Cours et travaux dirigés Mécanique du point et du solide

Dimension: px
Commencer à balayer dès la page:

Download "Cours et travaux dirigés Mécanique du point et du solide"

Transcription

1 Cours t tru irigés éniqu u point t u soli β G α C Frnçois BINET rofssur tir Unirsité Liogs IUT u Liousin Sit GEII Bri Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

2 Soir Bss rpèrs t référntils...4 Cinétiqu u point t u soli...5. Cooronnés rtésinns...5. Cooronnés linriqus...6. Cooronnés sphériqus osition un point Vitss un point....6 élértion un point....7 Cooronnés intrinsèqus. Coposnts Frnt Etu ounts Tps ounts Tritr un ri inétiqu... 6 TVUX DIIGES SU L CINETIQUE... 8 Notions fors t équilibr.... L torsur for..... Ls fors..... ont fors.... Equilibr, rottion t trnsltion Equilibr Coupl t ount rottion Trnsltion Fors frottnt Frottnt sttiqu Frottnt niqu ésolution s problès sttiqu Soli n équilibr sous l tion fors Soli n équilibr sous l tion fors Soli n équilibr sous l tion n fors étho... 7 TVUX DIIGES SU L STTIQUE Dniqu s solis Elénts niqu L torsur inétiqu Quntité ount ont inétiqu rrêt, rottion t trnsltion L torsur niqu rinips fonntu l niqu Enoné Nwton Enoné thétiqu u prinip fonntl Théorè l quntité ount, Théorè l résultnt inétiqu Théorè u ont inétiqu Dniqu s prtiuls hrgés Fors hp... 5 Chp grittionnl :... 5 Chp éltrognétiqu :... 5 TVUX DIIGES SU L DYNIQUE Enrgétiqu Grnurs slirs uissn, Tril t Enrgi potntill... 4 uissn... 4 Tril... 4 Enrgi potntill... 4 Tril t énrgi potntill s fors usulls Enrgi inétiqu Enrgi éniqu Enrgi totl Théorès thétiqus Trnsport s onts éférntil u ntr ss Théorè Konig Théorè Konig pour l énrgi inétiqu Théorè l énrgi inétiqu Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

3 5. Théorè l énrgi éniqu Trnsfrts énrgétiqus Différnts tps trnsfrt rir prinip throniqu nnt TVUX DIIGES SU L ENEGETIQUE Soli n rottion utour un irtion fi ont inrti ont inrti pr rpport à un... 5 Eprssions pr rpport u s u rpèr rtésin ont inrti pr rpport à un point Bs prinipl inrti Théorè Hughns-Shtinr Epls luls onts inrti ont inrti un isqu plin ont inrti un ôn plin régulir ont inrti un sphèr rus ont inrti un sphèr plin Cs un soli à sétri linriqu ou sphériqu ont inétiqu - ont inrti Théorè u ont inétiqu pr rpport à l rottion Eprssion l énrgi inétiqu un soli n rottion utour un fi nlogi l ount trnsltion TVUX DIIGES SU L DYNIQUE DU SLIDE nn. Ls intégrls Définitions ropriétés éthos intégrtion nn Ls ifférntills nn Equtions ifférntills Solutions tps étho résolution nn 4 Cluls surfs t olus Forulir Coffiints Clul surfs Clul olus Epls luls surfs Surf un rl Surf un sphèr Epls luls olus Volu un linr Volu un sphèr Volu un ôn nn 5 Cluls ntrs inrti Définition u ntr inrti ropriétés u ntr inrti Cluls ntrs inrti Cntr inrti un ôn plin régulir Cntr inrti un i sphèr plin Cntr inrti un i sphèr rus Cntr inrti un isqu pré Cntr inrti un soli sipl... 7 nn.6 Ls turs... 7 nn 7 Ls opérturs L grint L irgn L rottionnl ltions ntr opérturs ltions intégrls Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

4 Bss rpèrs t référntils Bs : Dns un sp à trois insions, on ppll bs torill un nsbl turs linéirnt inépnnts : b,, sont non oplnirs pèrs sp : L nsbl onstitué un point l sp t turs bs for un rpèr sp. pèr irt : L prouit toril étnt ntiouttif B B, il st néssir éfinir un «nor»,un sns «norl». L sns irt st obtnu l règl l in roit. pèr Coprni : L origin orrspon : u ntr ss u sstè solir t ls s sont irigés rs : trois étoils fis. pèr géontriqu : L origin orrspon :u ntr ss l trr t ls s sont irigés rs : trois étoils fis. Cooronnés : our éfinir l position tout point ns un rpèr, on onstt périntlnt, qu il st néssir t suffisnt prnr trois réls pplés ooronnés. pèr tps Il st onstitué un instnt origin t un éhll tps éférntil L nsbl onstitué un rpèr sp t un rpèr tps st pplé référntil. éférntil glilén : C st un référntil ns lqul l sp st hoogèn t isotrop t l tps unifor. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 4 -

5 Cinétiqu u point t u soli L inétiqu st l étu s ounts inépnnt s uss qui ls prouisnt. our érir l ount un point il st néssir utilisr s ooronnés. L hoi u sstè ooronnés épnr s rtéristiqus u ount. Voii trois sstès ooronnés usuls : - Cooronnés rtésinns. - Cooronnés linriqus. - Cooronnés sphériqus. Cooronnés rtésinns Cooronnés : : bsiss : oronné : ôt présnttion : Vtur position : Déplnt éléntir : Volu éléntir : V Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 5 -

6 . Cooronnés linriqus Cooronnés : : ron polir : ngl polir : ôt présnttion : r '. r Vtur position : n rrqur qu l point n ps oposnt slon. L bs linriqu st un bs obil on l ngl intrint non ps ns l position pr rpport à l bs linriqu is ns l position l bs linriqu pr rpport u rpèr qui st fi ltion ls ooronnés rtésinns : os sin os sin rt sin os rt sin Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 6 -

7 Déplnt éléntir : Volu éléntir : V Dériés s turs pr rpport à l ngl : ppls : (os sin sin qu l on put rtnir : os. n éuit s ooronnés s turs : -os sin -sin os intégrtion érition n rrqur qu l érition pr rpport à orrspon à un rottion π : π/ Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 7 -

8 . Cooronnés sphériqus Cooronnés : r : ron tur r θ : oltitu θ π : iuth π présnttion : r r.θ r.sinθ. r r.θ θ θ r θ Vtur position : r r r.sinθ r.sinθ. r θ ê rrqu qu pour ls ooronnés linriqus : n qu un ooronné r l bs sphériqu st obil. Ls u utrs ooronnés pprissnt ns l positionnnt l bs obil pr rpport à l bs fi. ltion ls ooronnés rtésinns : r sinθ os r sinθ sin r osθ r.osθ θ r.sinθ r r.osθ r.sinθṡin.os r.sinθ.sin Déplnt éléntir : r.sinθ r r.sinθ.os r r rθ rsin θ Volu éléntir : V r rθ rsinθ θ r.θ r r.sinθ. θ Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 8 -

9 .4 osition un point. Un point ns un rpèr st rtérisé pr son tur position : trjtoir En ooronnés rtésinns on not : où rt ou iniqu qu ls ooronnés u tur sont lls qu il ns l bs rtésinn. L trjtoir st l nsbl s positions oupés pr l point. L éqution l trjtoir u point st l rltion lint ls ooronnés inépnnt u tps. En ooronnés rtésinns on notr f (,, rt n ppll éqution horir l prssion s ooronnés u point n fontion u tps : f f f Si l ount st pln, on hoisit l rpèr tll sort qu u ooronnés suffisnt. Générlnt on onsr ls ooronnés t. f ( t f ( t Si l ount st rtilign, on hoisit l rpèr tll sort qu un sul ooronné suffis. Générlnt on onsr l ooronné. f ( t ( t ( t (t Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 9 -

10 Lorsqu l trjtoir st tll qu ls prssions t luls s position, itss t élértion sont plus sipls n ooronnés linriqus lors on ls pri ns tt bs obil. trjtoir bs fi bs obil L bs linriqu étnt un bs obil ont l orinttion s turs épn l position u point ns s trjtoir il n st ps étonnnt oir qu u ooronnés sulnt suffisnt à prir l position : ou l.5 Vitss un point L itss onn un point st obtnu n lulnt l rpport l istn prouru pr l uré u prours : t Lorsqu l on ut obtnir l tur itss onn ntr u points (t t (t on pri : t Si l on ut prir l tur itss instntné n un point l trjtoir il fut fir l lul : t / ( t L tur prié st lui l itss u point ns son ount pr rpport u référntil. L érié u tur position s fisnt pr rpport à référntil. L prssion u tur itss ns son ount pr rpport u référntil put êtr prié ns tout utr bs. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

11 En ooronnés rtésinns (bs fi l ount u point pr rpport u référntil rtésin onn l tur itss : / ou / rt En ooronnés linriqus (bs obil l ount u point pr rpport u référntil rtésin onn l tur itss : / ou / l éonstrtion : t ( / ( ( t / t t t t n u qu : on on put siplifir t t t t r st un tur fi soit / Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

12 n notr ls points suints : L unité légl l itss st l ètr pr son.s - L tur itss n un point st onfonu à l tngnt à l trjtoir n point. L sns u tur itss st lui u ount. Co pour tout tur l nor l itss orrspon à l rin rré l so u rré s oposnts tur. ( / Il n fut ps onfonr un prt l référntil pr rpport uqul on étui l ount utr prt l bs qu l on hoisit pour prir l plus filnt ls turs position, itss ou élértion. Dns l s un ount rottion, on éfinit l tur ω. l i s ooronnés linriqus prions l prouit toril soit l rltion générl : ω ω. n ω l l on ω L ount un point pr rpport à un référntil ntr t pr rpport à un référntil ntr érifi l loi oposition s itsss: ( t / ( t / où ω / / / / ω / ésign l tur itss rottion u rpèr pr rpport à / l Vitss ril Vitss orthoril Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

13 Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET élértion un point D ê qu pour l itss on put éfinir ls turs élértion onn t élértion instntné. L tur élértion onn st obtnu ntr u turs itsss à s instnts t t t t t L tur élértion instntné orrspon à l érié u tur itss pr rpport u tps t ( / / ou t ( / Ls rrqus sur l itss onrnnt l bs t l référntil sont ussi lbls pour l élértion En ooronnés rtésinns (bs fi l ount u point pr rpport u référntil rtésin onn l tur élértion : / ou rt / En ooronnés linriqus (bs obil l ount u point pr rpport u référntil rtésin onn l tur itss : [ ] [ ] / ou l / éonstrtion : t t ( ( ( / / t t t ( ( ( ( ( ( / t t t t t t t ( ( ( ( ( ( ( ( ( ( ( ( ( ( / n : on t t t on t t t t soit / / [ ] [ ] / ou [ ] ( t /

14 n notr ls points suints : L unité légl l élértion st l ètr pr son u rré.s - L irtion t l sns u tur élértion pr rpport à s trjtoir n st ps isént pribl. Co pour tout tur l nor l élértion orrspon à l rin rré l so u rré s oposnts tur. [ ] [ ] / / t ( l élértion ril élértion orthoril L ir un r rl ngl θ ut θ t s érié pr rpport u tps qui ut θ s ppll l itss réolir. Si l ount st tl qu l élértion orthoril st null lors ( t st t un onstnt on l ount s fftu à itss réolir onstnt. Cl orrspon u ounts plnétirs. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 4 -

15 .7 Cooronnés intrinsèqus. Coposnts Frnt. n put ussi prir l itss t l élértion à prtir un bs obil (, t, n, b éfini à prtir s turs : t : Vtur tngnt à l trjtoir u point, ns l sns u ount n : Vtur norl à l trjtoir ont l roit tion pss pr l ntr ourbur l trjtoir n point b : Vtur binorl éfini à prtir s u préénts pr b t n n ppll pln osultur, l pln, t, : ( n Ω trjtoir Lolnt on onfon l trjtoir l rl osultur. rl osultur n Ω t s n éfini un bsiss urilign s sur l rl osultur qui érifi s soit nor : s L itss s pri pr : s t t t l élértion s n éuit : t ( t t t t t t n éjà u qu t t ê n on t t t t t n is n st ps un grnur ssibl, lors qu l st, on érit on : t s où l prssion : s t s t soit t t n t t n élértion tngntill élértion norl Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 5 -

16 .8 Etu ounts..8. Tps ounts Dns l référntil onsiéré. L trjtoir put êtr : - rtilign : - l trjtoir st un roit, - l ron ourbur st infini t l oposnt norl l élértion st null. - irulir : - l trjtoir st un rl, - l trjtoir st on pln, - l ron ourbur st onstnt. - urilign : - l trjtoir st un ourb. - hélioïl : - l trjtoir st un héli. L ount put êtr : - unifor : - l lur lgébriqu l itss st onstnt, - l tur itss n st ps forént onstnt, - sul l oposnt tngntill l élértion st null. - uniforént rié : - l lur lgébriqu l élértion tngntill st onstnt. - éléré : - l lur lgébriqu l itss ugnt, - l oposnt tngntill l élértion st ns l sns u ount. - rlnti : - l lur lgébriqu l itss iinu, - l oposnt tngntill l élértion st ns l sns ontrir u ount. - sinusoïl : - un oposnt position épn sinusoïlnt u tps. L ount un soli put êtr : - trnsltion : - l tur itss st intiqu n tout point u soli. - rottion : - l trjtoir hqu point u soli st irulir. r pl l nll un grn rou u érrg un ount trnsltion irulir uniforént rié.8. Tritr un ri inétiqu L but st générlnt prir ls équtions horirs u ount pour rontr éntullnt rs l éqution l trjtoir. Lorsqu l ntur l trjtoir st onné, il fut n éuir ls onitions sur ls rtéristiqus priés ns un bs pté. Epl u ount irulir sinusoïl L trjtoir st irulir on hoisit l bs linriqu. L trjtoir st pln on l ooronné st null L trjtoir st un rl on l ron st un onstnt ( n st ps lui qui épn sinusoïlnt u tps Don on put éjà érir n notnt r l ron u rl : r n rrqu qu l bs obil hoisi n prt ps fir pprîtr l rtèr sinusoïl u ount n n éuit l prssion l itss : puis l prssion l élértion : / r Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 6 -

17 [ ] [ ] / L rtèr sinusoïl pprît ns l prssion : os( ωt où ésign l pulstion t l inlinison initil. Lorsqu l pplition s lois l niqu nous fournis ls ooronnés l élértion, lors il fut rontr pr intégrtion u rtéristiqus itss puis position. Ls onstnts intégrtion sront étrinés pr ls onitions initils u ount. intégrtion intégrtion Vtur position Vtur itss Vtur élértion érition érition Clul l nor Clul l nor itss intrinsèqu élértion intrinsèqu Clul l érié élértion tngntill élértion norl our ls pplitions nuériqus, il fut pnsr nt tout lul à s plr ns l sstè unités intrntionls (U.S.I.. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 7 -

18 TVUX DIIGES SU L CINETIQUE Eri : ounts rtiligns our hun s ounts suints : - ount rtilign unifor, - ount rtilign uniforént rié. Iniqur ls onitions sur ls rtéristiqus. b En éuir ls turs élértion puis itss puis position. Eri : L oitur Un oitur lné sur un lign roit à 7 k.h - s rrêt un ount uniforént rié sur un istn 8. Qull st l lur l éélértion? b Cobin tps t-ll pour s rrêtr? Eri : ounts irulirs our hun s ounts suints : - ount irulir unifor, - ount irulir uniforént rié. Iniqur ls onitions sur ls rtéristiqus. b Iniqur l bs hoisi. En éuir ls turs position, itss t élértion. Eri 4 : ount hélioïl unifor L point étuié suit l trjtoir i-ontr : Donnr l prssion s ooronnés position ns ls rpèrs rtésins t linriqus b En éuir ls ooronnés l itss insi qu s nor. En éuir ls ooronnés l élértion insi qu s nor. Qul st l ron ourbur l trjtoir. Eri 5 : L projtil s l'héli πh L α Un obil onsiéré o pontul s épl à l itss onstnt l long un brr longuur L fisnt un ngl α onstnt l. L brr st nié un ount rottion unifor itss ngulir ω utour l. Iniqur l position u point ns ls ifférnts bss (rtésinns, linriqus, sphériqus. b En éuir l tur itss ns l bs hoisi. Clulr l itss éjtion (α 45, k/h, ω tr/in, L. Eprir l tur élértion. Eri 6 : L tioptr Un list sn un itss onstnt s. Donnr l éqution horir u tioptr situé à l ironférn un rou ron r4. b Eprir l itss t l élértion n ooronnés intrinsèqus. En éuir l ron ourbur l trjtoir loïl. Eri 7 ours éontrr l prssion l position, l osition u itss t l élértion n ooronnés linriqus tioptr Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET à t

19 Eri 8 orrigé : L otur Sur un broh hin st onté un outil iètr. n fr l intrruptur u otur. L outil t sons pour prnr l itss ngulir régi, égl à 4 r.s -. L outil tourn nsuit un ount unifor pnnt 6 sons. n oup l ournt, l outil t 4 sons pour s rrêtr. n n pour hun s périos étrinr, pour un point l périphéri l outil : L élértion ngulir t l élértion tngntill à l périphéri (on ttr qu l pério érrg t ll rlntissnt sont à élértion onstnt. b L élértion norl, à l périphéri, n fontion u tps. Eri 9 orrigé : rtil Un obil onsiéré o pontul st tthé à l tréité un brr longuur L, obil utour u point.l brr st nié un ount rottion opl tl qu : α t β t t Eprir ns un rpèr pté t n ous int u forulir l tur itss n fontion, L t t. En éuir s nor. Eprir l tur élértion n fontion,l t t. θ r α L β Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 9 -

20 CECTINS : Corrigé l ri 8 our tritr ount irulir on put : - S plr ns l bs linriqu turs (,, t prir ls turs position, itss t élértion : / / L itss ngulir l énoné orrspon à : ω t l élértion ngulir à γ L élértion tngntill orrspon à l oposnt slon : oposnt slon : norl t l élértion norl à l - s plr ns l bs Frnt t n notnt l ron on érir ω t t on : l élértion ngulir à γ ω ( w l élértion tngntill ω tn t l élértion t t norl ( ω norl ω qui onnnt ls ês résultts soint : itss ngulir (r.s - tn 4 ount unifor Dérrg lntissnt : γ 4 r s norl, t,4t,, ( γ r s tn γ 4 r s 4 4 t 8 s, uré (s tn,, s t on puisqu l élértion st onstnt t 4r s norl, 4 6 s tn,, s t on puisqu l éélértion st onstnt [ ( ] t,, ( t, t 8t 44 norl Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

21 Corrigé l ri 9 ( n hoisi l bs sphériqu r ; θ; L sphr r L ; α θ ; r / rθ r sinθ où l nor : L onstnt t on : β ; L ; α ; α ; sphr int ls onnés l énoné ( L ( L( 6t ( t / sin ( 6 t ( t / L sin t l élértion : int ls onnés l énoné / / β 6 t t / L β 6 L ( 6t sin( t sphr r rθ r sin θ r θ rθ r sinθ osθ r r r sinθ θ osθ sinθ L sphr L L( 6t sin ( t L( 6t sin( t os( t ( t ( t L ( t 6 os 6 sin sphr Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

22 Notions fors t équilibr Tout tion éniqu s rçnt sur un objt pour fft soit : - oifir son ount ou l ttr n ount, - l intnir n équilibr, - l éforr. Tout tion éniqu put êtr érit pr un so tions éléntirs. Tout tion éniqu éléntir s rçnt sur un orps put êtr érit pr l onnissn s qutr rtéristiqus suints : - l point pplition, - l roit tion, - l sns, - l lur : son intnsité. Cs qutr rtéristiqus sont lls un tur lié. L onnissn s qutr rtéristiqus prt onstruir un grnur torill noé for. L onnissn l nsbl s rtéristiqus rprésntnt l nsbl s tions éléntirs prttr érir l soli à n iport qul instnt. C st ns tt hpothès étrinist qu nous nous plrons ns l nsbl ours. Il st iportnt notr qu un tion sur un soli l ttnt ou oifint son ount put êtr érit pr un nsbl fors is qu l sipl onnissn l so s fors (so torill n st ps suffisnt pour n érir l ount. Il st lors néssir onnîtr un grnur suppléntir : L ont totl s fors (so torill s onts s fors s rçnt sur l soli. En fft un so fors null put très bin ttr n ount un soli. our êtr oplt ns l onnissn un tion il fur on onnîtr u grnurs : - l so torill s fors s rçnt sur l soli. - l so torill s onts s fors s rçnt sur l soli. n rtinr on qu pour érir l ount un soli ns l sp, il nous fur onnîtr l oupl suint : [So s fors, So s onts s fors] noé Torsur for t noté [F]. insi ls équtions l niqu priés sur ls fors t sur ls onts pourront êtr rnés à s équtions torsorills. hqu tion éléntir, on ssoir un torsur oposé u tur for t son ont. Il st à notr qu l ont prt érir l is n rottion un soli. C st pourquoi pour un prièr pproh l niqu si on s liit à l étu un point ou u ntr inrti un soli l utilistion s torsurs st inutil t l sul onnissn s turs fors suffit, lissnt ôté l notion ont. is ns l étu l éniqu u point, il n fut ps oublir qu l on pr un prti l générlité. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

23 . L torsur for.. Ls fors Ls fors punt êtr rgroupés n trois fills : - Ls fors hp : for grittion, for Lornt. - Ls fors ontt : for frottnt,. - Ls fors nuléirs ssurnt l ohésion u nou toiqu. Ls fors s print n Nwton noté N L pois qui pprtint à l prièr fill st éfini pr ls rtéristiqus suints : - oint pplition : l ntr inrti u soli - Droit tion : l rtil - Sns : Vrs l bs - Vlur : g ss n kg u soli t g9,8n/kg sur trr Dns l s s fors ontt l point pplition orrspon u point ontt... ont fors L ont totl s fors st l grnur qui nous prttr soir si l tion ur pour fft l is n rottion u soli. Il s pri n un point qulonqu t pour un for F nt o point pplition pr : L ont st un tur libr. Il st inépnnt l position sur l roit tion. Nor u ont : F F F F F sin α our s risons siplifition, si l soli st n rottion utour un, on préférr générlnt prir l ont pr rpport à t. pssnt pr l rottion on : F α F F F F sur l. st l projtion F sur l tur irtur.l slir F st inépnnt u hoi S hoisir un tur st hoisir un sns positif pour l rottion utour l. L sign u ont pr rpport à l st on positif si l rottion u tur F utour s fit ns l sns positif hoisi. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

24 . Equilibr, rottion t trnsltion.. Equilibr Tout ount un soli ns l sp put êtr éoposé n : - un ount trnsltion t - un ount rottion. L onnissn l so s fors s rçnt sur un soli rnsignr sur l oifition son ount trnsltion. F G F F F C tur iniqunt l sns t l irtion u ount. L bsn trnsltion s truisnt pr un so fors null. F F L onnissn l so s onts s fors s rçnt sur un soli rnsignr sur l oifition son ount rottion. En fft tout for F nt o point pplition s ppliqunt sur un soli ont l rottion pss pr l point ttr soli n rottion utour son tnt qu l tur n sr ps olinéir u tur for F. L rottion s rrêtnt qun ls turs sont olinéirs soit l prouit toril nul. F F Un soli n pourr êtr intnu ns son étt équilibr qu s il n st is ni n trnsltion ni n rottion. F Cl s truit thétiqunt pr : F F G F t F F ou plus snthétiqunt pr l torsur for [F] : [ F ] F.. Coupl t ount rottion Un soli ont l so s fors st null is l ont totl non nul st souis à un oupl. F F Un oupl st un tion qui t l soli uniqunt n rottion. G F F Un soli initilnt n trnsltion t souis à un oupl rstr n trnsltion is subir n plus un ount rottion F F F Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 4 -

25 .. Trnsltion L oifition u ount un soli, souis à un nsbl fors non nulls is ont totl nul, sr un trnsltion. F G F F F F F Un soli initilnt n rottion t souis à un so for non null is ont totl nul rstr n rottion is subir n plus un ount trnsltion.. Fors frottnt étion u support t for frottnt sont générlnt inlus ns un ê for noté. L torsur [ ] s éopos on n : N : étion norl T : étion tngntill for frottnt.. Frottnt sttiqu : ont résistn u piotnt N : ont résistn u roulnt T Qun l soli st iobil u fit s frottnts on put éfinir un ftur frottnt sttiqu µ S. µ s st éfini à prtir l lur il qu put prnr l oposnt tngntill sns qu il it ount. n on T µ t on qun l soli st iobil : s N T µ s N n put ussi utilisr l ngl frottnt sttiqu t l ôn frottnt pour iu isulisr l liit à prtir lqull l soli glissr. prtir u ont où T st supériur à frottnt niqu µ D. µ, l soli s t n ount t il fut utilisr l ftur s N.. Frottnt niqu L ftur frottnt niqu µ D qui o µ S st un grnur tbulé qui épn l ntur u ontt, prt prir l oposnt tngntill n fontion l oposnt norl : T µ D N L lur µ D st obligtoirnt infériur à µ S Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 5 -

26 Epl : Soli sur un pln inliné rnons un soli pois N posé sur un pln inliné un ngl α. L soli st n équilibr si ls u fors t sont égls t opposés. n suppos µ, 4 t µ,. φ rtn(,4, 8 S D S Tnt qu l pnt st ngl α φs : L rétion ut N osα t l for frottnt T sinα qui st érifi T µ s N, on it qu l rétion st ns l ôn frottnt sttiqu : N osα N φ S α T T sin α is ès qu l ngl α > φs. n toujours N osα is l lur µ s N st supériur à T on on lul ésoris T µ D N r l soli s t à glissr. N N osα,9 9, N T α T µ D, 9,,76N N Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 6 -

27 .4 ésolution s problès sttiqu.4. Soli n équilibr sous l tion fors our qu un soli soit n équilibr sous l tion fors, il fut t il suffit qu ls u fors soint égls t irtnt opposés..4. Soli n équilibr sous l tion fors our qu un soli soit n équilibr sous l tion fors, il fut t il suffit qu : - ls fors soint oplnirs. - ls fors soint onournts u ê point. - hun s fors soit opposé à l so géoétriqu s utrs : niqu fré. F G F F F F F.4. Soli n équilibr sous l tion n fors ropriété très iportnt : L projtion sur un pln un sstè n fors n équilibr st un sstès n fors oplnirs n équilibr. our ls orps possént un pln sétri pln sr toujours hoisi o pln projtion..4.4 étho our résour un problè sttiqu il fut proér générlnt insi : - élisr un ssin sitution où figur l sstè à étuir ns son nironnnt tériur sns fir figurr fors. - élisr un ssin où n figur qu l sstè étuié t ls fors tériurs qu il subit. - Fir un biln s rtéristiqus onnus t inonnus s fors. - élisr l onstrution thétiqu truisnt ls onitions équilibr : l niqu s fors. - Eploitr s ifférnts étps pour résour l problè. L utilistion u ont pr rpport à un onn un éqution : / Et l utilistion l projtion l so torill s fors sur un pln ( n fournit u utrs : F F Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 7 -

28 TVUX DIIGES SU L STTIQUE Eri : L potn Soit un potn onstitué : - un brr étlliqu hoogèn longuur Bl,5 t ss kg - un âbl horiontl longuur BCl, t pois négligbl nt l tnsion n suspn n B un âbl kg uqul st tthé un hrg 89kg. Fir un biln s fors s ppliqunt sur l brr. n nor β l ngl qu fit l rétion l rtil. b pplr ls onitions équilibr puis ls prir n fontion s onnés u problè. En éuir l lur l tnsion u âbl t l rétion n. n prnr g N/kg C l l B Eri : L onsol obil Soit un onsol onstitué un tringl rtngl isoèl BC t tl qu BCl. Son pois st négligbl nt l hrg porté sur C. Ell st instllé sur un tuu iètr r. Soit k l offiint frottnt glissnt ntr l onsol t l tuu. ' C Clulr l istn inil à l u tuu pour lqull l hrg put êtr supporté sns qu il it glissnt l onsol. B' B Eri : L éhll Soit un éhll pois n ontt un proi liss t un sol liss. ontrr qu si ls ontts s font sns frottnt, il st ipossibl ppur l éhll obliqunt ontr un ur rtil. B θ B θ b Dns ls pls i-ontr prir l rétion n t B insi qu l tnsion T u fil n fontion, lb t θ. C fil fi n C C n onsièr ésoris ns l suit l ri un sol ruguu, t l éhll n st plus intnu pr un fil. B Clulr l ngl frottnt pour intnir just l éhll n équilibr. En éuir ls rétions n t B t l offiint frottnt sttiqu (l5, 5N, θ b Eprir l longuur l n fontion l inlinison θ l éhll à lqull un ho pois put ontr. Fir l pplition nuériqu un nfnt kg t un ho kg pour un ngl. Inrsnt prir l onition pour qu un ho pois puiss ontr n hut l éhll. Fir l pplition un ho 7kg. θ Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 8 -

29 Eri 4 orrigé rtil : θ H G 4 I J 6 B Consiérons un éhll oubl onstitué u éhlls sipls n luiniu kg hun. Ls u éhlls sont liés pr un prfit sns frottnt n t tthés n I t J pr un or. L or st pois négligbl. L sol sur lqull ll st posé st onsiéré o prfitnt liss t on sns frottnt. Un ho uni un su son ntr ss G sur l éhll à un hutur 4, l nsbl psnt 8kg. n prnr pour siplifir gn/kg our siplifir nos rltions, on n prnr ps n opt ls fors s rçnt n. L ngl θ st 6. Fir un biln fors s rçnt sur l éhll t oplétr l nn n ls fisnt figurr. n pliitr ls ooronnés s ifférnts fors ns l rpèr rtésin. pplr ls onitions équilibr s fors t s onts pr rpport u point Eploitr s onitions pour étblir ls équtions qu oint stisfir ls fors. n lulr pour l l ont toril s fors pr rpport u point. ( ppl ( tn t on G 4 En éuir ls lurs s rétions u sol. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 9 -

30 Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET CECTINS : Eri 4 rtil : B G I J T T B G G n : rt rt B B rt rt rt rt T T rt T T T T B T T B T T B ntrîn : T T (u B ( T T B ntrîn : on : G G G 4 4 I 4 4 J B soit 6 6 t on 6 D ê B B 6 ; ; t T I T soit 4 4 T T t on T T 4 t ussi T T 4

31 Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - - B T T T T B s oit T T B ( 4 D t on éuit : 6 6 B ls lurs N 8 ; N on obtint l sstè B B 8 B B N N B 467 7

32 4 Dniqu s solis L niqu st l prti l éniqu qui étui ls uss u ount. 4. Elénts niqu our qui bin opris qu tout ount pouit s onstruir à prtir un ount trnsltion t rottion, opris l néssité s torsurs. Ctt ntité oposé u turs truisnt l ount trnsltion t rottion été introuit ls fors. C st ésoris ls élénts inétiqus qu nous llons l éfinir. 4.. L torsur inétiqu L torsur inétiqu [] orrspon u grnurs [quntité ount, ont inétiqu] érits i-près. Il st iportnt notr qu s grnurs épnnt u référntil hoisi Quntité ount our étuir l ount un soli pontul isolé, on pourrit s ontntr onnîtr s itss. is l étu u ount u solis n intrtion n pourr s fir qu pr l ponértion s itsss pr un grnur qui épn l objt. Ctt grnur st pplé ss inrt (inrt : inrti : itss. L périn ontr qu tt grnur qui ponèr l itss un soli st l ê qu ll qui ponèr l for grittionnll s solis ntr u. Ell st noé ss gr. n nor on ss sns istintion l ss gr t l ss inrt. ussi on utilisr un tur p qui orrspon à l ponértion l itss pr tt grnur pplé ss : p p st pplé quntité ount. Lorsqu l soli n st ps pontul il fur utilisr l résultnt inétiqu : p i i i 4... ont inétiqu Dns l s un soli qulonqu, il fur n plus l résultnt inétiqu u soli éfinir l ont totl ssoié pplé ont inétiqu résultnt : L i p Dns l s un istribution non ps isrèt is ontinu on lulr 4... rrêt, rottion t trnsltion. p t L i i r nlogi l torsur for où l on it éfini ls s : équilibr, oupl t trnsltion on put érir ls s suint : - L soli st à l rrêt : p t L - L soli st n rottion : p t L - L soli st n trnsltion : p t L Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

33 4.. L torsur niqu Lorsqu l itss ri on utilis l élértion pour érir tt rition. D l ê fçon on put éfinir un torsur niqu [D] à prtir l quntité élértion t u ont niqu. Et pour un soli on prnr l résultnt niqu t l ont niqu résultnt D i i N i D i D t N i i Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - -

34 4. rinips fonntu l niqu 4.. Enoné Nwton rièr loi : Tout orps prséèr ns son étt rpos ou ount rtilign unifor, suf si s fors ipriés l ontrignnt n hngr. Duiè loi : L hngnt ount st proportionnl à l for iprié t s fftu suint l roit pr lqull tt for st iprié. Troisiè loi : L rétion st toujours ontrir à l tion : ou nor ls tions qu u orps rnt l un sur l utr sont toujours égls t irigés n sns ontrir. 4.. Enoné thétiqu u prinip fonntl C prinip issu l uiè loi Nwton rn équilnt u grnurs fonntlnt ifférnts n lint l ount u fors. Dns un référntil glilén, l ount un sstè points térils pr rpport à un point fi érifi l éqution torsorill suint : F, t n notnt [ ] [ ] [ ] t F/, t / l torsur s fors tériurs ont l ont st lulé pr rpport à. En trnt u torsur ss u oposnts torills, on obtint ls u théorès suints : 4.. Théorè l quntité ount, Théorè l résultnt inétiqu Dns l s un soli pontul on obtint l théorè l quntité ount : p Ft t Dns l s un soli non pontul on prl théorè l résultnt inétiqu Théorè u ont inétiqu L théorè lint ls onts s pri pr : L t Ft C théorè put s érr util ê lorsqu l résultnt u ont s fors st null r l ont inétiqu st lors un onstnt torill. is on l utilisr surtout pour l étu s solis t non pour l étu l niqu u point. Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - 4 -

Chapitre 3 Intégrale double

Chapitre 3 Intégrale double Chpitre 3 Intégrle oule Nous llons supposer le pln usuel muni un repère orthonormé (O,i,j). 3. Aperçu e l éfinition formelle e l intégrle oule Soit =[, [, (

Plus en détail

3.2 Succession d intégrales simples - Théorème de Fubini

3.2 Succession d intégrales simples - Théorème de Fubini 8 Intégrle oule. Suession intégrles simples - Théorème e Fuini Soit R = [, [, (

Plus en détail

Algorithmes gloutons

Algorithmes gloutons Alorithms loutons L prinip l lorithm louton : ir toujours un hoix lolmnt optiml ns l spoir qu hoix mènr à un solution lolmnt optiml. Éypt On ppll rtion éyptinn un rtion l orm n v n N.. Soint t ux ntirs

Plus en détail

Mécanique: chapitre 2. Forces; Moments

Mécanique: chapitre 2. Forces; Moments écnique: chpitre orces; oents INTRDUCTIN Toute ction écnique s'eerçnt sur un objet pour eet soit: de odiier son ouveent ou de le ettre en ouveent, de le intenir en équilibre, de le déorer. Toute ction

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Tour de refroidissement

Tour de refroidissement TP N7 Tour d rfroidimnt ENSEEIHT 2, ru Chrl CAMICHEL B.P. 7122 31071 TOULOUSE Cdx 7 FRANCE (33) 05 61 58 82 00 (33) 05 61 62 09 76 Tour d rfroidimnt Dn l cycl d l pur, l fluid à l étt d pur n orti d l

Plus en détail

COMITÉ MIXTE SUR LA SANTÉ ET SÉCURITÉ INSPECTION ANNUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE

COMITÉ MIXTE SUR LA SANTÉ ET SÉCURITÉ INSPECTION ANNUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE 235, ru Donl Ottw (Ontrio) K1K 1N1 Tél: 613 744-2241 Téléopiur : 613 744-4898 ino@iso.org Sit w: www.iso.org COMITÉ MIXTE SUR LA SANTÉ ET SÉCURITÉ INSPECTION ANNUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE

Plus en détail

. Ces deux circuits produisent donc chacun un champ magnétique, noté B r 1. . Le terme entre parenthèse étant indépendant de I

. Ces deux circuits produisent donc chacun un champ magnétique, noté B r 1. . Le terme entre parenthèse étant indépendant de I LP 9 Systè d dux circuits fiifors dns 'pproxition ds régis qusi sttionnirs: Inductnc propr, inductnc utu Aspcts énrgétiqus Introduction: Nous vons étué précédnt phénoèn d'induction, t nous vons vu qu cui-ci

Plus en détail

À FAIRE MENSUELLEMENT

À FAIRE MENSUELLEMENT 235, ru Donl Ottw (Ontrio) K1K 1N1 Tél: 613 744-2241 Téléopiur : 613 744-4898 ino@iso.org Sit w: www.iso.org SANTÉ ET SÉCURITÉ AU TRAVAIL INSPECTION MENSUELLE GUIDE DE SÉCURITÉ / LISTE DE CONTRÔLE PROCÉDURE

Plus en détail

De l atome à la molécule organique

De l atome à la molécule organique hpitr 1. D l tom à l molécul orgniqu bjctifs I Rppl : Atoms, vlnc, molécul 1) Ls élémnts concrnés 2) Ls moléculs à bs d crbon II Structur t rprésnttions ds moléculs orgniqus 1) Formuls ds composés orgniqus

Plus en détail

Carrelage sur plancher chauffant eau chaude

Carrelage sur plancher chauffant eau chaude Résrvtions pour l pos sols rrlés LOCAUX INTÉRIEURS À FAIBLES SOLLICITATIONS P2-P3 (sns siphon sol) ET SOLS EXTÉRIEURS (lon, loggi, trrss) Crrlg sur plnhr huffnt u hu typ A slon DTU 65.14-P1 f 1 g 2 Ini

Plus en détail

Mme/Mlle/M. Fonction Téléphone Télécopie Courriel

Mme/Mlle/M. Fonction Téléphone Télécopie Courriel Anné 2004-2005 Enquêt Moyns t mos gstion l immtéril Mri rssr votr répons à : Institut ntionl l sttistiqu t s étus éonomiqus Pys l Loir Dns l r l Sttistiqu puliqu inq srvis sttistiqus ministérils s sont

Plus en détail

Arbres CSI2510 1. Arbres. Terminologie Arbre. Arbres

Arbres CSI2510 1. Arbres. Terminologie Arbre. Arbres rrs rrs rrs nrs Proprétés s rrs nrs rvrsés rrs Struturs onnés pour rrs rrs Un rp = (V,) onsst n un sér V SOMMS t un sér lns, v = {(u,v): u,v V, u v} Un rr st un rp onnté ylqu (sns yls) un mn ntr qu pr

Plus en détail

COMMISSION SCOLAIRE MARGUERITE BOURGEOYS

COMMISSION SCOLAIRE MARGUERITE BOURGEOYS 00, OULVR L ÔT-VRTU SINT-LURNT (QUÉ) L V OMMISSION SOLIR LOL LOL MRURIT OUROYS LM.0 RÉTION S LOS SNITIRS LOUX,, & 0 POUR ONSTRUTION 0-0- 0 POUR PPL 'ORS 0-0-0 00 POUR OORINTION 0-0-0 RÉV. SRIPTION T PR

Plus en détail

Titrages acidobasiques de mélanges contenant une espèce forte et une espèce faible : successifs ou simultanés?

Titrages acidobasiques de mélanges contenant une espèce forte et une espèce faible : successifs ou simultanés? Titrgs cidobsiqus d mélngs contnnt un spèc fort t un spèc fibl : succssifs ou simultnés? Introduction. L'étud d titrgs cidobsiqus d mélngs d dux ou plusiurs cids (ou bss) st un xrcic cournt [-]. Ls solutions

Plus en détail

LICENCE PPL-H COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-HELICOPRERE. Examinateur: Nom / Prénom*: 1ère tentative QT : Démarrage rotor:

LICENCE PPL-H COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-HELICOPRERE. Examinateur: Nom / Prénom*: 1ère tentative QT : Démarrage rotor: LICENCE PPL-H COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-HELICOPRERE Cnit Nom*: Prénom(s)*: Dt nissn: Typ lin: Numéro lin: Pys l lin: 1 Détil u vol : Dt u vol: Typ hélioptèr / Vrint: QT : Immt:

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

NCCI : Conception et calcul initial de poutres mixtes

NCCI : Conception et calcul initial de poutres mixtes NCCI : Coneption et lul initil e poutres mixtes SN022-FR-EU NCCI : Coneption et lul initil e poutres mixtes Ce oument fournit es reommntions reltives à l séletion e poutres mixtes priniples et seonires

Plus en détail

LES CONIQUES. 1) Différentes approches des «coniques». page 2. 2) Equation focale d une conique.. page 4

LES CONIQUES. 1) Différentes approches des «coniques». page 2. 2) Equation focale d une conique.. page 4 LES CONIQUES Tle des mtières COURS ) Différentes pprohes des «oniques». pge ) Eqution fole d une onique.. pge 4 3) Axe fol de Γ. pge 6 4) Sommets de Γ. pge 6 5) Equtions rtésiennes réduites d une prole.

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Exemples de questions HERMES 5.1 Advanced

Exemples de questions HERMES 5.1 Advanced Exemples e questions HERMES 5.1 Avne Tle es mtières 2 Introution 3 Exmen HERMES est un stnr ouvert e l ministrtion féérle suisse. L Conféértion suisse, représentée pr l unité e pilotge informtique e l

Plus en détail

ÉVALUATION DU NUT ET DU FLUX TRANSFÉRÉ

ÉVALUATION DU NUT ET DU FLUX TRANSFÉRÉ Chapitr 6 ÉVALUATION DU NUT ET DU FLUX TRANSFÉRÉ Parturiunt onts ; nastur ridiulus us HORACE 6.. RÉSISTANCES D ENCRASSEMENT Pour êtr n sur d alulr la puissan thriqu d un éhangur, il aut onnaîtr son NUT,

Plus en détail

PPL-A COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-AVION. Heure de départ. Heure d arrivée. Heure de départ. Heure d arrivée

PPL-A COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-AVION. Heure de départ. Heure d arrivée. Heure de départ. Heure d arrivée PPL-A COMPTE RENDU POUR LA DÉLIVRANCE DE LA LICENCE PPL-AVION Cnit Nom* Prénom(s)* Dt nissn Typ lin Numéro l lin Pys l lin 1 Détil u vol Dt u vol Typ vion Clss Quliition Immt. Déprt Itinérir 2 Inormtions

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Stage olympique de Cachan Géométrie

Stage olympique de Cachan Géométrie Stge olympique de chn Géométrie Exercices du vendredi 20 février 2015 1 Quelques définitions et résultts utiles éfinition (Nottions) Soit un tringle non plt. On utiliser usuellement les nottions suivntes

Plus en détail

TD CHAPITRE 5 : STEREOCHIMIE DES MOLECULES ORGANIQUES

TD CHAPITRE 5 : STEREOCHIMIE DES MOLECULES ORGANIQUES Lefèvre 0-05 CAPITRE 5 : STERECIMIE DES MLECULES RGANIQUES PARTIE / DESCRIPTEURS STERECIMIQUES Ce qu il fut svoir : Notion e hirlité Stéréoisomérie e onfigurtion : énntiomérie et istéréoisomérie Ce qu

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Chapitre XI : Gaz réels

Chapitre XI : Gaz réels hite XI : Gz ées hite XI : Gz ées XI- : Intodution : L étude de omessiiité d un gz été fite en emie ieu OYLE (6) et MRIOE (676) et fut ométée u ous du XIX sièe de noueu eéimentteus : REGNL, NER, MG L omessiiité

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

UE 41c : Mécanique du Solide

UE 41c : Mécanique du Solide UE 4c : écnqu du Sold DEUG Scncs d l tèr è nné Nots d cours Exrccs Sujts d xn PFrty Lbortor d Crstllogrph t odélston ds térux nérux t Bologqus UPESA CNS N 7036 - Unvrsté Hnr Poncré, Nncy Fculté ds Scncs,

Plus en détail

distance parcourue temps mis pour la parcourir

distance parcourue temps mis pour la parcourir CH IV VITESSE - DEBIT - MASSE VOLUMIQUE - DENSITE RAPPELS DE COURS QUESTION 26 Conversion de m/s en km/h : il fut à l fois onvertir les mètres en kilomètres et les seondes en heures. On : 1 m = 0, 001

Plus en détail

LE CHAMP ÉLECTRIQUE EN RÉGIME STATIONNAIRE.

LE CHAMP ÉLECTRIQUE EN RÉGIME STATIONNAIRE. LE CHA ÉLECTRIQUE STATIONNAIRE LE CHA ÉLECTRIQUE EN RÉGIE STATIONNAIRE On ppll chmp élctosttiqu un chmp dû à ds chgs sttiqus, los qu'on pl d chmp élctiqu sttionni pou un distibution d chgs n dépndnt ps

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Les ailes du Pacifique

Les ailes du Pacifique Ls is u Piiqu 4 ru Vntour 75001 Pris Té : (+33) 1 78 09 08 07 Fx : (+33) 1 42 96 93 59 www.irin.om mi : inos@irin.r Binvnu à or Css Hiisus Pour stisir s nvis onort nos ints, nous ur proposons ss Hiisus,

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Gestion de casiers en milieu scolaire. Augmenter la disponibilité en mode centralisé ou consignes, avec les casiers de Traka. traka.

Gestion de casiers en milieu scolaire. Augmenter la disponibilité en mode centralisé ou consignes, avec les casiers de Traka. traka. gstion intllignt ds ccès Gstion d csirs n iliu scolir Augntr l disponibilité n od cntrlisé ou consigns, vc ls csirs d Trk trk.fr/csirs Un solution d gstion innovnt pr Trk Ldr ondil d l gstion intllignt

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

L OUTIL BOND GRAPH POUR LA MODELISATION DES SYSTEMES MECATRONIQUES

L OUTIL BOND GRAPH POUR LA MODELISATION DES SYSTEMES MECATRONIQUES L OUTIL BOND GRAPH POUR LA MODELISATION DES SYSTEMES MECATRONIQUES A. NAAMANE La Mécatroniqu Ls bond graphs Pourquoi? Outil d modélisation prformant ; Prmt d bin comprndr ls transfrts d puissanc ; Put

Plus en détail

Résumé Math HEC 1ère Math

Résumé Math HEC 1ère Math Résué Mth HE èr Mth Mthétiqus icirs (chir spécil. Méthod récursiv p.. Equivlc d pits p.4 Vlur cpitlisé : vlur utur d u ott court > Fctur d cpitlistio : ( + i Vlur scopté : vlur court d u ott utur < Fctur

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Calcul d une structure de type carton ondulé à l aide d une approche 3D coque homogénéisée

Calcul d une structure de type carton ondulé à l aide d une approche 3D coque homogénéisée 8 è Congrès Français d Méaniqu Grnobl, 7- août 7 Calul d un strutur d typ arton ondulé à l aid d un approh D oqu hoogénéisé nis Batti, Nabil albi, Rzak yad, Ying Qiao Guo Univrsité d Ris Chapagn-rdnn Group

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Mathématiques discrètes Chapitre 4 : relations binaires

Mathématiques discrètes Chapitre 4 : relations binaires U.P.S. I.U.T. A, Déprtement Informtique Année 2009-2010 Mthémtiques isrètes Chpitre 4 : reltions inires 1. Générlités Définition Soient E 1, E 2,...E n es ensemles. Une reltion n-ire est l onnée un sous-ensemle

Plus en détail

On donne le circuit suivant avec une source de tension continue V 1 et une source de tension alternative v 2 (t) sinusoïdale.

On donne le circuit suivant avec une source de tension continue V 1 et une source de tension alternative v 2 (t) sinusoïdale. T d élctroniqu analogiqu A : iods Ex : Analys statiqu / dynamiqu d un circuit On donn l circuit suiant ac un sourc d tnsion continu V t un sourc d tnsion altrnati (t) sinusoïdal. 0 V = 0 V A 0 B = sin(

Plus en détail

partenariat éprotop étude de Assurément experts. Essentiellement humains. www.maxance.com

partenariat éprotop étude de Assurément experts. Essentiellement humains. www.maxance.com X r 28 b Pri Chrltt BP 169 - Mt-Crl 98007 MONACO Cx tl. 01.49.15.33.00 fx. 01.49.15.19.80 www.x. éprtp ét prtrit Arét xprt. Etillt hi. COMMENT DEVENIR PARTENAIRE? CONSTITUTION DU DOSSIER Pr vir Prtir,

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

FORCE PRESSION CHAMP MAGNETIQUE...

FORCE PRESSION CHAMP MAGNETIQUE... OCE PEON CHAMP MAGNETQUE 1)Efft Pizzo Elctriqu Un forc appliqué à un lam d quartz induit un déformation qui donn naissanc à un tnsion élctriqu - CAPTEU À EET PÉZOÉLECTQUE 1- Efft piézoélctriqu Un forc

Plus en détail

TD : Arbres Binaires de Recherche (A.B.R.)

TD : Arbres Binaires de Recherche (A.B.R.) TD : Arres Binires de eherhe (A.B..) Olivier ynud rynud@isim.fr http ://www.isim.fr/rynud ésumé Dns e Td nous proposons trois exeries. Le premier est onsré à l implémenttion du T.D.A. Ensemles dynmiques

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

FONDATION CLEMENTINE ET MAURICE ANTILLE

FONDATION CLEMENTINE ET MAURICE ANTILLE FONDATION CLEMENTINE ET MAURICE ANTILLE Règlement d ttriution de ourses et de prêts d études et de formtion du déemre 006 Artile premier Ojet et hmp d pplition Le présent règlement est étli en pplition

Plus en détail

a g c d n d e s e s m b

a g c d n d e s e s m b PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Guide de référence de l'installateur et de l'utilisateur

Guide de référence de l'installateur et de l'utilisateur Gui réérn l'instlltur t l'utilistur Climtisur systèm VRV IV RYYQ8T7Y1B RYYQ10T7Y1B RYYQ12T7Y1B RYYQ14T7Y1B RYYQ16T7Y1B RYYQ18T7Y1B RYYQ20T7Y1B RYMQ8T7Y1B RYMQ10T7Y1B RYMQ12T7Y1B RYMQ14T7Y1B RYMQ16T7Y1B

Plus en détail

La Cible Sommaire F o c u s

La Cible Sommaire F o c u s La Cible Sommaire F o c u s F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N

Plus en détail

PHS1101 Mécanique pour ingénieurs

PHS1101 Mécanique pour ingénieurs PHS1101 écanique pour inénieurs Contrôle périodique 1 Hier 01 «Spécial Déénaeent» Question 1: k Déénaeent PHS1101 nc. 51-1-159 C Question 1: Dans les annonces publicitaires de Ford F150, on annonce fièreent

Plus en détail

Guide de référence de l'installateur et de l'utilisateur

Guide de référence de l'installateur et de l'utilisateur Gui référn l'instlltur t l'utilistur Climtisur systèm VRV IV REYQ8T7Y1B REYQ10T7Y1B REYQ12T7Y1B REYQ14T7Y1B REYQ16T7Y1B REYQ18T7Y1B REYQ20T7Y1B REMQ5T7Y1B Gui référn l'instlltur t l'utilistur Climtisur

Plus en détail

Série n 3 d Electrocinétique : Régime sinusoïdal forcé

Série n 3 d Electrocinétique : Régime sinusoïdal forcé Séri n 3 d Elctrocinétiqu : Régim sinusoïdal forcé Exrcic n 1 : Résonanc n tnsion d un circuit RLC parallèl 1.\ Détrminr l équation différntill qui régi l évolution d u(t). 2.\ Exprimr l amplitud complx

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Physique du bâtiment 1 Unités de mesure Corrigé du TD1 1. Exercices corrigés Destinés aux étudiants de licence en architecture

Physique du bâtiment 1 Unités de mesure Corrigé du TD1 1. Exercices corrigés Destinés aux étudiants de licence en architecture Pysique u âtient Unités e esue Coié u D Eeies oiés Destinés u étuints e liene en itetue Pysique u âtient Unités e esue Coié u D Coié u D N Eeie : Cun es si systèes 'unités e esue est téisé p un etin noe

Plus en détail

Aspect comptable de l affectation du résultat d une société en non collectif :

Aspect comptable de l affectation du résultat d une société en non collectif : Aspet omptle de l ffettion du résultt d une soiété en non olletif : Pour ppréhender l spet omptle de l ffettion du résultt d une soiété en non olletif, on v proéder à détérminer les éritures omptles de

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE

INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE POUR LES SERRURES D ENTRÉE À CLÉ EXTÉRIEURES VERROUILLABLES, À POIGNÉE DE BRINKS HOME SECURITY. POUR LES PORTES DE

Plus en détail

INSTALLATION DU CHAUFFE-EAU BRANCHEMENT DES LAVE-VAISSELLES

INSTALLATION DU CHAUFFE-EAU BRANCHEMENT DES LAVE-VAISSELLES LÉN U U NOT: VOR ÉTL U SÉM U SOLR U PLN M-09 PÈ TRNSTON (SPOOL) POUR UTUR OMPTUR 'U... R RN S T... U RO OMSTQU U U / OMSTQU U MTÉ OMSTQU RN PLUVL VNTLTON PLOMR ÉVUTON SOUS PLNR ÉVUTON U SSUS U PLNR LPT

Plus en détail

Chapitre 2. LA BATTERIE

Chapitre 2. LA BATTERIE Chpir 2 LA BATTERIE 21 Fi : Priip d l bri Lrq l plg dx l d éx différ d b id bi d r élriq L bri élriq d vir pr rôl d lr d rir l r élriq D ièr géérl, bri liq i x br d 12 vl ié d 6 élé d 2 vl é éri + - Bri

Plus en détail

NOTICE DE MONTAGE VERSION 72

NOTICE DE MONTAGE VERSION 72 L â pour port oulnt motl NOTIE E MONTGE VERSION â pour port oulnt motl NOMENLTURE: â, rl t qunllr m l Montnt vrtux ntérur Entrto ( u) Fullr (0 u) l n polytyrèn ( u) Montnt vrtl potérur Smll Prt or upérur

Plus en détail

CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE

CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE Sssion 200 Brvt d Tchnicin Supériur CONTRÔLE INDUSTRIEL t RÉGULATION AUTOMATIQUE U4 Instrumntation t Régulation Duré : 3 hurs Cofficint : 4 L utilisation d un calculatric réglmntair st autorisé. Calculatric

Plus en détail

Adiameris. Stratégie d investissement

Adiameris. Stratégie d investissement Aimeris Strtégie investissement B Aimeris Formulire e sousription n Strtégie investissement (à ompléter pr Privte Estte Life) Nom u gestionnire 1. Profil investisseur Les informtions i-essous permettront

Plus en détail

DÉCLARATION CE DE CONFORMITÉ PRÉCAUTIONS POUR L INSTALLATEUR

DÉCLARATION CE DE CONFORMITÉ PRÉCAUTIONS POUR L INSTALLATEUR DÉCLRTION CE DE CONFORMITÉ Frint: resse: Délre que: FC S.p.. Vi Benini, 1-40069 Zol Preos BOLOGN - ITLIE L opérteur mo. TM 58 M est onforme ux exigenes essentielles es iretives CEE suivntes: - 73/23/CEE

Plus en détail

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm

Assemblages angulaires de plans de travail de cuisine d'une largeur de 60 cm N 529 Assemlges ngulires de plns de trvil de cuisine d'une lrgeur de 60 cm A Description Le grit de frisge APS 900 et une défonceuse Festool, p. ex. l défonceuse OF 1400, permettent de réliser rpidement

Plus en détail

l appareil et vérifier les composants Tambour (pré-installé) (pré-installé)

l appareil et vérifier les composants Tambour (pré-installé) (pré-installé) Gui instlltion rpi Commnr MFC-9970CDW Avnt onfigurr t ppril, vuillz lir Livrt sur séurité t réglmnttion. Ensuit, lisz Gui 'instlltion rpi pour fftur l onfigurtion t l instlltion orrtmnt. Pour ffihr l Gui

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Prof.É.D.Taillard. Éléments de la théorie des graphes Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Éléments de la théorie des graphes Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS ÉLÉMENTS DE LA THÉORIE DES GRAPHES Pro.É.D.Tillr Élémns l éori s rps Pro. E. Tillr 1 EIVD, Inormiqu loiil, 4 smsr DÉFINITIONS Un rp G s onsiué un nsml X somms ou nœus

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER

Recherche des paramètres de préréglage en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Recherche des prmètres de préréglge en injection. 1 COURS SUR LA RECHERCHE DES PARAMETRES POUR LE CHOIX ET LE PREREGLAGE DES PRESSES A INJECTER Appliction et utilistion des préréglges : Les données de

Plus en détail

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques ELECTRICITE Analys ds signaux t ds circuits élctriqus Michl Piou Chapitr Tnsions t courants dans ls ligns triphasés Montags étoil t triangl Edition /0/04 Tabl ds matièrs POURQUOI ET COMMENT? DENOMINATION

Plus en détail

DME TYXAL+ IP IP 55. www.deltadore.com. Contenu / Contents / Inhalt / Contenuto / Contenido / / Inhoud

DME TYXAL+ IP IP 55. www.deltadore.com. Contenu / Contents / Inhalt / Contenuto / Contenido / / Inhoud DME TYXL+ www.tor.o Not stto EN Istto u DE Isttostu IT u stzo ES Mu stó PL Istru st NL Istt 2xLS 14500-3,6 V - 5,8 - Ltu utoo 10 s - utooy 10 yrs Cotu / Cotts / It / Cotuto / Coto / / Iou Cosupto st-y

Plus en détail

Une gamme de formes et de coloris

Une gamme de formes et de coloris Une gmme de formes et de oloris 8 oloris Brun Flmmé Rouge Flmmé Vert Flmmé Rouge Noir Ardoisé Gris Lihen Terre Cuite MASTER 4 oloris Gris Pierre Brun Noyer Ardoisé Brun Liège QUEUE DE CASTOR 4 oloris Ardoisé

Plus en détail

Tout circuit électrique soumis à une variation de flux est le siège de f.é.m. induite, qui selon la loi de Lenz, s écrit: dφ. e =

Tout circuit électrique soumis à une variation de flux est le siège de f.é.m. induite, qui selon la loi de Lenz, s écrit: dφ. e = T l TI GET ACHINE YNCHRONE I. REENTATION L mchin synchron s ll ltrntr (cntrl élctriq, gro élctrogèn, voitr ). Ell trnsform l énrgi mécniq n énrgi élctriq, sos form d tnsions ltrntivs. En sns invrs l mchin

Plus en détail

ECOULEMENT AUTOUR D UNE AILE

ECOULEMENT AUTOUR D UNE AILE Eoulmnt autour d un al EOUEMET UTOUR UE IE St 2006 obtf d TP st d arvnr à msurr la ortan t la traîné d un al d avon, à artr d msurs d rssons n dfférnts onts d l al. On s attahra à dérr l évoluton d s du

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

FICHE LOCATION Palonnier de chantier 05AXI01 4 ventouses léger avec rotation manuelle

FICHE LOCATION Palonnier de chantier 05AXI01 4 ventouses léger avec rotation manuelle Manutention par le Vide Levage Mécanique Stockage Prestations Métal Métal Révision éton éton Réparation Pierre Pierre Location ois ois IH LOTION Palonnier de chantier 0XI01 4 ventouses léger avec rotation

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

SOLUTIONS DE l EXAMEN

SOLUTIONS DE l EXAMEN Univrsité d Aix-Marsill Faculté d économi t d gstion Sit Colbrt 1 èr anné d licnc, microéconomi Mardi l 30 avril 2013 Dirctivs Pédagogiqus : Ctt épruv comprnd 15 qustions. 10 sont à choix multipls t 5

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4 SOAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Prouit ou comoment e eux torseurs 4 2.2 Torseurs élémentaires 4 2.2.1 Torseur couple 4 2.2.2 Torseur

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Notice d instructions originales 11/2010. à conserver pour une utilisation ultérieure. Bac de rangement. Réf. 583010000. Les techniciens du coffrage

Notice d instructions originales 11/2010. à conserver pour une utilisation ultérieure. Bac de rangement. Réf. 583010000. Les techniciens du coffrage 11/2010 Notice d instructions originles 999281403 fr à conserver pour une utilistion ultérieure c de rngement Réf. 583010000 escription du produit escription e c de rngement ok est un ccessoire de levge

Plus en détail

liste de prix JANVIER 201

liste de prix JANVIER 201 liste e prix JANVIER 201 FR INDEX BATHROOM RADIATORS MINIMALIST COLLECTION miniml p.08 fourslim y rhitets p.09 fourslim on/off p.11 fourslim squre p.12 fourslim squre on/off p.14 fourslim squre LED p.15

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Guie e émrrge rpie Révision A MAfee Firewll Enterprise Control Center version 5.3.1 Ce guie e émrrge rpie fournit es instrutions générles sur l onfigurtion e MAfee Firewll Enterprise Control Center. 1

Plus en détail

Conditions générales de vente demobility Société Coopérative (CGV)

Conditions générales de vente demobility Société Coopérative (CGV) Conitions générls vnt Moility Soiété Coopértiv (CGV) Qulqus règls uoup lints Moility stisfits Etr simplmnt loyl ChèrlintMoility, Chr lint Moility, C st si simpl êtrmoilvmoility résrvr,montr,roulr,pyr.

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

ENS PSI 2004 LADARVISION 4000

ENS PSI 2004 LADARVISION 4000 ENS SI 4 LADARVISIN 4 Q oduits cocialisés : luntts, lntills d contact Q Fonction d svic FS : Sufac l stoa conén Q Diaga FAST : Q4 Diaga SADT A : Q5 Ls hothèss d l énoncé (l diaèt du ccl ciconscit au faiscau

Plus en détail

T A B L E D E S M A T I E R E S ACHETEUR/ACHETEUSE DE PAPIER

T A B L E D E S M A T I E R E S ACHETEUR/ACHETEUSE DE PAPIER CH/CH D PP abl ds matièrs utrs formations 2 htur intrnational /ahtus intrnational 2 htur intrnational/ahtus intrnational 5 htur profssionnl/ahtus profssionnll 6 hniin logistiqu d ahats, d approvisionnmnt

Plus en détail