN NOUR-EDDINE 62

3 4.2 L intégrle de F ourier Cette dernière expression est ppelée intégrle de F ourier. Cette églité lieu en tout point x où f est continue. Si f possède des discontinuités, on l formule vlble pour tout x : π Posons mintennt φ(α) = pire et pr suite On finlement : [ f (x+)+ f (x ) f (t) cos(α(t x))dt dα= 2 φ(α)dα= 2 f (t) cos(α(t x))dt. Il est clir queφ( α)=φ(α) et doncφest φ(α)dα. L intégrle de Fourier. f (x)= [ f (t) cos(α(t x)dt dα 4.2. forme complexe de l intégrle de F OURIER Posonsψ(α)= f (t) sin(α(t x))dt. ψ est une fonction impire et donc pour tout >, Donc ψ(α)dα = [ f (t) sin(α(t x))dt dα=. ψ(α)dα== [ f (t) sin(α(t x))dt dα. On dit dns ce cs que l intégrle converge en vleur principle de Cuchy vers. Ceci implique qu on ussi i [ f (t) sin(α(t x))dt dα=et donc ; Forme complexe de l intégrle de Fourier. f (x)= [ f (t)e iα(t x) dt dα. lors Posons : f (α)e iαx dα= F ( f )(α)= f (α)= f (t)e iαt dt; [ f (t)e iα(t x) dt dα= On peut écrire générlement si f possède des discontinuités : f (x) = f (x). f (α)e iαx dα= f (x+)+ f (x ) 2 Mintennt on peut définir l notion de trnsformée de F ourier. 63 M er AMROUN NOUR-EDDINE

4 LA TRANSFORMÉE DE F OURIER 4.3 Trnsformée de F ourier Définition 4.3. Soit f :R R une fonction loclement intégrble et bsolument intégrble surr. On définit l trnsformée de F ourier de f, l fonction notée f ou F (f) der C ; et s trnsformée inverse de C R pr : Trnsformée de Fourier. F ( f )(α)= f (α)= Trnsformée inverse de Fourier. f (x)e iαx dx f (x)= f (α)e iαx dα= f (x+)+ f (x ) 2 Exemple 4.3. Soit f (x)=e x. f (α)= = [ e x e iαx dx= [ e ( iα)x dx+ e x e iαx dx+ e x e iαx dx e (+iα)x dx = [ +iα + iα = 2 +α 2. Puisque f est continue surr, L trnsformée inverse donne : f (x)=e x = f (α)e iαx dα= π +α 2 eiαx dα = cosαx π +α dα+ i sinαx 2 π +α dα= 2 cosαx 2 π +α dα+i. ; 2 d où : En prticulier on ; 4.4 Propriétés Lemme 4.4. (Riemnn) cos x +x 2 dx= π 2 e cosαx +α 2 dα=π 2 e x. On pose IK=R ouc. Soit f : [, b IK une fonction intégrble sur [, b. Alors les fonctions f (t) cosαt et f (t) sinαt sont intégrbles dns [, b pour toutα dnsret on : b b f (t) cosαt dt= f (t) sinαt dt= M er AMROUN NOUR-EDDINE 64

5 4.4 Propriétés Preuve. f intégrble sur [, b implique que pour toutε>, il existe une subdivision de [, b =x < x < x 2 <...<x n = b et une fonction en esclier, ε g : [, b Rtelles que f (t) g(t) < 2(b ). b b b ( f (t) g(t)) cosαtdt ε f (t) g(t) cosαt dt dt= ε 2(b ) 2. Or, dns chque intervlle x k, x k+ [, l fonction g est constnte et vut g (t)=c xk,x k+ [ k. On lors, b n xk+ n xk+ g(t) cosαt dt= g(t) cosαt dt= c k cosαt dt Et pr suite, b k= n = k= x k f (t) cosαt dt=. c k ( sinαt α ) xk+ x k = α k= n Risonnement identique pour l deuxième intégrle. Théorème 4.4. k= x k c k (sinαx k+ sinαx k ) α ±. Soit f : R C une fonction loclement intégrble et bsolument intégrble surr. Alors. f (α)= f (x)e iαx dx est normlement convergente. 2. f est bornée. 3. f (α)= Preuve.. C est immédit cr f (x)e iαx = f (x) qui est intégrble surrpr hypothèse. 2. f (α) f (x)e iαx dx= f (x) dx=m. 3. Posons I()= I()= f (x) dx. f (x) dx=iexiste. Soitε>. Il existe lors b>tel que I I(b) =I I(b) ε 2. f (α) = f (x)e iαx dt = b f (x)e iαx dx+ b f (x)e iαx dx+ f (x)e iαx dx b b b f (x) dx+ b f (x)e iαx dx + f (x) dx. b 65 M er AMROUN NOUR-EDDINE b

6 LA TRANSFORMÉE DE F OURIER Donc f (α) I I(b)+ b f (x)e iαx dx b. Comme l fonction f (x)e iαx est loclement intégrble, d près le lemme de Riemnn (4.4.), b b f (x)e iαx dx=. Il existe lors M>, tel que pour tout α M, on Il résulte que pour tout α M, f (α) ε 2 +ε 2 Nottions. { b b f (x)e iαx dx ε 2. =ε, ce qui trduit le fit que f (α)=. K = f :R C: f Loc(R) et f (t) dt<. { } B= f :R C: f (x)=. x ± D : opérteur de dérivtion définie sur l ensemble des fonction dérivbles D(R,C) pr D f=f. P : opérteur défini dns l ensemble des fonctions B(R,C) pr (P f )(x)=x f (x). f (α)=f ( f (x))(α) Théorème [Dérivée de l trnsformée de F ourier Soit f : R C une fonction stisfisnt ux conditions suivntes : i) f K ii) f continue iii) P f K Alors f C (R,C) (fonctions continûment dérivbles) et on : F ( f (x))(α)= if (x f (x))(α) } Preuve. Soit l fonctionϕ:r R Cdéfinie prϕ(t, x)= f (t)e itx. ϕ possède les propriétés suivntes : )ϕ est continue comme produit de deux fonctions continues b) ϕ x (t, x)= it f (t)e itx = itϕ(t, x) est continue c) L intégrle ϕ(t, x)dt est normlement convergente cr ϕ(t, x) = f (t) et f K ϕ ϕ d) (t, x)dt est normlement convergente cr x (t, x) x = t f (t) = (P f )(t) et P f K Pour ces risons f (x)= ϕ(t, x)dt est dérivble dnsret on : ( f ) (x)=(d f)(x)= ϕ i (t, x)dt= x [t f (t, x)e itx dt M er AMROUN NOUR-EDDINE 66

7 4.5 Quelques propriétés de l trnsformtion de F ourier Ce qui se trduit pr (D f)(x)= i( P f)(x) ou i(d f )(x)=( P f (x) en multiplint pr i chque membre. Théorème [Trnsformée de F ourier de l dérivée Preuve. Soit f : R C une fonction stisfisnt ux conditions suivntes :. f K 2. f C (R) 3. D f K Alors f B et ) Pour tout x R on f (x)= f ()+ x F ( f (x))(α)=iαf ( f (x))(α) f (t)dt. Puisque D f K, l intégrle f (t) dt est convergente et pr suite f (t)dt converge. D où f (x)=l existe. Montrons quel=. x Pour cel, on fit un risonnement pr l bsurde. Supposons quel. ) Supposonsl>. f (x)=l. Pr définition de l ite, pour toutε> il existe M tel que pour tout x x Mon :l ε< f (x)<l+ε. Choisissonsεtel quel ε>. Il résulte lors que f (x)> pour tout x M. Donc, on obtient pour f (x)dx= M M (l ε)dx M M f (x)dx f (x)dx et pr conséquent f (x)dx+ M M f (x)dx. D où contrction cr f K. b) Supposons quel<. On prend ( f ) et on dopte le même risonnement. Conclusionl=. Exercice. En s inspirnt de cette démonstrtion, montrer que f (x)=. x 2) i(p f )(x)=ix f(x)= ix f (x)e iαx dx= ix f (x)e iαx dx. M (l+ε)dx puis lorsqu on fit tendre f (x)dx diverge. Il en est de même Une intégrtion pr prties vec u= f et dv=ixe itx dt, on obtient : i(p f )(x)= [ e itx f (t) + f (t)e itx dt = f (t)e itx dt= (D f )(x). 4.5 Quelques propriétés de l trnsformtion de F ourier Adoptons l nottion f= F ( f ) Linérité Soient f, g K etα,β R. Alors F (α f+βg)(x)=αf ( f )(x)+βf (g)(x). L démonstrtion de cette propriété est simple. 67 M er AMROUN NOUR-EDDINE

8 LA TRANSFORMÉE DE F OURIER Trnsformée de F ourier de l trnsltion. Soit T R et soit f :R C une ppliction. On note f T (x)= f (x T). Si f K. F ( f T )(α)= Alors F ( f T )(α)= e iαt f (t)e iαt dt. f T (x)e iαx dx= Donc F ( f T )(α)=e iαt F ( f )(α). f (t)e i(t+t)α dt= Trnsformée de F ourier de l homothétie Soit k>et soit f :R C. On note f k (x)= f (kx). Si f K, F ( f k )(α)= f k (x)e ixα dx= En posnt kx=t, on obtient : F ( f k )(α)= f (t)e iα (t/k) dt k = k [ f (x T)e iαx dx. On pose x T=t. f (kx)e ixα dx. f (t)e iαt e iαt dt= f (t)e it (α/k) dt = k F ( f ) ( α k ) Produit de convolution Problème : Étnt données deux fonctions f et g et leurs trnsformées de F ourier F ( f )(α) et F (g)(α), peut-on trouver une fonction k telle que Solution On F ( f )(α) F (g)(α) = F (k)(α)=f ( f )(α) F (g)(α)? f (x)e iαx dx = f (x)g(y)e iα(x+y) dxdy Posons : x+ y=t et donc dy=dt, l intégrle double devient : Posons : h(t)= F ( f )(α) F (g)(α)= f (x)g(t x) dx, on donc : F ( f )(α) F (g)(α) = = = f (x)g(t x)e iαt dxdt h(t)e iαt dt ( ) h(t)e iαt dt F (h)(α) g(y)e iαy dy M er AMROUN NOUR-EDDINE 68

9 4.6 «Sinus et Cosinus-trnsformées»de F ourier En posnt k(t)= h(t), l fonction k est solution du problème posée. Définition 4.5. Soit f, g : R R deux fonctions intégrbles sur R. On ppelle produit de convolution de f pr g, l fonction notée f g :R Rdéfinie pr ( f g)(t)= Proposition 4.5. Le produit de convolution est commuttif ; et on : F ( f g)(α)= F ( f )(α)f (g)(α) f (t x)g(x)dx Preuve : L preuve découle directement de l définition ; puisque : α R F ( f )(α) F (g)(α)=f (g)(α) F ( f )(α) Exercice Démontrer l commuttivité directement à prtir de l définition intégrle. En effet dns l intégrle ( f g)(t) = en posnt t x= y. On obtient : ( f g)(t)= f (y)g(t y)dy= Théorème 4.5. [Églité de Prsevl f (t x)g(x)dx, on fit le chngement de vrible g(t y) f (y)dy=(g f )(t). Soit f :R Cdmettnt une trnsformée de F ourier F ( f ). Alors on F ( f )(α) 2 dα= f (t) 2 dt 4.6 «Sinus et Cosinus-trnsformées»de F ourier Définition 4.6. Soit f : R R une fonction bsolument intégrble sur R.. On ppelle cosinus-trnsformée de F ourier de f, l fonction : 2 f c (α)= f (x) cos(αx) dx π L expression 2 f (x)= f c (α) cos(αx) dα π est ppelée inverse de cosinus-trnsformée de F ourier de f. 69 M er AMROUN NOUR-EDDINE

10 LA TRANSFORMÉE DE F OURIER 2. On ppelle sinus-trnsformée de F ourier de f, l fonction : 2 f s (α)= f (x) sin(αx) dx π L expression 2 f (x)= f s (α) sin(αx) dα π est ppelée inverse de sinus-trnsformée de F ourier de f. Remrque 4.6. Soit f :R R une fonction dmettnt une trnsformée de F ourier f. ) Si f est pire. f (α)= = f (x)e iαx dx= f (x) cos(αx) dx i f (x) ( cos(αx) i sin(αx) ) dx f (x) sin(αx) dx. Or l fonction x f (x) cos(αx) est pire et l fonction t f (x) sin(αx) est impire. Il s ensuit lors : 2 f (α)= f (x) cos(αx) dx cr f (x) sin(αx) dx =. D où : π 2 f (α)= f c (α)= f (x) cos(αx) dx π b) Si f est impire. Avec le même risonnement on obtient l expression : f (α)= 2 f (x)e iαx dx= i f (x) sin(αx) dx. D où : π 2 f (α)= i f (x) sin(αx) dx= i f s (α). π fs (α)=i f (α). M er AMROUN NOUR-EDDINE 7

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

Résumé du cours d analyse de Sup et Spé

Résumé du cours d analyse de Sup et Spé Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Intégrale curviligne et applications aux fonctions holomorphes

Intégrale curviligne et applications aux fonctions holomorphes Chpitre 2 Intérle curviline et pplictions ux fonctions holomorphes 2. Intérle curviline - Indice d un point pr rpport à un lcet 2.. Définitions et propriétés de bses Soit f : [, b] R! C une fonction, on

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

( 0 0 1 0 0 0 0 0 0. et A est semblable à T ; de même B est semblable. n. x

( 0 0 1 0 0 0 0 0 0. et A est semblable à T ; de même B est semblable. n. x Préprtion à l orl Mines-Ponts - MP I) Soit f de clsse C sur [, + [, à vleurs dns R, vérifint f() = et f (t) = (f(t)) + t Montrer que f dmet une limite l + π en + 4 II) Soient A et B non nulles dns M 3

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

et Transversalité par Pierre Vogel

et Transversalité par Pierre Vogel Université Paris 7 Denis Diderot Institut de Mathématiques de Jussieu Géométrie des Variétés et Transversalité par Pierre Vogel Introduction Ce cours est destiné à l étude des variétés différentiables

Plus en détail

FICHES DE MATHÉMATIQUES

FICHES DE MATHÉMATIQUES FICHES DE MATHÉMATIQUES Clsse de PT Pr Mxime CHUPIN Ces fiches sont issues des cours de Jen-Michel SARLAT et de Christin RIEFFEL, professeurs de mthémtiques u lycée LOUIS-ARMAND de Poitiers. 1 Tble des

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ ICNA - SESSION 9 ÉPREUVE OPTIONNEE DE PHYSIQUE CORRIGÉ Diffusion thermique dns un câble électrique.. puissnce volumique dissipée pr effet Joule dns le conducteur est donnée pr P. Je J J.E e γ I e vecteur

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

201-NYC SOLUTIONS CHAPITRE 8

201-NYC SOLUTIONS CHAPITRE 8 Chpitre 8 Nombres complexes 7 -NYC SOUTIONS CHAPITRE 8 8. EXERCICES. ) Re() 5, Im() b) Re(), Im() 8 c) Re() 5, Im() d) Re(), Im() e) Re(), Im() f) Re(), Im() 6. ) x + i et x i b) x + i et x i c) x + i

Plus en détail

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières.

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières. Analyse fonctionnelle A. Leclaire ENS Cachan M Hadamard 25-26 TD7 Exercice Sous-espaces fermés de C ([,] formé de fonctions régulières. Soit F un sous-espace vectoriel fermé de C ([,] muni de la convergence

Plus en détail

TD3. Exercice 1 Un cas particulier du théorème de Cauchy-Lipschitz. f (s,y(s))ds.

TD3. Exercice 1 Un cas particulier du théorème de Cauchy-Lipschitz. f (s,y(s))ds. Analyse fonctionnelle A. Leclaire - L. Magnis ENS Cachan M1 Hadamard 2015-2016 TD3 Exercice 1 Un cas particulier du théorème de Cauchy-Lipschitz Soient I un intervalle de, E un espace de Banach et f :

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle

Exercice 3.1.1 Si f est une fonction continue sur [0, 1], montrer que l équation différentielle Chapitre 3 FORMULATION VARIATIONNELLE DES PROBLÈMES ELLIPTIQUES Exercice 3.. Si f est une fonction continue sur [, ], montrer que l équation différentielle { d 2 u = f pour < x < dx 2 (3.) u() = u() =.

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

Théorèmes d échange de limites

Théorèmes d échange de limites Théorèmes d échange de limites ) Convergence uniforme et limites Théorème de continuité our les suites de fonctions. Pour E et F deux esaces vectoriels normés, on considère une suite d alications f n :

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

TD n 6 : Fourier - Correction

TD n 6 : Fourier - Correction D n : Fourier- Correction - Pge sur D n : Fourier - Correction Séries de Fourier Coefficient de Fourier On considère une fonction f continue pr morceux et -périodique. c n f f t e in n Z n f [] f t cos

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

Agrégation de Mathématiques 2012-2013. Intégration

Agrégation de Mathématiques 2012-2013. Intégration Agrégtio de Mthémtiques -3 CMI Uiversité d Aix-Mrseille Itégrtio. Itégrles défiies. Subdivisio. Soiet et b deux ombres réels tels que < b. O ppelle subdivisio de l itervlle [, b] toute suite fiie strictemet

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé

Intégration et probabilités ENS Paris, 2013-2014. TD 5 Théorèmes de Fubini, calculs Corrigé Intégration et probabilités NS Paris, 23-24 TD 5 Théorèmes de Fubini, calculs Corrigé xercices à préparer du TD 4 xercice. (Partiel 27 Soit (,,µ un espace mesuré et f : + une fonction mesurable.. On suppose

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Préface. Le but de ce cours est d introduire les transformées de Laplace et Fourier et d en présenter les applications les plus usuelles.

Plus en détail

1 Langages reconnaissables

1 Langages reconnaissables 8INF713 Informtique théorique Automne 2014 Exercices 1 Lngges reconnissles 1.1 Considérez les deux utomtes suivnts et répondez ux questions suivntes : q 3, q 3 q 4 () A 1 () A 2 Figure 1 () Quel est l

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Seconde Partie. Cours de Mathématiques. Semestre

Seconde Partie. Cours de Mathématiques. Semestre Année 2009-2010 ntégration et Probabilités Seconde Partie Cours de Mathématiques Takéo Takahashi Première Année FICM Semestre Table des matières 5 Indépendance et Convolution 3 5.1 Indépendance..............................................

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales simples

Cours de remise à niveau Maths 2ème année. Intégrales simples Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

Programmation des éléments nis P1 en 1D

Programmation des éléments nis P1 en 1D Notes du cours d'équtions ux Dérivées Prtielles de l'isima, deuxième nnée http://wwwisimfr/leborgne Progrmmtion des éléments nis P1 en 1D Gilles Leborgne 8 mrs 2005 Tble des mtières 1 Le problème 2 11

Plus en détail