Équations différentielles et systèmes dynamiques. M. Jean-Christophe Yoccoz, membre de l'institut (Académie des Sciences), professeur

Dimension: px
Commencer à balayer dès la page:

Download "Équations différentielles et systèmes dynamiques. M. Jean-Christophe Yoccoz, membre de l'institut (Académie des Sciences), professeur"

Transcription

1 Équations différentielles et systèmes dynamiques M. Jean-Christophe Yooz, membre de l'institut (Aadémie des Sienes), professeur La leçon inaugurale de la haire a eu lieu le 28 avril Le ours a ensuite porté sur quelques exemples de dynamique faiblement hyperbolique. Considérons un difféomorphisme f d'une variété M et une partie ompate K de M qui est invariante par f. On dit que K est hyperbolique si le fibré tangent à M au-dessus de K se sinde ontinument en deux fibrés invariants, le fibré stable et le fibré instable, les veteurs du fibré stable étant exponentiellement ontratés dans les temps positifs tandis que les veteurs du fibré instable le sont dans les temps négatifs. Cette notion est à la base d'une théorie des systèmes (fortement, ou uniformément) hyperboliques, développée dans les années 60 par Anosov, Sinaï, Smale, Palis et leurs ollaborateurs. On a rappelé brièvement les prinipales propriétés d'un difféomorphisme f au voisinage d'une partie ompate K invariante et hyperbolique. Le difféomorphisme est expansif, 'est-à-dire que deux orbites distintes se séparent au ours du temps d'une distane déterminée. Il possède la propriété de pistage : une suite de points où haun est très voisin de l'image du préédent est uniformément prohe d'une vraie orbite. Il y a ontinuation hyperbolique : si g est un autre difféomorphisme, voisin de f, on peut trouver une partie ompate L de la variété, voisine de K, invariante par g et hyperbolique, sur laquelle la dynamique de g est onjuguée de elle de f sur K. Dans l'analyse de la dynamique d'un difféomorphisme f sur une partie ompate K, invariante et hyperbolique, les variétés stables (et instables) loales et globales des points de K jouent un rôle fondamental. Elles s'obtiennent par intégration du fibré stable. On dit que la partie ompate K, invariante et hyperbolique, jouit d'une struture de produit loal si l'intersetion des variétés stable et instable loales de deux points prohes de K appartient enore à K. Lorsque les points de K sont

2 de plus réurrents par haînes dans K, le théorème de déomposition spetrale de Smale permet de dérire ainsi la dynamique de f sur K : ette partie se déompose en une union finie d'ensembles basiques deux à deux disjoints ; haun de es ensembles basiques est lui-même déomposé en parties p ompates disjointes, p p invariantes par et f permutées yliquement par f, sur lesquelles est topolo- f giquement mélangeant. La restrition d'un difféomorphisme f à un ensemble basique K jouit de propriétés topologiques permettant un reours effiae à la dynamique symbolique et à ses modèles, les déalages de type fini. Considérons d'abord une situation non inversible : une appliation ontinue f d'un espae métrique ompat K dans lui-même, qui est expansive, possède la propriété de pistage et est transitive ; l'ensemble D des points de K dont l'orb est dense dans K est alors une partie δ dense G de K. On peut onstruire des partitions de Markov pour (K,f) : 'est par définition une semi-onjugaison d'un déalage transitif de type fini à f, qui est surjetive, ontinue et injetive dessus de D. Dans un adre inversible, on suppose que l'homéomorphisme f d'un espae métrique ompat K est expansif,transitif et jouit de la propriété de produit loal ; l'ensemble D est alors formé des points dont les deux demi-orbites sont denses. On onstruit également dans e as des partitions de Markov, mais la démonstration est plus déliate. L'essentiel du ours a ensuite été onsaré à la présentation de deux lasses d'exemples : dans un adre non inversible, les polynômes quadratiques : réels P x x 2 +, pour les valeurs du paramètre onsidérées par Jakobson au début des années 80 ; et dans un adre inversible, beauoup plus déliat, les appliation de Hénon, pour les valeurs des paramètres onsidérées par Benediks et Carleson à la fin des années 80. Ces lasses d'exemples exhibent une roissane exponentielle des dérivées aratéristique de l'hyperboliité, mais ne s'intègrent néanmoins pas dans le adr de la théorie évoquée i-dessus : la roissane n'a pas lieu partout, mais seuleme presque partout, et n'est pas uniforme ; la dynamique n'est pas tout à fai expansive. L'objet du ours était d'étudier les propriétés de es lasses d'exemples d'un façon suffisamment oneptuelle, l'objetif reherhé à terme étant de bâtir une théorie de systèmes (faiblement) hyperboliques qui les englobe et permettrait aussi de traiter d'autres exemples enore mal ompris, en partiulier dans un adre onservatif. Disutons d'abord le as des polynômes quadratiques réels. On s'intéresse à la partie ompate invariante formée K des points d'orbite bornée. On suppose que

3 α < 1/4, de sorte que possède P deux points fixes qu'on notera β, ave α et <β. Lorsque < -2, le point ritique 0 n'appartient de P pas à ; Kla partie K est hyperbolique (les dérivées des itérés roissent uniformément exponentiellement vite sur ) K et la dynamique de sur P K est onjuguée au déalage omplet sur deux symboles. La situation onsidérée par Jakobson est elle où le paramètre est voisin de -2, mais stritement supérieur à -2. L'ensemble est alors K égal à l'intervalle [-β,+β], et ontient don le point ritique 0. Cependant, pour la plupart de telle valeurs du paramètre, il y a enore presque partout roissane sur K exponentielle des dérivées des itérés du polynôme. On a d'abord dégagé la notion, essentielle à nos yeux, de paramètre régulier : onsidérons l'intervalle entral [+α,-α]et A = un entier n > 0 ; on dira qu'un n intervalle J est régulier d'ordre n si restreint l'itéré P à un voisinage approprié Ĵ de J est un difféomorphisme sur un voisinage  de A (indépendant de n, J) qui envoie J sur A ; on dira que le paramètre est régulier si le omplémentaire de l'union des intervalles réguliers d'ordre n a une mesure de Lebesgue exponentiellement petite en n. Lorsque le paramètre est régulier, on est à même de donner une desription satisfaisante de la dynamique de P. Considérons en effet la famille J des intervalles réguliers maximaux ontenus dans A ; ils sont d'intérieurs deux à deux disjoints, et leur union W est de mesure pleine dans A. On onstruit une appliatio de Bernoulli Τ : W A dont la restrition à un intervalle J e J d'ordre Nj, est Nj l'itéré. P Cette appliation est uniformément hyperbolique, et elle préserve une mesure sur A ayant une densité analytique par rapport à la mesure de Lebesgue. Pour revenir à P, il faut effetuer un hangement de temps, qui est ontrôlé par l'hypothèse de régularité sur le paramètre. Le point ruial est ensuite de montrer que la plupart des paramètres > -2, prohes de -2, sont réguliers (ils forment un ensemble de Cantor, dont la mesure de Lebesgue relative dans [-2, -2 + ε] tend vers 1 lorsque proède en deux étapes : εtend vers 0). On 1. on introduit une notion de paramètre fortement régulier, et on montre qu'un paramètre fortement régulier est régulier ; 2. on démontre que les paramètres fortement réguliers forment un ensemble de mesure positive (et même de grande mesure relative). La propriété d'être fortement régulier porte sur l'orbite du point ritique : s'agitde pouvoir itérer infiniment Τ le par premier retour du point ritique dans A, ave des branhes qui ne sont en moyenne pas trop ompliquées. Une analyse ombinatoire soigneuse permet alors d'obtenir l'estimation de mesure reherhée. Pour le deuxième point, on transfère ette estimation dans l'espae des paramètres un argument de grandes déviations permettant ensuite de onlure.

4 Dans la fin du ours, s'estefforé on d'étudier de façon similaire la famille des appliations de Hénon, lorsque le jaobien b est suffisamment petit. Pour le valeurs des paramètres onsidérées, l'appliation b, possède H deux points fixes, qui se trouvent sur la diagonale, et qu'on notera à nouveau β. On s'intéresse αet à l'ensemble Λ des points d'orbite (positive et négative) bornée ; 'est aussi l'ensemble des points dont l'orbite négative est ontenue dans [ β, le β] 2. arré La notion de retangle régulier joue ii le rôle des intervalles réguliers du unidimensionnel. Un tel retangle a des ôtés vertiaux qui sont des segments de la variété stable du point fixe α et des ôtés horizontaux qui s'envoient sous u itération onvenable sur des segments ontenus [-β, dans β] x {-3, +3}. L'ordre d'un retangle régulier est maintenant onstitué d'une paire d'entiers, essenti lement le nombre d'itérations positives et négatives néessaires pour revenir une taille marosopique. Il ne semble malheureusement pas simple de définir ii diretement la notion de paramètre régulier : la raison en est l'absene d'une mesure naturelle su l'attrateur Λ (la mesure de Lebesgue dans le as unidimensionnel) si l'on ne fait pas d'hypothèse sur les paramètres. On est don onduit à définir diretement la notion de paramètre fortement régulier. s'agità Il nouveau de ontrôler la réurrene du lieu ritique. Mais on se heurte ii à une autre diffiulté : le ritique n'est pas défini a priori, par une propriété loale portant sur une s itération de l'appliation. Ce lieu ritique n'est en fait préisément défini pour les paramètres fortement réguliers, en onsidérant une infinité d'itération un nombre fini d'itérations ne permet de le loaliser que de façon approximative Par ailleurs, e lieu est en fin de ompte un ensemble de Cantor, de petit dimension. On est don obligé de mettre en plae une proédure indutive plus ompliquée que dans le as unidimensionnel. L'objetif est à nouveau de onstruire une appliation T, dont le domaine est la réunion dénombrable et disjointe de retangles réguliers ouvrant l'essentiel de la partie Λ, entrale et dont de la restrition à haque retangle est un itéré approprié de H. L'appliation T jou d'une hyperboliité uniforme qui permet de onstruire une mesure invariante naturelle, dite mesure de Sinaï-Bowen-Ruelle. L'étude de l'espae des paramètres est assez semblable au as unidimensionnel, reposant sur un argument de grandes déviations. J.-C. Y. PUBLICATIONS Ave JaobPALIS, On the arithmeti sum of regular Cantor sets, Ann. Inst. Henri Poinaré, Vol. 14, n 4, (1997). Ave StefanoMARMI et PierreMOUSSA, The Brjuno funtions and their regularity properties, Commun. Math. Phys. 186, (1997).

5 CONFÉRENCES À L'ÉTRANGER Otobre 1996 février 1997 : ours hebdomadaire («Nahdiplomvorlesung») «Weakly hyperboli dynamis» ΤΗ à l'e de Zurih. 23 mai 1997 et 26 mai 1997 : une onférene à l'université M Gill (Beatty Leture) et une onférene à l'université de Montréal. 14 juillet-18 juillet : oorganisateur d'un olloque «Dynamishe Systemen» à Oberwolfah (Allemagne). 5 août-15 août : une onférene dans le adre du Congrès international de Systèmes dynamiques, IMPA, Rio de Janeiro, Brésil. 5 septembre : une onférene dans le adre du olloque «Siene, Nature et Soiété», Université de São Paulo, Brésil.

Production statistique: passage d une démarche axée sur les domaines à une démarche axée sur les processus

Production statistique: passage d une démarche axée sur les domaines à une démarche axée sur les processus Nations Unies Conseil éonomique et soial Distr. générale 31 mars 2015 Français Original: anglais ECE/CES/2015/26 Commission éonomique pour l Europe Conférene des statistiiens européens Soixante-troisième

Plus en détail

3. Veuillez indiquer votre effectif total :

3. Veuillez indiquer votre effectif total : 1 Métiers du marketing et de la ommuniation Questionnaire préalable d assurane Préambule Le présent questionnaire préalable d assurane Marketing et Communiation a pour objet de réunir des informations

Plus en détail

Informatique TP 4 & 5. Chaînes de Markov. Partie 1 : exemple introductif

Informatique TP 4 & 5. Chaînes de Markov. Partie 1 : exemple introductif Informatique TP 4 & 5 ECS2 Lyée La Bruyère, Versailles Chaînes de Markov Partie 1 : exemple introdutif Exerie 1 : épidémiologie On modélise l évolution d une maladie en lassant les individus en trois groupes

Plus en détail

Coordination : Jean-Denis Poignet, responsable de formation

Coordination : Jean-Denis Poignet, responsable de formation Mathématiques e Livret de orrigés Rédation : Niole Cantelou Sophie Huvey Hélène Leoq Fabienne Meille Françoise Raynier Philippe Nadeau Jean-Denis Poignet Coordination : Jean-Denis Poignet, responsable

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Équilibres de phases de mélanges

Équilibres de phases de mélanges Équilibres de phases de mélanges Paternité - Pas d'utilisation Commeriale - Partage des Conditions Initiales à l'identique : http://reativeommons.org/lienses/by-n-sa/2.0/fr/ Table des matières Table des

Plus en détail

Projet INF242. Stéphane Devismes & Benjamin Wack. Pour ce projet les étudiants doivent former des groupes de 3 ou 4 étudiants.

Projet INF242. Stéphane Devismes & Benjamin Wack. Pour ce projet les étudiants doivent former des groupes de 3 ou 4 étudiants. Projet INF242 Stéphane Devismes & Benjamin Wak Pour e projet les étudiants doivent former des groupes de 3 ou 4 étudiants. 1 Planning Distribution du projet au premier ours. À la fin de la deuxième semaine

Plus en détail

Chapitre IV- Induction électromagnétique

Chapitre IV- Induction électromagnétique 37 Chapitre IV- Indution életromagnétique IV.- Les lois de l indution IV..- L approhe de Faraday Jusqu à maintenant, nous nous sommes intéressés essentiellement à la réation d un hamp magnétique à partir

Plus en détail

X-infos. L AcTUALITé DE LA SPL-XDEMAT > N 2 MARS 2014. Tous a vos agendas! Sommaire. Édito. Édito. Tous à vos agendas!

X-infos. L AcTUALITé DE LA SPL-XDEMAT > N 2 MARS 2014. Tous a vos agendas! Sommaire. Édito. Édito. Tous à vos agendas! X-infos L ATUALITé DE LA SPL-XDEMAT > N 2 MARS 2014 Édito Tous a vos agendas! La soiété SPL-Xdemat s apprête à vivre pour la première fois de sa jeune existene, les életions muniipales. Et ompte tenu du

Plus en détail

Exemples de solutions acoustiques

Exemples de solutions acoustiques Exemples de solutions aoustiques RÉGLEMENTATON ACOUSTQUE 2000 Janvier 2014 solement aux bruits aériens intérieurs et niveau de bruit de ho Traitement aoustique des parties ommunes Bruits d équipements

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Personnel Pour chaque diagnostiqueur, veuillez fournir les informations suivantes : Date de la formation. Formation (durée)

Personnel Pour chaque diagnostiqueur, veuillez fournir les informations suivantes : Date de la formation. Formation (durée) 1 Diagnosti Immobilier by Hisox Questionnaire préalable d assurane Identifiation du proposant Raison soiale Adresse de la soiété Site web Code APE Code SIREN Forme juridique Date de réation : Possédez-vous

Plus en détail

NCCI : Calcul d'assemblages de pieds de poteaux encastrés

NCCI : Calcul d'assemblages de pieds de poteaux encastrés NCCI : Calul d'assemblages de pieds de poteaux enastrés Ce NCCI fournit les règles relatives au alul d'assemblages de pieds de poteaux enastrés. Ces règles se ontentent de ouvrir la oneption et le alul

Plus en détail

Professionnels de l art by Hiscox Questionnaire préalable d assurance

Professionnels de l art by Hiscox Questionnaire préalable d assurance Professionnels de l art by Hisox Questionnaire préalable d assurane Votre interlouteur: Buzz Assurane Servie lients - BP 105 83061 Toulon Cedex prodution@buzzassurane.om La ommunauté des olletionneurs

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

Forme juridique Noms et adresses des filiales à assurer. Date de création ou début de l activité Description PRÉCISE de vos activités

Forme juridique Noms et adresses des filiales à assurer. Date de création ou début de l activité Description PRÉCISE de vos activités 1 RC Professionnelle by Hisox Questionnaire préalable d assurane Identifiation du proposant Raison soiale Adresse de la soiété Site web Code APE Code SIREN Forme juridique Noms et adresses des filiales

Plus en détail

Comment évaluer la qualité d un résultat? Plan

Comment évaluer la qualité d un résultat? Plan Comment évaluer la qualité d un résultat? En sienes expérimentales, il n existe pas de mesures parfaites. Celles-i ne peuvent être qu entahées d erreurs plus ou moins importantes selon le protoole hoisi,

Plus en détail

Forme juridique Noms et adresses des filiales à assurer. Date de création ou début de l activité Description PRÉCISE de vos activités

Forme juridique Noms et adresses des filiales à assurer. Date de création ou début de l activité Description PRÉCISE de vos activités 1 Portage Salarial pour les métiers du Conseil by Hisox Questionnaire préalable d assurane Identifiation du proposant Raison soiale Adresse de la soiété Site web Code APE Code SIREN Forme juridique Noms

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Le compte satellite des institutions sans but lucratif

Le compte satellite des institutions sans but lucratif Institut des omptes nationaux Le ompte satellite des institutions sans ut luratif 2000-2001 Contenu de la puliation Le ompte satellite des institutions sans ut luratif (ISBL) est élaoré d après les définitions

Plus en détail

LES CONDITIONS D EMBAUCHE DE L ARTISTE DANS LE CHAMP DE L ACTION CULTURELLE. mardi 15 septembre 2009 La Passerelle Saint-Brieuc

LES CONDITIONS D EMBAUCHE DE L ARTISTE DANS LE CHAMP DE L ACTION CULTURELLE. mardi 15 septembre 2009 La Passerelle Saint-Brieuc LES CONDITIONS D EMBAUCHE DE L ARTISTE DANS LE CHAMP DE L ACTION CULTURELLE mardi 15 septembre 2009 La Passerelle Saint-Brieu Sommaire LE CONTRAT DE TRAVAIL...3 LA REMUNERATION : PAIEMENT AU CACHET, PAIEMENT

Plus en détail

Métiers de la sécurité Questionnaire préalable d assurance

Métiers de la sécurité Questionnaire préalable d assurance Métiers de la séurité Questionnaire préalable d assurane Métiers de la séurité Questionnaire préalable d assurane Identifiation du proposant Raison soiale Adresse de la soiété Site web Code APE Code SIREN

Plus en détail

1 Introduction à l effet Doppler.

1 Introduction à l effet Doppler. Introdution à l effet Doppler Ph. Ribière ribierep@orange.fr Merredi 9 Novembre 2011 1 Introdution à l effet Doppler. Vous avez tous fait l expériene de l effet Doppler dans la rue, lorsqu une ambulane,

Plus en détail

Xd3d Version 7.72 (8 Jan 99)

Xd3d Version 7.72 (8 Jan 99) Xd3d Version 7.72 (8 Jan 99) Visualisation de maillages 2D et 3D et de surfaes 3D sous X François JOUVE 1 1 Introdution xd3d est un outil graphique apable de visualiser des maillages bi et tridimensionnels,

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

NCCI : Modèle de calcul pour les pieds de poteaux articulés Poteaux en I en compression axiale

NCCI : Modèle de calcul pour les pieds de poteaux articulés Poteaux en I en compression axiale NCCI : Modèle de alul pour les pieds de poteaux artiulés Poteaux en I en Ce NCCI présente les règles permettant de déterminer soit la résistane de alul, soit les dimensions requises des plaques d'assise

Plus en détail

Votre dossier d adhésion

Votre dossier d adhésion MSH INTERNATIONAL pour le ompte Votre dossier d adhésion Vous avez besoin d aide pour ompléter votre dossier d adhésion? Contatez-nous au +33 (0)1 44 20 48 77. Adhérent Bulletin d adhésion Titre : Mademoiselle

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

DocumentHumain. Confidentiel. Disposition de fin de vie

DocumentHumain. Confidentiel. Disposition de fin de vie Confidentiel Disposition de fin de vie DoumentHumain Mes volontés juridiquement valables onernant ma vie, mes périodes de souffrane, les derniers moments de mon existene et ma mort Institut interdisiplinaire

Plus en détail

Groupes symétriques et alternés

Groupes symétriques et alternés Groupes symétriques et alternés Table des matières 1 Groupe S n 2 2 Cycles 4 2.1 Dénition.................................. 4 2.2 Décomposition d'une permutation..................... 5 3 Classes de conjugaison

Plus en détail

La protection différentielle dans les installations électriques basse tension

La protection différentielle dans les installations électriques basse tension Juin 2001 La protetion différentielle dans les installations életriques basse tension Ce guide tehnique a pour objetif de mettre en évidene les prinipes de fontionnement des protetions différentielles

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Mesures du coefficient adiabatique γ de l air

Mesures du coefficient adiabatique γ de l air Mesures du oeffiient adiabatique γ de l air Introdution : γ est le rapport des apaités alorifiques massiques d un gaz : γ = p v Le gaz étudié est l air. La mesure de la haleur massique à pression onstante

Plus en détail

Diagnostic Immobilier by Hiscox Questionnaire préalable d assurance

Diagnostic Immobilier by Hiscox Questionnaire préalable d assurance Diagnosti Immobilier by Hisox Questionnaire préalable d assurane Diagnosti Immobilier by Hisox Questionnaire préalable d assurane Identifiation du proposant Nom ou raison soiale Adresse Code postal Ville

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

La RFID et les quarante voleurs

La RFID et les quarante voleurs Gildas Avoine, Massahusetts Institute of Tehnology, Cambridge, MA, USA, avoine@mit.edu La tehnologie en un lin d oeil L identifiation par radiofréquene (RFID) fait aujourd hui ouler beauoup d enre... et

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Étape II. Compétences à développer de 8 à 12 ans. Grilles des compétences

Étape II. Compétences à développer de 8 à 12 ans. Grilles des compétences Grilles des ompétenes Compétenes à développer de 8 à ans COMPÉTENCES DE 8 À ANS Les ompétenes en «aratères droits» sont à ertifier. (symbole en fin de ligne) Les ompétenes en «aratères italiques» sont

Plus en détail

BILAN COOPÉRATIF ET RSE

BILAN COOPÉRATIF ET RSE 2012 BANQUE & ASSURANCE LA BRED BANQUE POPULAIRE au 31 déembre 2012 1 UNE SOLIDE ASSISE FINANCIÈRE Produit net banaire : 903,20 M Bénéfie net onsolidé part du groupe : 179,90 M Fonds propres prudentiels

Plus en détail

BAILLY-GRANDVAUX Mathieu ZANIOLO Guillaume Professeur : Mrs Portehault

BAILLY-GRANDVAUX Mathieu ZANIOLO Guillaume Professeur : Mrs Portehault BAILLY-GRANDVAUX Mathieu ZANIOLO Guillaume Professeur : Mrs Portehault 1 I. Introdution...3 II. Généralités...3 Caratéristiques ommunes aux deux phénomènes...3 La différene entre la phosphoresene et la

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Le calendrier des inscripti

Le calendrier des inscripti ÉTUDES SUP TOP DÉPART Vous venez d entrer en terminale. Au œur de vos préoupations : obtenir le ba. Néanmoins, vous devrez aussi vous souier des poursuites d études, ar les insriptions dans le supérieur

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

#DSAA. Marseille. u Lycée Denis Diderot {Lycée Marie Curie é Lycée Jean Perrin. Lycée Saint Exupéry

#DSAA. Marseille. u Lycée Denis Diderot {Lycée Marie Curie é Lycée Jean Perrin. Lycée Saint Exupéry # Marseille u Lyée Denis Diderot {Lyée Marie Curie é Lyée Jean Perrin Lyée Saint Exupéry #sommaire_ Introdution Diplôme Supérieur d Arts Appliqués spéialité Design / Marseille 4 Projet pédagogique global

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

MASTER MENTION MATHEMATIQUES. Objectifs et programme

MASTER MENTION MATHEMATIQUES. Objectifs et programme MASTER MENTION MATHEMATIQUES Objectifs et programme Responsable de la formation : Jörg Wildeshaus Secrétariat Bureau D 203 Tél. : 01 49 40 44 58 master-math@galilee.univ-paris13.fr Institut Galilée 99

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Table des matières. Introduction Générale 5

Table des matières. Introduction Générale 5 Table des matières Introduction Générale 5 1 Généralités et rappels 16 1.1 Rappels... 16 1.1.1 Introduction... 16 1.1.2 Notion de stabilité...... 17 1.1.3 Stabilité globale et stabilité locale... 17 1.1.4

Plus en détail

LE COLLEGE BRUZ COLLÈGE. LYCÉE ST JOSEPH. Formation Education Activité Informatique

LE COLLEGE BRUZ COLLÈGE. LYCÉE ST JOSEPH. Formation Education Activité Informatique 2010 Formation Eduation Ativité Informatique?. saintjoseph LE COLLEGE BRUZ COLLÈGE. LYCÉE ST JOSEPH BP 77118-35171 BRUZ edex tél. 02 99 05 01 01 - fax 02 99 05 01 09 stjoseph@stjoseph-bruz.org www.stjoseph-bruz.org

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

QUESTIONS. Questions de test diffusées, 2015. Test de mathématiques, 9 e année Cours appliqué. Lis les instructions qui suivent.

QUESTIONS. Questions de test diffusées, 2015. Test de mathématiques, 9 e année Cours appliqué. Lis les instructions qui suivent. Questions e test iffusées, 15 QUESTIONS Test e mathématiques, 9 e année Cours appliqué Lis les instrutions qui suivent. Assure-toi avoir les eux ahiers (Questions et Réponses) et la Feuille e formules.

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Contribution à la modélisation dynamique des systèmes articulés. Bases mathématiques et outils informatiques

Contribution à la modélisation dynamique des systèmes articulés. Bases mathématiques et outils informatiques Contribution à la modélisation dynamique des systèmes artiulés. Bases mathématiques et outils informatiques Ali Hamlili To ite this version: Ali Hamlili. Contribution à la modélisation dynamique des systèmes

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

La mesure de Lebesgue sur la droite réelle

La mesure de Lebesgue sur la droite réelle Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et

Plus en détail

Maîtrise universitaire ès sciences en mathématiques 2012-2013

Maîtrise universitaire ès sciences en mathématiques 2012-2013 1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Algèbres de von Neumann et théorie ergodique des actions de groupes

Algèbres de von Neumann et théorie ergodique des actions de groupes Algèbres de von Neumann et théorie ergodique des actions de groupes Séminaire Tripode, ENS Lyon, Juin 2008. Stefaan Vaes 1/22 Sujet de l exposé 1 Introduction aux relations d équivalence dénombrables,

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

OFDM. Ce document est une brève introduction aux principes de l OFDM (Orthogonal Frequency Division Multiplexing) Mérouane Debbah*

OFDM. Ce document est une brève introduction aux principes de l OFDM (Orthogonal Frequency Division Multiplexing) Mérouane Debbah* FD Ce doument est une brève introdution aux prinipes de l FD rthogonal Frequeny Division ultiplexing érouane Debbah* *Chaire Alatel-uent en radio flexible, SUPEEC, 3 rue Joliot-Curie 992 GIF SUR YVETTE

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

ETUDE COMPARATIVE RELATIVE AU SERTISSAGE DES CANALISATIONS EN CUIVRE DANS LE SECTEUR DE LA RENOVATION

ETUDE COMPARATIVE RELATIVE AU SERTISSAGE DES CANALISATIONS EN CUIVRE DANS LE SECTEUR DE LA RENOVATION - Février 2003 - ETUDE COMPARATIVE RELATIVE AU SERTISSAGE DES CANALISATIONS EN CUIVRE DANS LE SECTEUR DE LA RENOVATION Centre d Information du Cuivre 30, avenue Messine 75008 Paris HOLISUD Ingénierie 21,

Plus en détail

Le chat et le papillon

Le chat et le papillon Le chat et le papillon Anton Zorich 28 mars 2007 Dynamique linéaire 2 Suite de Fibonacci................................................................. 3 Un peu d algèbre linéaire............................................................

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Guide pratique. L emploi des personnes handicapées

Guide pratique. L emploi des personnes handicapées Guide pratique L emploi des personnes handiapées Sommaire Guide pour les salariés p. 3 L'aès et le maintien dans l'emploi... 4 Les établissements et servies d aide par le travail (ÉSAT)... 10 Les entreprises

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

Mesurage en continu des flux polluants en MES et DCO en réseau d assainissement

Mesurage en continu des flux polluants en MES et DCO en réseau d assainissement MESURAGE EN CONTINU DES FLU POLLUANTS EN MES ET DCO EN RESEAU D ASSAINISSEMENT (M. LEPOT, 0) N d ordre 0ISAL0086 Année 0 Mesurage en ontinu des flux polluants en MES et DCO en réseau d assainissement Présenté

Plus en détail

Master of Science en mathématiques 2015-2016

Master of Science en mathématiques 2015-2016 Remarques liminaires : 1/9 Ce master à 90 ECTS (3 semestres) permet 2 orientations distinctes : - Un master général en mathématiques - Un master qui permet de choisir des mineurs en finance, statistique

Plus en détail

La fonction logistique f: xa rx( 1 x)

La fonction logistique f: xa rx( 1 x) TIPE Math 97 (Version 5 pages) Letouzey Pierre La fonction logistique f: xa rx( x) Quelques résultats sur les suites récurrentes associées x x 0 n+ [ 0, ] = f ( x ) n / Pourquoi cette fonction? C est dans

Plus en détail

Sillage. Caen la mer, terre de jeunes talents. «Le chemin de halage» à Hérouville Saint-Clair p. 4

Sillage. Caen la mer, terre de jeunes talents. «Le chemin de halage» à Hérouville Saint-Clair p. 4 COMMUNAUTÉ D IDÉES, AGGLOMÉRATION D ÉNERGIES Sillage JOURNAL DE LA COMMUNAUTÉ D AGGLOMÉRATION CAEN LA MER n 17 / Dé. 2007 Janv. Fév. 2008 n 1 / juin 2003 Jardin seret «Le hemin de halage» à Hérouville

Plus en détail

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1

prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1 3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

Cette année, notre traditionnel

Cette année, notre traditionnel abinets de onseil ont aepté de répondre à notre questionnaire. Notre panel s'enrihit don d'année en année. Nous espérons ainsi vous aider au mieux dans vos reherhes de abinets de onseil en SCM (Supply

Plus en détail

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations

Plus en détail