Chapitre 6: Graphes eulériens et hamiltoniens

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 6: Graphes eulériens et hamiltoniens"

Transcription

1 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS 36 Cpitr 6: Grps ulérins t miltonins 6.1 Introution t ls prmièrs éinitions Introution L t nissn l téori s rps put êtr ixé à l'nné L'istoir ront qu ls itnts Könisr n Pruss (mintnnt C Klininr n Russi) souitint svoir s'il xistit un moyn prtir z soi, mpruntr tous ls 7 ponts, un ois t un sul, t rvnir ns s mur. A D Lonr Eulr, mtémtiin âlois, montr qu 'étit impossil t ut mné B pour l à introuir ls prmirs ruimnts téori s rps, ont ll yl ulérin qui v êtr éini i-ssous. Rppls Un min st un suit sommts rliés pr s rêts. Un yl st un min rmé. Déinitions Un min ulérin st un min ns l rp qui pss pr touts ls rêts just un sul ois. Si min st rmé, on prlr yl ulérin. Un min miltonin st un min ns l rp qui pss pr tous ls sommts un t un sul ois. Si min st rmé (i.. il xist un rêt rlint l sommt éprt u sommt 'rrivé), on prlr yl miltonin. Un rp st it miltonin s'il possè un yl miltonin. Un rp st it ulérin s'il possè un yl ulérin. Exmpl: min ulérin: ps yl ulérin min miltonin: ---- yl miltonin: ---- Exri 70 À Klininr, il y ujour'ui ux ponts plus qu ls spt qui ont été onstruits u XVIII sièl. Cs ux nouvux ponts ont l jontion rsptivmnt ntr ls réions B t C t ls réions B t D. Est-il possil à un promnur trvrsr ls nu ponts Klininr un ois sulmnt t rvnir à son point éprt? Option spéiiqu JtJ 2012

2 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS 37 Exri 71 Prmi ls rps suivnts, lsquls ontinnnt un min ulérin ou min miltonin? Prmi ux-i, lsquls sont s rps ulérins ou rps miltonins. ) ) ) Exri 72 On ispos 'un il r 120 m. ) Est- possil préprr un rss u 10 m ôté sns oupr l il? ) Si non, omin oups isux ut-il ir u minimum? Exri 73 On onsièr s ominos ont ls s sont numérotés à l i ux irs oisis ntr 1 t 6. On préis qu il n y jmis ux ominos intiqus. ) En xlunt ls ominos ouls (2 ois l mêm ir), omin ominos ispos-t-on? ) Put-on rrnr s ominos çon à ormr un oul rmé (n utilisnt l rèl itull ontt ntr ls ominos). ) Si l'on prn mintnnt s ominos ont ls s sont numérotés 1 à n, st-il toujours possil ls rrnr çon à ormr un oul rmé? ) Pourquoi n'st-il ps néssir onsiérr ls ominos ouls? L jun ill ux ominos 'Alrt Ankr Ls ominos sont à l'oriin un moiition inois u ju és inin. L é inin st onnu n Europ omm é à six s ; il étit utilisé n In notmmnt pour l Cturn, l'un s nêtrs u ju 'é. Ls Cinois ont trnsormé s és n piès plts révrsils rprésntnt s points. En énérl, l nomr points v 0 à 6, mis on trouv s vrints llnt 0 à 9, 0 à 12, 0 à 15 t 0 à 18. L mot «omino» provinrit l similitu ntr ls piès u ju (rto ln, vrso noir) t l'it s rliiux ominiins (lqul st ln, mis put êtr rouvrt 'un p noir srvnt mntu). Option spéiiqu JtJ 2012

3 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS Conitions néssirs t suisnts pour l'xistn yls ulérins Qu put-on ir 'un multirp onnté qui urit un yl ulérin? Il xist s ritèrs s qui prmttnt étrminr si un multirp ontint un yl ulérin (ou un min ulérin). Eulr éouvrit s ritèrs lorsqu'il résolut l mux prolèm s ponts Könisr. On supposr qu tous ls rps tt stion ont un nomr ini sommts t 'rêts. Conition néssir : Un rp ontnnt un yl ulérin mt pour qu sommt un ré pir. Pour l émontrr, on not 'or qu'un yl ulérin ommn v un sommt, pss pr un rêt inint à, isons { ; }. Ctt rêt ontriu pour 1 à (). Cqu ois qu'un yl pss pr un sommt, il ontriu pour 2 u ré sommt, puisqu l yl rriv pr un rêt inint à sommt t rprt pr un utr rêt inint. Finlmnt, l yl s trmin u point où il ommné, ontriunt nor un ois pour 1 u (). Pr suit, () oit êtr pir, puisqu l yl ontriu pour 1 qun il ommn, pour 1 qun il s trmin t pour 2 qu ois qu'il pss pr (si 'st l s). Un sommt utr qu mt un ré pir pr qu l yl ontriur pour 2 à son ré qu ois qu'il pssr pr sommt. On onlut qu si un rp onnté omprn un yl ulérin, lors tous ls sommts oivnt voir s rés pirs. Est- qu'un yl ulérin xist toujours ns un multirp onnté si tous ss sommts sont ré pir? Aloritm pour onstruir un yl ulérin G Conition suisnt : Si tous ls sommts 'un rp sont ré pir, lors rp ontint un yl ulérin On suppos qu G st un multirp onnx t qu l ré qu sommt G st pir. On ormr un yl qui ommn à un sommt ritrir G. Soit x 0 =. D'or, on oisit ritrirmnt un rêt {x 0 ; x 1 } inint u sommt. On ontinu n onstruisnt un min {x 0 ; x 1 }, {x 1 ; x 2 },, {x n-1 ; x n } ussi lon qu possil. Pr xmpl, ns l rp G l iur i-ontr, on prt u sommt t on oisit un sussion 'rêts { ; }, { ; }, { ; } t { ; }. L min un in puisqu l rp un nomr ini 'rêts. Il ommn u sommt v un rêt l orm { ; x} t s trmin u sommt v un rêt l orm {y ; }. Ctt propriété vint u it qu qu ois qu l min pss pr un sommt ré pir, il utilis sulmnt un rêt pour prvnir à sommt, tll çon qu'il rst un rêt pour rprtir sommt. C min pourr prourir ou non touts ls rêts u rp. On ur onstruit un yl ulérin si touts ls rêts sont utilisés. Dns l s invrs, on onsièr l sous-rp H otnu à prtir G n éliminnt ls rêts éjà utilisés t ls sommts qui n sont Option spéiiqu JtJ 2012

4 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS 39 inints à uun s rêts rstnts. Lorsqu'on supprim l yl,,,, à prtir u rp G, on otint l sous-rp H rprésnté sur l iur i-ontr. Puisqu G st onnx, H u moins un sommt n ommun v l yl qui été supprimé. Soit x j un tl sommt. (Dns t xmpl, st l sommt.) H Cqu sommt H un ré pir (pr qu tous ls sommts G ont un ré pir t qu, pour qu sommt, ls pirs 'rêts inints à sommt ont été supprimés pour ormr H). À notr qu H put êtr ou n ps êtr onnx. En ommnçnt u sommt x j, on onstruit mintnnt un min ns H n oisissnt ls rêts néssirs, omm l été it ns G. C min oit s trminr u sommt x j. Pr xmpl, ns l iur,,, st un min H. Ensuit, on orm un yl ns G n outnt l yl ns H v son yl oriinl ns G (tt onstrution st rélisl puisqu x j st l'un s sommts yl). On otint l yl,,,,,,,. I On ontinu prossus sur ls nouvux sous-rps jusqu'à qu touts ls rêts soint utilisés. (L prossus vr s trminr puisqu'il y un nomr ini 'rêts ns rp.) On otint insi un yl ulérin. Ct loritm montr qu si s sommts 'un multirp onnx ont tous un ré pir, lors rp ontint un yl ulérin. Cs résultts sont résumés ns l téorèm 1. Téorèm 1: Un multirp onnx mt un yl ulérin si t sulmnt si un ss sommts st ré pir. Option spéiiqu JtJ 2012

5 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS 40 Exri 74 Dns qu rp suivnt, étrminr s'il ontint un yl ulérin Si oui, onstruir un tl yl n utilisnt l'loritm présnté issus. Si non, étrminr s'il ontint un min ulérin t onstruir un tl min s'il xist. i ) ) i ) Exri 75 D nomrux jux mnnt trr, sns lvr l ryon, un lin ontinu qui n rpss jmis pr l mêm min. On put résour s sss-têts n utilisnt ls yls ou ls mins ulérins. ) Montrr qu l ssin i-ssous put êtr tré ntièrmnt sns lvr l ryon. i j k ) En utilisnt l'loritm, présnté ns l pruv i-ssus, proposr un yl ulérin. ) Qu rprésnt ssin t qull n st s siniition? Exri 76 En ptnt ls ux étps (onitions néssirs t suisnts) l pruv u téorèm 1, émontrr l téorèm suivnt : Téorèm 2: Un multirp onnx mt un min ulérin t non un yl ulérin si t sulmnt s'il xtmnt ux sommts ré impir. Option spéiiqu JtJ 2012

6 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS 41 Exri 77 L téorèm préént put-il s'ppliqur à un rp n ontnnt qu'un sul sommt ré impir? Exri 78 Un tur ésir ir s tourné sns pssr ux ois ns l mêm ru. Est- possil si s tourné ls proils suivnts (où qu ru st rprésnté pr un rêt): ) ) Exri 79 Un villur nuit, qui ispos 'un outt n D, oit visitr touts ls slls t vériir qu port, un t un sul ois puis rvnir n D. Qul prours lui proposz-vous? D B F C A Exri 80 Est-il possil trr un our, sns lvr l ryon, qui oup un s 16 smnts l iur suivnt? Exri 81 Quls sont ls rps omplts K n qui mttnt un yl ulérin? Option spéiiqu JtJ 2012

7 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS Cyl t mins miltonins On émontré ls onitions néssirs t suisnts pour l'xistn mins t yls ontnnt touts ls rêts 'un rp un ois sulmnt. Est-il possil 'étlir ls mêms onstts pour s yls ou s mins, mis qui omprnrint tt ois tous ls sommts 'un rp un ois sulmnt? Il s'ir on rrr s yls ou mins miltonins Willim Rown Hmilton ( ) Ctt trminoloi provint u ss-têt u «Tour u mon» invnté n 1857 pr l mtémtiin irlnis Sir Willim Rown Hmilton. L ju s présntit sous l orm 'un oéèr ois, 'st-à-ir un polyèr à 12 s n orm pnton réulir, omm ns l iur i-ssous. Ls 20 sommts oéèr portint ls noms s iérnts vills u mon. L ju onsistit à prtir 'un vill qulonqu t à voyr l lon s rêts u oéèr mnièr à pssr un ois sulmnt pr ls 19 utrs vills, puis rvnir u point éprt. On onsièr l qustion équivlnt suivnt: xist-t-il un yl ns l rp plnir u oéèr qui pss pr tous ls sommts un ois sulmnt? L répons st positiv, j vous liss n trouvr un ns l iur. Exist-t-il un çon simpl étrminr si un rp ontint un yl miltonin ou un min miltonin? À prmièr vu, il smlrit qu oui, puisqu'on put réponr simplmnt à l qustion similir svoir si un rp possè un yl ulérin. Cpnnt, il n'xist ps ritèrs néssirs t suisnts pour émontrr l'xistn yls miltonins, mêm si nomrux téorèms onnnt s onitions suisnts pour l'xistn tls yls. Nous n mntionnrons qu l téorèm suivnt (sns pruv). Téorèm Dir: 1952 Soit G un rp simpl v n 3 sommts. si (x) n/2 pour qu sommt, lors il st miltonin. Exri 82 Démontrr qu'un rp v un sommt ré 1 n put ontnir yl miltonin. Option spéiiqu JtJ 2012

8 CHAPITRE 6 GRAPHES EULERIENS ET HAMILTONIENS 43 Exri 83 Soit un rp iprti omplt K n,m Donnr t justiir ls onitions pour qu rp soit miltonin. Exri 84 Un mss inosti oit êtr nvoyé sur un résu inormtiqu in 'tur ls tsts tous ls trminux pr l iis 'un résu intrnt. Qull sort rp oit rprésntr l résu pour tstr tous ls lins intrnt? t pour tstr tous ls trminux? Exri 85 L prolèm u voyur ommr. V Étnt onnés 13 vills rliés pr s routs, un voyur ommr itnt l vill V put-il pssr pr qu vill un ois t un sul, n rntrnt z lui à l in son iruit? Not Bn : prolèm st onnu sous l nom u prolèm u voyur ommr. Et ujour'ui nor, on n onnît ps s solution énérl! Exri 86 Donnr un xmpl rp omportnt u moins six sommts tl qu: ) il st miltonin mis ps ulérin ; ) il st ulérin mis ps miltonin. Exri 87 L prolèm suivnt été étuié pr Eulr n 1759 : Pr s suts sussis sur un éiquir, l vlir oit pssr un t un sul ois pr touts ls ss t évntullmnt rvnir à son point éprt. Est- possil, t si oui, proposr l yl ou min orrsponnt (inition: l prmir sut st éjà proposé i-ssous). Option spéiiqu JtJ 2012

Algorithmes gloutons

Algorithmes gloutons Alorithms loutons L prinip l lorithm louton : ir toujours un hoix lolmnt optiml ns l spoir qu hoix mènr à un solution lolmnt optiml. Éypt On ppll rtion éyptinn un rtion l orm n v n N.. Soint t ux ntirs

Plus en détail

automates finis Sujet. Contenu de l article. page 277

automates finis Sujet. Contenu de l article. page 277 pg 277 utomts finis pr Aury Bou hon ( S), Cthrin Enjlrt ( S), Crolin Hostlry (2 n ) t Luil Toussrt ( S) u lyé Fustl Coulngs Mssy (9) nsignnts : MM. Mihl Enjlrt t Hrvé Hmon hrhur : M. Jn-Pirr Rssyr ompt-rnu

Plus en détail

Chapitre 4: Graphes connexes

Chapitre 4: Graphes connexes CHAPITRE 4 GRAPHES CONNEXES 23 Chpitr 4: Grphs onnxs Introution À qul momnt un résu inormtiqu stisit-il à l propriété qu tous ls orinturs u résu, pris ux à ux, puissnt prtgr l'inormtion? Ds mssgs puvnt-ils

Plus en détail

Arbres CSI2510 1. Arbres. Terminologie Arbre. Arbres

Arbres CSI2510 1. Arbres. Terminologie Arbre. Arbres rrs rrs rrs nrs Proprétés s rrs nrs rvrsés rrs Struturs onnés pour rrs rrs Un rp = (V,) onsst n un sér V SOMMS t un sér lns, v = {(u,v): u,v V, u v} Un rr st un rp onnté ylqu (sns yls) un mn ntr qu pr

Plus en détail

1 Limite et continuité

1 Limite et continuité Limit t ontinuité. Préliminirs. Consiérons l fontion ont l grph st illustré issous.. Détrminr prmi ls rltions illustrés i-ssous lls qui rprésntnt s fontions. ) ) - - - - ) f) Détrminr, si lls istnt, ls

Plus en détail

Prof.É.D.Taillard. Éléments de la théorie des graphes Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Éléments de la théorie des graphes Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS ÉLÉMENTS DE LA THÉORIE DES GRAPHES Pro.É.D.Tillr Élémns l éori s rps Pro. E. Tillr 1 EIVD, Inormiqu loiil, 4 smsr DÉFINITIONS Un rp G s onsiué un nsml X somms ou nœus

Plus en détail

6.1.1 nommer les angles et les côtés d'une figure géométrique. 6.1.2 reconnaître le carré et le rectangle. 6.1.3 reconnaître un triangle quelconque.

6.1.1 nommer les angles et les côtés d'une figure géométrique. 6.1.2 reconnaître le carré et le rectangle. 6.1.3 reconnaître un triangle quelconque. 6.1.1 nommr ls nls t ls ôtés 'un iur éométriqu. 6.1.2 ronnîtr l rré t l rtnl. 6.1.3 ronnîtr un trinl qulonqu. Consils : Dns un iur éométriqu, on trouv s ôtés (roits ou ours) t souvnt s nls. L rré, l rtnl,

Plus en détail

Chapitre Premier exemple

Chapitre Premier exemple Cpitr 6 Prsptiv vlièr Un rprésnttion n prsptiv un soli l sp (à trois imnsions) sur un pln (ux imnsions) n st ps évint. Il xist plusiurs typs rprésnttions n prsptiv. Dns l suit, nous étuirons l prsptiv

Plus en détail

PPL-A COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-AVION. Heure de départ. Heure d arrivée. Heure de départ. Heure d arrivée

PPL-A COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-AVION. Heure de départ. Heure d arrivée. Heure de départ. Heure d arrivée PPL-A COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-AVION Cnit Nom* Prénom(s)* Dt nissn Typ lin Numéro l lin Pys l lin 1 Détil u vol Dt u vol Typ vion Clss Quliition Immt. Déprt Itinérir 2 Inormtions

Plus en détail

Définition Soit G(X, A) un graphe simple, et x un sommet de ce graphe. Le degré de x, noté d(x), est le nombre d'arêtes incidentes à x.

Définition Soit G(X, A) un graphe simple, et x un sommet de ce graphe. Le degré de x, noté d(x), est le nombre d'arêtes incidentes à x. CHAPITRE 3 QUELQUES CARACTERISTIQUES 9 Chpitr 3: Qulqus rtéristiqus prmttnt ifférnir ls grphs 3.1 L gré 'un sommt Définition Soit G(X, A) un grph simpl, t x un sommt grph. L gré x, noté (x), st l nomr

Plus en détail

Page 1. Diagramme de décision binaire (BDD) Diagramme de décision binaire (BDD) Diagramme de décision binaire. Représentation informatique des BDD

Page 1. Diagramme de décision binaire (BDD) Diagramme de décision binaire (BDD) Diagramme de décision binaire. Représentation informatique des BDD Digrmms éision inirs Digrmm éision inir (BDD) Grph-s Algorithms for Booln Funtion Mnipultion R.E. BRYANT IEEE Trnstion on Computrs 978, pp 59-56 Eol Polythniqu Univrsitir Montpllir Univrsité Montpllir

Plus en détail

Association d opérateurs logiques Date : (+ commentaires prof. à partir d une rédaction élève envoi n 2 ) BEP MEL 1 / 5

Association d opérateurs logiques Date : (+ commentaires prof. à partir d une rédaction élève envoi n 2 ) BEP MEL 1 / 5 Dt : (+ commntirs prof. à prtir d un rédction élèv nvoi n 2 ) BEP MEL / 5 I LOGIGRAMME : Assocition d'opérturs logiqus : L tritmnt logiqu ds informtions put nécssitr l mis n œuvr d'un nomr importnt d'opérturs

Plus en détail

Les solides - CM. Séance 5 : - compléter un patron pour construire un solide

Les solides - CM. Séance 5 : - compléter un patron pour construire un solide Ls solis - CM Sén 1 : Clssmnt solis L ju u portrit orl (nsignnt) Voulir : soli, f, pln, sommt, rêt + noms s solis éjà onnu s élèvs. Sén 2 : Dsription s solis L ju u portrit érit pr équips (élèvs) Voulir

Plus en détail

Les ailes du Pacifique

Les ailes du Pacifique Ls is u Piiqu 4 ru Vntour 75001 Pris Té : (+33) 1 78 09 08 07 Fx : (+33) 1 42 96 93 59 www.irin.om mi : inos@irin.r Binvnu à or Css Hiisus Pour stisir s nvis onort nos ints, nous ur proposons ss Hiisus,

Plus en détail

LICENCE PPL-H COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-HELICOPRERE. Examinateur: Nom / Prénom*: 1ère tentative QT : Démarrage rotor:

LICENCE PPL-H COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-HELICOPRERE. Examinateur: Nom / Prénom*: 1ère tentative QT : Démarrage rotor: LICENCE PPL-H COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-HELICOPRERE Cnit Nom*: Prénom(s)*: Dt nissn: Typ lin: Numéro lin: Pys l lin: 1 Détil u vol : Dt u vol: Typ hélioptèr / Vrint: QT : Immt:

Plus en détail

MANUEL D'INSTALLATION

MANUEL D'INSTALLATION MANUEL D'INSTALLATION intllignt Tlt Controllr Mnul 'instlltion intllignt Tlt Controllr Tl s mtièrs pg 1. À propos u présnt oumnt... 1 1.1. Puli visé... 1 1.2. Doumnttion... 1 2. Préutions séurité générls...

Plus en détail

COMMISSION SCOLAIRE MARGUERITE BOURGEOYS

COMMISSION SCOLAIRE MARGUERITE BOURGEOYS 00, OULVR L ÔT-VRTU SINT-LURNT (QUÉ) L V OMMISSION SOLIR LOL LOL MRURIT OUROYS LM.0 RÉTION S LOS SNITIRS LOUX,, & 0 POUR ONSTRUTION 0-0- 0 POUR PPL 'ORS 0-0-0 00 POUR OORINTION 0-0-0 RÉV. SRIPTION T PR

Plus en détail

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 INTÉGRALES I Définition Définition Soit f un fonction continu t positiv sur un intrvll [ ; ]. Soit (C) s cour rprésnttiv dns un rpèr orthogonl (O ; i, j). On ppll intégrl d à d l fonction f, t on not l'ir,

Plus en détail

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages

Contrôle de TP Dictionnaire & Arbres Binaires mercredi 20 mars 2013 durée : 3h 6 pages IUT ds Pays d l Adour - RT2 Informatiqu - Modul IC2 - Algorithmiqu Avancé Contrôl d TP Dictionnair & Arbrs Binairs mrcrdi 20 mars 2013 duré : 3h 6 pags Ls programms d corrction orthographiqu ont bsoin

Plus en détail

De l atome à la molécule organique

De l atome à la molécule organique hpitr 1. D l tom à l molécul orgniqu bjctifs I Rppl : Atoms, vlnc, molécul 1) Ls élémnts concrnés 2) Ls moléculs à bs d crbon II Structur t rprésnttions ds moléculs orgniqus 1) Formuls ds composés orgniqus

Plus en détail

CALCULS DE PRIMITIVES ET D INTÉGRALES

CALCULS DE PRIMITIVES ET D INTÉGRALES Christoph Brtult Mthémtiqus n MPSI CALCULS DE PRIMITIVES ET D INTÉGRALES C chpitr vis à rnforcr votr prtiqu du clcul intégrl u moyn d révisions ciblés t grâc à du nouvutés, l intégrtion pr prtis t l chngmnt

Plus en détail

Terrasses sur terre plein

Terrasses sur terre plein B Trrsss sur trr pln Conpts struturs 04-2012 TERRASSES SUR TERRE PLEIN Ds solutons nés l prtqu Dpus 1983, l nom Slütr-Systms st synonym struturs ntllnts pour l rélston rvêtmnts lons t trrsss. C st à tt

Plus en détail

Chapitre 7 La fonction exponentielle

Chapitre 7 La fonction exponentielle Cours d Mthémtiqus Trminl STI Chpitr 7 - L fonction ponntill Chpitr 7 L fonction ponntill A) Définition ) Rppl t définition L fonction logrithm népérin ln() st un fonction strictmnt croissnt, défini sur

Plus en détail

Groupe seconde chance Feuille d exercice n 8

Groupe seconde chance Feuille d exercice n 8 Group son n Full r n 8 Er 1 On onsèr tros ponts t non lnés. onstrur u omps sul (on sns rèl) l pont, symétrqu pr rpport à () t l pont E, symétrqu pr rpport à (). Justr l onstruton tué. Er 2 On mttr pour

Plus en détail

Carrelage sur plancher chauffant eau chaude

Carrelage sur plancher chauffant eau chaude Résrvtions pour l pos sols rrlés LOCAUX INTÉRIEURS À FAIBLES SOLLICITATIONS P2-P3 (sns siphon sol) ET SOLS EXTÉRIEURS (lon, loggi, trrss) Crrlg sur plnhr huffnt u hu typ A slon DTU 65.14-P1 f 1 g 2 Ini

Plus en détail

Baccalauréat S Métropole 20 juin 2013

Baccalauréat S Métropole 20 juin 2013 Baccalauréat S Métropol 0 juin 0 EXERCICE Commun à tous ls candidats 4 points Puisqu l choix d l arbr s fait au hasard dans l stock d la jardinri, on assimil ls proportions donnés à ds probabilités.. a.

Plus en détail

Conditions généralesdeventedemobility Société Coopérative. Offres de car sharing avec les véhicules de Mobility (CGV)

Conditions généralesdeventedemobility Société Coopérative. Offres de car sharing avec les véhicules de Mobility (CGV) Conitions générlsvntmoility Soiété Coopértiv Offrs r shring v ls véhiuls Moility (CGV) Qulqus règls uoup lints Moility stisfits. Etr simplmnt loyl Chèr lint Moility, Chr lint Moility, C st si simpl êtr

Plus en détail

CHAUDIERE A BOIS. Échangeur m e, θ e, c e. Chambre de combustion m a, θ a, c a. Bâti de la chaudière m b, θ b, c b

CHAUDIERE A BOIS. Échangeur m e, θ e, c e. Chambre de combustion m a, θ a, c a. Bâti de la chaudière m b, θ b, c b CPGE / Sins Industrills pour l Ingéniur TD34_ CHAUDIERE A BOIS L étud port sur l monté n tmpértur d l u qui srt à huffr ls piès u trvrs d rditurs Ctt tmpértur st otnu à prtir d un puissn lorifiqu fourni

Plus en détail

Exemples de questions de sujets d'oraux possibles. Session 2013.

Exemples de questions de sujets d'oraux possibles. Session 2013. Exmpls d qustions d sujts d'oraux possibls. Sssion 0. Complxs. Donnr la ou ls réponss justs. Soit A, B dux points d'affixs rspctivs : a= 5 i 5 t b = i 6 a. Soit n N;. Un argumnt d a n st n b. O appartint

Plus en détail

3.2 Succession d intégrales simples - Théorème de Fubini

3.2 Succession d intégrales simples - Théorème de Fubini 8 Intégrle oule. Suession intégrles simples - Théorème e Fuini Soit R = [, [, (

Plus en détail

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes.

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes. EXERIES 3 La duré T, n minuts, d un convrsation téléphoniqu suit un loi xponntill d moynn 4 minuts. ) alculr P(T>5) ) alculr P( < T < 8). Pour un variabl T, xprimé n minuts, qui rprésnt un duré d vi t

Plus en détail

Fonction logarithme exercices corrigés

Fonction logarithme exercices corrigés Trminal S Fonctions Logarithms Vrai-Fau Fonction ln, EPF 6 Equation, Franc 4 4 Dérivés t ln 4 5 Primitivs t ln 6 Calcul d limits 5 6 7 Résolution (in)équations 7 8 Avc ROC 8 9 Dérivation t ncadrmnt 9 Fonction+équation,

Plus en détail

Chapitre 3 Intégrale double

Chapitre 3 Intégrale double Chpitre 3 Intégrle oule Nous llons supposer le pln usuel muni un repère orthonormé (O,i,j). 3. Aperçu e l éfinition formelle e l intégrle oule Soit =[, [, (

Plus en détail

Couverture à barres SEQUOIA

Couverture à barres SEQUOIA iche de fabrication 1/2 ouverture à barres SQUOI SQUOI pour piscine hors-sol Nom du client : - oloris Vert q Gris q - imensions du bassin Longueur :. cm Largeur :. cm - Manivelle q au otes en cm imensions

Plus en détail

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que : Langags régulirs Ls langags régulirs sont ls langags ls plus simpls. Ils sont néanmoins très utilisés n informatiqu.. utomats finis Ils sont obtnus à partir ds langags finis n ffctuant la frmtur par ls

Plus en détail

C:\DOCUME~1\pejmb\LOCALS~1\Temp\notes2DCE84\Page 2.doc

C:\DOCUME~1\pejmb\LOCALS~1\Temp\notes2DCE84\Page 2.doc 1 Sommir 2 7 Règlmnt Piè No 1 L ossir grphiqu Piè No 2 8 2.0 Titr 9 2.1 Périmètr Chmp pplition 10 2.2 Implnttions 11 2.3 Grits Volumétris 12 2.4 Esps pulis 13 2.5 Droits à âtir Dnsité 14 2.6 Droits à âtir

Plus en détail

Première L DS4 quartiles et diagrammes en boîtes 2009-2010

Première L DS4 quartiles et diagrammes en boîtes 2009-2010 Exrcic 1 : Répartition t disprsion ds salairs Soint ls salairs dans trois ntrpriss A, B t C : 1175 1400 1900 2600 2800 2100 1) Calculr dans chaqu cas l salair moyn t l salair médian 2) Qull st la part

Plus en détail

- PROBLEME D ELECTRONIQUE 1 -

- PROBLEME D ELECTRONIQUE 1 - hyiqu ROBLEE - ROBLEE D ELETRONQUE - ENONE : «Etud d un ocilltur inuoïdl à qurtz». Etud d un critl iézoélctriqu n régi inuoïdl forcé Un l d qurtz tillé d fçon à utilir l roriété iézoélctriqu d c tériu

Plus en détail

Chapitre 6 : Calcul littéral

Chapitre 6 : Calcul littéral Chpitr 6 : Clul littérl 1. Propriétés d l ddition t d l soustrtion Définition. L ddition st l opértion qui fit orrspondr à dux nomrs t lur somm +. t sont ls trms d tt somm. Définition. L soustrtion st

Plus en détail

Définition SYNTHESE D AUTOMATES D ETATS FINIS. Représentation. Equivalence d automates Graphe d états

Définition SYNTHESE D AUTOMATES D ETATS FINIS. Représentation. Equivalence d automates Graphe d états SYNTHESE D AUTOMATES D ETATS FINIS Automat d états finis (vu dans d autr nsignmnt? ) Spécification très utilisé n Informatiqu (Circuits, Résaux, Pruv...) Réalisation matérill d un automat à l aid d circuits

Plus en détail

1. Nombres complexes en électrotechnique

1. Nombres complexes en électrotechnique MAHE E(F. Nombrs complxs n élctrotchniqu. Nombrs complxs n élctrotchniqu. ntroduction condition pour pouvoir résoudr un problèm dns un circuit étit usqu à présnt d pouvoir trcz un digrmm vctoril (dut.:

Plus en détail

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques ELECTRICITE Analys ds signaux t ds circuits élctriqus Michl Piou Chapitr Tnsions t courants dans ls ligns triphasés Montags étoil t triangl Edition /0/04 Tabl ds matièrs POURQUOI ET COMMENT? DENOMINATION

Plus en détail

Raffinement de modèles comportementaux UML, vérification des relations d implantation et d extension sur les machines d états

Raffinement de modèles comportementaux UML, vérification des relations d implantation et d extension sur les machines d états Rffinmnt d modèls comportmntux UML, vérifiction ds rltions d implnttion t d xtnsion sur ls mchins d étts Thoms Lmolis Ann-Lis Couris Hong-Vit Luong févrir 2009 1 Motivtions L dévloppmnt d SLP (SIS ---

Plus en détail

Un partenariat avec le soleil un bénéfice pour chaque saison...

Un partenariat avec le soleil un bénéfice pour chaque saison... Un prtnrit v l solil un énéi pour qu sison. L lur rél u solil D l u u t un tmpértur mint rél Grâ à s systèms morns rrivés à mturité tls qu sit n proposr, il st possil ouvrir un rn prt l onsommtion énrétiqu

Plus en détail

Analyse des Réseaux Electriques

Analyse des Réseaux Electriques héori s iruits Anlys s Résux Eltriqus Anlys t Mis n Equtions s Résux Eltriqus Anlys r l Métho s ournts nénnts Exml : Pont Msur ry-fostr Anlys r l Métho s Potntils nénnts Exml : rnsmission un Signl u trvrs

Plus en détail

NOTICE DE MONTAGE VERSION 72

NOTICE DE MONTAGE VERSION 72 L â pour port oulnt motl NOTIE E MONTGE VERSION â pour port oulnt motl NOMENLTURE: â, rl t qunllr m l Montnt vrtux ntérur Entrto ( u) Fullr (0 u) l n polytyrèn ( u) Montnt vrtl potérur Smll Prt or upérur

Plus en détail

Grille d observation Compétence disciplinaire

Grille d observation Compétence disciplinaire Grill osrvtion Compétn isiplinir Arts plstiqus : Rélisr s rétions plstiqus prsonnlls (yls 1, 2 t 3). pégogiqu vi Critèr évlution Exmpls inis osrvls Éhlons* Slon l yl, l élèv st générlmnt pl rélisr un rétion

Plus en détail

SOLUTIONS DE l EXAMEN

SOLUTIONS DE l EXAMEN Univrsité d Aix-Marsill Faculté d économi t d gstion Sit Colbrt 1 èr anné d licnc, microéconomi Mardi l 30 avril 2013 Dirctivs Pédagogiqus : Ctt épruv comprnd 15 qustions. 10 sont à choix multipls t 5

Plus en détail

Exemples de questions HERMES 5.1 Advanced

Exemples de questions HERMES 5.1 Advanced Exemples e questions HERMES 5.1 Avne Tle es mtières 2 Introution 3 Exmen HERMES est un stnr ouvert e l ministrtion féérle suisse. L Conféértion suisse, représentée pr l unité e pilotge informtique e l

Plus en détail

Les calculatrices sont interdites

Les calculatrices sont interdites CONCOURS COMMUNS POLYTECHNIQUES Ls calculatrics sont intrdits L épruv st composé d dux problèms indépndants décrivant ls princips physiqus d dispositifs vibrants (microphons t sismograph). Il st consillé

Plus en détail

Aujourd hui commence le concours de pêche.

Aujourd hui commence le concours de pêche. Livrt d règls Carts Actions Un ju d Nicolas Mlt Carts Rivièr L ju : Aujourd hui commnc l concours d pêch. Chacun tnt d réalisr la millur pêch possibl tout n évitant ls détritus qui pollunt parfois la rivièr.

Plus en détail

COMITÉ MIXTE SUR LA SANTÉ ET SÉCURITÉ INSPECTION ANNUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE

COMITÉ MIXTE SUR LA SANTÉ ET SÉCURITÉ INSPECTION ANNUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE 235, ru Donl Ottw (Ontrio) K1K 1N1 Tél: 613 744-2241 Téléopiur : 613 744-4898 ino@iso.org Sit w: www.iso.org COMITÉ MIXTE SUR LA SANTÉ ET SÉCURITÉ INSPECTION ANNUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE

Plus en détail

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Corrigé du baccalauréat S Pondichéry 13 avril 2011 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand

Plus en détail

www.schmid.st Le feu c est nous! Camina S8

www.schmid.st Le feu c est nous! Camina S8 L fu st nous! Cmin S8 L fu st nous! Vous hrhz un nouvll hminé! Voilà qu vous êts à l onn rss! Av l logo «L fu st nous!» nous vous proposons un progrmm très lrg hminés t foyrs où nous mttons l nt vnt tout

Plus en détail

Titrages acidobasiques de mélanges contenant une espèce forte et une espèce faible : successifs ou simultanés?

Titrages acidobasiques de mélanges contenant une espèce forte et une espèce faible : successifs ou simultanés? Titrgs cidobsiqus d mélngs contnnt un spèc fort t un spèc fibl : succssifs ou simultnés? Introduction. L'étud d titrgs cidobsiqus d mélngs d dux ou plusiurs cids (ou bss) st un xrcic cournt [-]. Ls solutions

Plus en détail

1 Balade autour de l arbre. On se balade autour de l arbre en suivant les pointillés dans l ordre des numéros indiqués : r 1. a 13. b 21.

1 Balade autour de l arbre. On se balade autour de l arbre en suivant les pointillés dans l ordre des numéros indiqués : r 1. a 13. b 21. Prours un rr inir Un rr inir st un rr v rin ns lqul tout nou u plus ux ils : un évntul ils guh t un évntul ils roit. On illustrr v l rr inir suivnt : r h i j k l 1 Bl utour l rr On s l utour l rr n suivnt

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Projet d Algorithmique

Projet d Algorithmique Projt Algorithmiqu Trnsformé Burrows-whlr 1 Dsription l métho L trnsformé Burrows-Whlr, ourmmnt pplé BWT (pour Burrows-Whlr Trnsform) st un thniqu omprssion onnés. Ell fut invnté pr Mihl Burrows t Dvi

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek Commnt utilisr un banqu n Franc c 2014 Fabian M. Suchank Créditr votr compt: Étrangr Commnt on mt d l argnt liquid sur son compt bancair à l étrangr : 1. rntrr dans la banqu, attndr son tour 2. donnr l

Plus en détail

A LA DECOUVERTE D OTHELLO

A LA DECOUVERTE D OTHELLO Emmnul LAZARD Cmpion Frn A LA DECOUVERTE D OTHELLO Mnul initition Présnté pr l Féértion Frnçis Otllo A LA DECOUVERTE D OTHELLO «Fil à pprnr, iiil à mîtrisr». C slon résum in l sintion qu xr l ju Otllo.

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

Calculs d aires, encadrements

Calculs d aires, encadrements Clculs d irs, ncdrmnts pg d 5 Clculs d irs, ncdrmnts I Clculs d irs. Soit f( = t g( =. On not A l ir d l région R du pln compris ntr l courb d f t l ds bscisss sur [; ]. Clculr g( d n fonction d A. On

Plus en détail

sais-tu que tu as un super-pouvoir...

sais-tu que tu as un super-pouvoir... CAHIER DE JEUX NOËL 0 sis-tu qu tu s un supr-pouvoir... un pouvoir qui put tout hnr? À Noël, ls nfnts u mon ntir rçoivnt s jouts. Mis sis-tu qu toi ussi tu pux fir un u à l plnèt? Ctt nné tu rvrs sûrmnt

Plus en détail

T A B L E D E S M A T I E R E S ACHETEUR/ACHETEUSE DE PAPIER

T A B L E D E S M A T I E R E S ACHETEUR/ACHETEUSE DE PAPIER CH/CH D PP abl ds matièrs utrs formations 2 htur intrnational /ahtus intrnational 2 htur intrnational/ahtus intrnational 5 htur profssionnl/ahtus profssionnll 6 hniin logistiqu d ahats, d approvisionnmnt

Plus en détail

Catégorie P3 13 e, 14 e et 15 e championnats

Catégorie P3 13 e, 14 e et 15 e championnats Catégori P3 13, 14 t 15 championnats Considération pour la résolution ds problèms 9 à 11 Pour qu'un problèm soit complètmnt résolu, vous dvz donnr l nombr d ss solutions t donnr la solution s'il n'n a

Plus en détail

pour seniors en 10 questions

pour seniors en 10 questions MINI-GUIDE DE L HÉBERGEMENT MINI-GUIDE DE L HÉBERGEMENT pour sniors 1 L AUTEUR Ecrit par Dominiqu Schmidt, c mini guid d l hébrgmnt st publié par Rtrait Plus pour assistr ls famills dans lur rchrch d structurs

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Plaisir d écrire. Activités d écriture à partir de sujets déclencheurs. 2 année du 2 cycle. 4 année

Plaisir d écrire. Activités d écriture à partir de sujets déclencheurs. 2 année du 2 cycle. 4 année TIRÉ À PART Raymond Brthiaum Plaisir d écrir Activités d écritur à partir d sujts déclnchurs 2 anné du 2 cycl 4 anné 9900, avnu ds Laurntids Montréal (Québc) H1H 4V1 Téléphon : (514) 329-3700 Télécopiur

Plus en détail

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m Problèm : Stockag intr saisonnir d chalur. (Thèm : équation différntill du 1 r ordr, résolution xact t avc GoGbra) L résau d chalur d la vill d Marstal au Danmark utilis 33 000 m² d capturs solairs thrmiqus

Plus en détail

Marche à suivre relative à l annonce pour la rétribution à prix coûtant du courant injecté (RPC)

Marche à suivre relative à l annonce pour la rétribution à prix coûtant du courant injecté (RPC) Pag 1 sur 8 March à suivr rlativ à l annonc pour la rétribution à prix coûtant courant injcté (RPC) Photovoltaïqu Vous trouvrz dans ls pags suivants ls informations dont vous avz bsoin pour annoncr vos

Plus en détail

Contenu et présentation des plaques spéciales

Contenu et présentation des plaques spéciales Systèm suiss sinlistion s résrvs nturlls Plqus spéils Rèls Exmpls Frition plqus spéils Cs plqus omprnnt txts t pitormms oisis slon s ritèrs iniviuls oivnt êtr riqués à l piè; lls rvinnnt on r. Lur rition

Plus en détail

Exercice 1 :(15 points)

Exercice 1 :(15 points) TE/pé TL Elémnts d corrction du D. n 2 du Vndrdi 2 0ctobr 2012 sans documnt, avc calculatric 1h1min Ercic 1 :(1 points) À l occasion d un fstival culturl, un agnc d voyags propos trois typs d transport

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

NCCI : Conception et calcul initial de poutres mixtes

NCCI : Conception et calcul initial de poutres mixtes NCCI : Coneption et lul initil e poutres mixtes SN022-FR-EU NCCI : Coneption et lul initil e poutres mixtes Ce oument fournit es reommntions reltives à l séletion e poutres mixtes priniples et seonires

Plus en détail

Le transistor bipolaire

Le transistor bipolaire L transistor bipolair L'objt d c documnt st d'apportr ls connaissancs t ls méthods nécssairs à la concption d'un étag amplificatur à bas d transistor. On s limitra à l'étud t à l'utilisation du transistor

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

À FAIRE MENSUELLEMENT

À FAIRE MENSUELLEMENT 235, ru Donl Ottw (Ontrio) K1K 1N1 Tél: 613 744-2241 Téléopiur : 613 744-4898 ino@iso.org Sit w: www.iso.org SANTÉ ET SÉCURITÉ AU TRAVAIL INSPECTION MENSUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE PROCÉDURE

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

Solution - TD Feuille 2 - Automates finis et expressions rationnelles

Solution - TD Feuille 2 - Automates finis et expressions rationnelles Solution - TD Feuille 2 - Automtes finis et expressions rtionnelles Informtique Théorique 2 - Unité JINPW Licence 3 - Université Bordeux Solution de l exercice : Pour tout l exercice, on note A = {, }.

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

Gaines et pièces moulées rectangulaires

Gaines et pièces moulées rectangulaires Gins t piès oués rtnguirs Gins t piès oués rtnguirs QUER IFORMATIO TECHIQUE Désripti systè Vuir trouvr notr or rtion s onuits t piès oués à proi rtnguir. L togu présnt s gins rtnguirs t piès oués v ss

Plus en détail

Tour de refroidissement

Tour de refroidissement TP N7 Tour d rfroidimnt ENSEEIHT 2, ru Chrl CAMICHEL B.P. 7122 31071 TOULOUSE Cdx 7 FRANCE (33) 05 61 58 82 00 (33) 05 61 62 09 76 Tour d rfroidimnt Dn l cycl d l pur, l fluid à l étt d pur n orti d l

Plus en détail

Guide de référence de l'installateur et de l'utilisateur

Guide de référence de l'installateur et de l'utilisateur Gui réérn l'instlltur t l'utilistur Climtisur systèm VRV IV RYYQ8T7Y1B RYYQ10T7Y1B RYYQ12T7Y1B RYYQ14T7Y1B RYYQ16T7Y1B RYYQ18T7Y1B RYYQ20T7Y1B RYMQ8T7Y1B RYMQ10T7Y1B RYMQ12T7Y1B RYMQ14T7Y1B RYMQ16T7Y1B

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Diagnosticabilité de motifs de supervision par dépliage de réseaux de Petri

Diagnosticabilité de motifs de supervision par dépliage de réseaux de Petri Diagnosticailité d motis d suprvision par dépliag d résaux d Ptri Houssam-Eddin GOUGAM 1,2, Audin SUBIAS 1,2, Yannick PECOLÉ 1,3 1 CRS LAAS 7, avnu du Colonl Roch, -31400 Toulous, ranc 2 Univ d Toulous,

Plus en détail

Mme/Mlle/M. Fonction Téléphone Télécopie Courriel

Mme/Mlle/M. Fonction Téléphone Télécopie Courriel Anné 2004-2005 Enquêt Moyns t mos gstion l immtéril Mri rssr votr répons à : Institut ntionl l sttistiqu t s étus éonomiqus Pys l Loir Dns l r l Sttistiqu puliqu inq srvis sttistiqus ministérils s sont

Plus en détail

Physique Générale IV, solution série 3

Physique Générale IV, solution série 3 Phsiqu Général IV, solution séri 3 Ercic Du virations d mêm fréqunc, slon du as t prpndiculairs, avc un différnc d phas / : (t) = a sin (ωt) M(t) (t) = sin (ωt + /) = cos (ωt) où a t sont ls amplituds

Plus en détail

TP 8 Spectroscopie infrarouge

TP 8 Spectroscopie infrarouge TP 8 Spctroscopi infraroug Chap4 : Analys spctral Objctifs: Idntification d liaisons l aid du nombr d ond corrspondant; détrmination d groups caractéristiqus. Mis n évidnc d la liaison hydrogèn. Exploitr

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Mathématiques discrètes Chapitre 4 : relations binaires

Mathématiques discrètes Chapitre 4 : relations binaires U.P.S. I.U.T. A, Déprtement Informtique Année 2009-2010 Mthémtiques isrètes Chpitre 4 : reltions inires 1. Générlités Définition Soient E 1, E 2,...E n es ensemles. Une reltion n-ire est l onnée un sous-ensemle

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

Fonction exponentielle

Fonction exponentielle Foctio potill I. Crctéristios d l foctio potill., Défiitios. Déf : Il ist u uiqu foctio dérivl sur R qui st égl à s dérivé t qui prd l vlur 0 : ctt foctio st oté p t vérifi : pour tout ЄR, p (p( t p(0).

Plus en détail