RESISTANCE DES MATERIAUX
|
|
|
- Noël Bossé
- il y a 9 ans
- Total affichages :
Transcription
1 ETANCE DE MATEAUX Mécanique éféence au pogamme.t. éféence au module 4- ésistance de matéiaux. Module 4 : :ésistance des matéiaux 4-1 Hypothèses de la DM 4-2 Etude d une poute 4-3 dentification de la natue des sollicitations 4-4 Etude des sollicitations simples 1- Objectifs de la séquence : Défini les effots de cohésion, Défini la natue de sollicitations simples, Défini la démache de dimensionnement, Modélise les effots de cohésion. 2- ituation pédagogique : péequis connaissances visées natue de la démache à savoi Modélisation des AM. Modélisation des effots de cohésion. Acquisition de connaissances. Modélise les actions subies pa le système. 1- A quoi ça set? La ésistance Des Matéiaux (DM) pemet de détemine les fomes, les dimensions et les matéiaux de pièces mécaniques de façon à maîtise leu ésistance et leu défomation afin de éponde aux exigences du cahie des chages. Cette science met en elation la statique, la cinématique (défomation) et les caactéistiques intinsèques du matéiau. Lycée Jean JAUE AENTEUL ETANCE DE MATEAUX Contenu du Dossie : 8 pages B.PEEZ M_4.Doc (wodxp) ETANCE DE MATEAUX Vesion 1
2 2- Hypothèses Matéiaux. Les matéiaux seont considéés comme : - continus : la stuctue fibeuse ou moléculaie des matéiaux étant tès petite devant les dimensions des pièces étudiées, on peut alos considée le matéiau comme continu. - homogènes : on dit qu un matéiau est homogène, s il possède les mêmes caactéistiques en tous ses points (hypothèse gossièe pou des matéiaux tels que le bois ou le béton). - isotopes : on dit qu un matéiau est isotope, losqu il possède les mêmes caactéistiques dans toutes les diections (hypothèse non applicable pou des matéiaux tels que le bois ou les matéiaux composites) éométie des pièces étudiées. La DM est l étude de pièces dont les fomes sont elativement simples. On les appelle des poutes. - poute : on appelle poute un solide engendé pa une suface plane ( ) dont le cente de suface décit une coube plane (C ) appelée ligne moyenne. Les caactéistiques d une poute sont : - ligne moyenne doite ou à gand ayon de coubue, - suface plane ( ) constante ou vaiant pogessivement, - gande longueu pa appot aux dimensions tansvesales, - existence d un plan de symétie. Hypothèses et sollicitations simples Page 2 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
3 3- Toseu des effots de cohésion Définition : oit une poute () en équilibe sous l'action de n actions mécaniques extéieues. On associe à cette poute un epèe (,, ) dont l'axe coïncide avec la ligne moyenne de la poute. Coupons la poute () pa un plan (π) othogonal à sa ligne moyenne, situé à l'abscisse x. On définit ainsi deux potions de poute (-) et (+). () étant en équilibe, nous pouvons écie : { } { } (-) étant en équilibe, nous pouvons écie : { } + { + } { } (+) étant en équilibe, nous pouvons écie : { } + { } { } + + On en déduit que : { } { } { } + + { + } est le toseu qui taduit l'action de contact de (+) su (-). Cette action est due aux effots de cohésion qui pemettent à la poute de ne pas se "disloque" sous l'effet d'actions extéieues. La DM vise en paticulie à véifie qu'en aucun point de la poute les effots de cohésion à "tansmette" ne soient supéieus aux capacités du matéiau. On note : { } { } { } T coh Composantes du toseu de cohésion : La ésultante et le moment du toseu de cohésion dépendent alos de la position de la coupue et donc de l abscisse x. coh (x) M(x) coh N(x) Ty (x) Tz (x) M t(x) Mfy(x) Mfz(x) Composantes Dénominations ollicitations N Effot nomal Taction - compession T y Effot tanchant su T z Effot tanchant su Cisaillement M t Moment de tosion Tosion M fy Moment fléchissant su M fz Moment fléchissant su Flexion emaques : - Les difféentes sollicitations dépendant de l abscisse x, nous pouvons les epésente gaphiquement à l aide de diagammes. - Losque l on a une seule de ces sollicitation on pale de sollicitation simple, sinon on pale de sollicitations composées. Hypothèses et sollicitations simples Page 3 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
4 3-3- Exemple d application : oit une poute cylindique, de 2 mm de long et de 5 mm de diamète, soumise à une action mécanique modélisable pa un glisseu avec dan. E 3 d'intensité 1 x Σ 3 AC a. x ; a 15 mm AB l. x ; l 2 mm L étude s effectuea dans la plan de symétie (, ). a l 1 Objectif : détemine le toseu de cohésion en fonction de x et tace les diagammes epésentants les effots de cohésion. Détemination des actions mécaniques en A et en B. solons (). Bilan des Actions Mécaniques Extéieues. PF appliqué à () en A. Conclusion. Hypothèses et sollicitations simples Page 4 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
5 Détemination du toseu de cohésion. l faut étudie chaque potion de poute compise ente deux noeuds. Pou x [ ; a]. Pou x [a ; l]. écapitulatif et diagammes. ollicitation <x<a a<x<l N Ty Tz Mt Mfy Mfz 25.x 75(l-x) Tace ci-dessous les diagammes epésentants l effot tanchant et le moment de flexion. Effot tanchant Moment de flexion 75 Ty (dan) Mfz (dan.mm) -25 A C B x (mm) A C B x (mm) Hypothèses et sollicitations simples Page 5 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
6 4- Les difféents types de sollicitation. Taction ou Extension / Compession N Cisaillement Ty Tz Tosion Mt Flexion pue Mfz Flexion simple Ty Mfz Flexion + taction Ty N Mfz Flexion + tosion Ty Mt Mfz Flambage N Mfz Flexion déviée Ty Mfz Mfy Tz Hypothèses et sollicitations simples Page 6 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
7 5- Containte en un point M d une section Σ. La containte caactéise les liaisons mécaniques intenes au matéiau (epésentées pa le toseu de cohésion { } Tcoh ) su chaque élément de suface dσ de la section Σ quelconque. La détemination des containtes nous pemetta le dimensionnement des pièces mécaniques étudiées. Unité : le N/mm 2 soit le Mpa appel : 1 Mpa 1 6 Pa 1 N/mm² envion 1 bas 5-1- Définition. Le vecteu containte C est le appot ente l'action mécanique df, qui s'exece su l'élément de suface dσ de la section Σ, su la suface dσ. tel que C df dσ σm. x + τ M σ : containte nomale τ M : containte tangentielle C df dσ σ M.x + τ y.y + τ z.z 5-2- Détemination des containtes suivant le type de sollicitation. TACTON Définition : - - coh N ection Σ Containte nomale : d Chaque élément de suface Σ suppote un effot de taction d paallèle à la ligne moyenne. l y a épatition unifome des containtes dans la section doite. D où : N σ σ : containte nomale en Mpa ou en N/mm 2 N : effot nomal en N : aie de la section doite en mm 2 Condition de ésistance : e la ésistance élastique du matéiau (en Mpa) ; s un coefficient de sécuité (s>1); pe la ésistance patique à l extension, avec pe e s ; Alos, la condition de ésistance s écit : σ pe Hypothèses et sollicitations simples Page 7 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
8 Phénomène de concentation de containte. Losque les poutes étudiées pésentent de busques vaiations de sections (tous, goges, épaulements ), la elation N σ n est plus applicable. En effet, au voisinage du changement de section, la épatition des containtes n est plus unifome et pésente des extemums. Le maximum est atteint pou les points situés à poximité des vaiations : on dit qu il y a concentation de containtes en ces points. La valeu de la containte est alos donnée pa : σ avec max K t σ N σ K t est appelé le coefficient de concentation de containtes. K t dépend de la fome de la section et du type de la vaiation (voi tableaux suivants). Hypothèses et sollicitations simples Page 8 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
9 CALLEMENT Définition : ection Σ + coh Ty Tz Dans nos poblèmes, nous auons souvent soit T y ou soit T z. Containte de cisaillement : Chaque élément de suface Σ suppote un effot de cisaillement contenu dans le plan (Σ). l y a épatition unifome des containtes dans la section doite. D où : τ T τ : containte tangentielle en Mpa ou N/mm 2 T : effot tanchant en N : aie de la section doite cisaillée en mm 2 Condition de ésistance : eg la ésistance élastique au cisaillement du matéiau (en Mpa) ; s un coefficient de sécuité ; τ adm pg la ésistance patique au cisaillement, avec τ adm pg eg s ; Alos, la condition de ésistance s écit : adm TOON Définition : - x A L Lm α x B coh Mt Containte tangentielle : M ρ τ maxi M τ τ maxi () Σ Mt τ Tableau des moments quadatiques des sections les plus couantes. bh (b 12 b h 2 + h 2 ) 4 a 6 a ρ M t : Moment de tosion en N.mm ρ : ayon M en mm : moment quadatique de la section Σ pa appot au point en mm 4 d 4 πd π 4 4 (D d ) D d Condition de ésistance : eg la ésistance élastique au cisaillement du matéiau (en Mpa) ; s un coefficient de sécuité ; pg la ésistance patique au cisaillement, avec pg eg s ; Alos, la condition de ésistance s écit : max pg Hypothèses et sollicitations simples Page 9 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
10 FLEXON PUE Définition : ection Σ + fz coh Mfy Mfz Dans nos poblèmes nous auons souvent M fy ou M fz nul. Containte nomale : M σ M fz z y σ : containte nomale en Mpa M fz : Moment fléchissant en N.mm y : odonnée du point M en mm z : moment quadatique de la section pa appot à l axe (, ) en mm 4 Tableau des moments quadatiques des sections les plus couantes. d D d h a b z 3 bh 12 z 4 a 12 z 4 πd π 4 4 z (D d ) Condition de ésistance : e la ésistance élastique du matéiau (en Mpa) ; s un coefficient de sécuité (s>1); pe la ésistance patique à l extension, avec pe e s ; Alos, la condition de ésistance s écit : σ max pe Notions su les coefficients de sécuité Pou qu une stuctue (machine, véhicule ) puisse suppote en toute sécuité les chages qui nomalement la sollicitent, il suffit qu elle puisse ésiste à des chages plus élevées. La capacité à suppote ces chages constitue la ésistance de la stuctue. Le coefficient de sécuité s est chage admissible s chages execées ésistance éelle ésistance nécéssaie La sécuité est obtenu si, sous chage - les défomations du matéiau estent élastiques - la uptue du matéiau n est pas atteinte donc ésistance élastique s e p ésistance patique ou ésistance à la uptue s p ésistance patique Hypothèses et sollicitations simples Page 1 / 1 B.PEEZ M_4(wodXP) ésistance Des Matéiaux Vesion 2
CARACTERISTIQUES DES SECTIONS PLANES
CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment
M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d
Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une
Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs
ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques
11.5 Le moment de force τ (tau) : Production d une accélération angulaire
11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces
TRAVAUX DIRIGÉS DE M 6
D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était
CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.
Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en
CONSTANTES DIELECTRIQUES
9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques
PHYSIQUE DES SEMI-CONDUCTEURS
Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN
Chapitre 6: Moment cinétique
Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae
Roulements à rotule sur deux rangées de rouleaux en deux parties
Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts
( Mecanique des fluides )
INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides
CHAPITRE VI : Le potentiel électrique
CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.
DiaDent Group International
www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w
Roulements à billes et à rouleaux
Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact
Mécanique du point : forces Newtoniennes (PCSI)
écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
Cours de résistance des matériaux
ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables
Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.
Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE
TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une
Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )
Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony
Permis de feu. Travail par point chaud. r Soudage r Brasage. r Découpage r Tronçonnage. r Meulage r Autres. r Poste à souder r Tronçonneuse
Pemis de feu Tavail pa point chaud Patage vote engagement Ce document doit ête établi avant tout tavail pa point chaud (soudage, découpage, meulage, ) afin de péveni les isques d incendie et d explosion
Mouvement d'une particule chargée dans un champ magnétique indépendant du temps
Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse
où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.
7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
Quelques éléments d écologie utiles au forestier
BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue
Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel
CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel
DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES
UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS
A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et
Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique
Po ur d o nne r un é lan à vo tre re traite
Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de
Cours de Résistance des Matériaux (RDM)
Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION
FINANCE Mathématiques Financières
INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.
SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite
Titre : SDLS08 - Modes propres d'une plaque carrée calculé[...] Date : 03/08/2011 Page : 1/6 SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Résumé : Ce cas test a pour objectif de
- Cours de mécanique - STATIQUE
- Cous de mécanque - STTIQUE SOMMIRE. GENERLITES 5.. RPPELS DE NOTIONS DE PHYSIQUE...5.. REPERE, CONVENTIONS...6... REPÈRE DE L STTIQUE 6.3. SOLIDE RÉEL...7.4. SOLIDE DÉORMLE SELON UNE LOI CONNUE : (HYPOTHÈSE
Cours de. Point et système de points matériels
Abdellah BENYOUSSEF Amal BERRADA Pofesseus à la Faculté des Scences Unvesté Mohammed V Rabat Cous de Pont et système de ponts matéels A L USAGE DES ETUDIANTS DU 1 ER CYCLE UNIVERSITAIRE FACULTES DES SCIENCES,
SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :
Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Les pertes de charge dans les installations. Le dimensionnement des mitigeurs. octobre 2005
octobe 005 REUE PÉRIODIQUE D INFORMATIONS TECHNIQUES ET INDUSTRIELLES DES THERMICIENS Les petes de chage dans les installations Le dimensionnement des mitigeus octobe 005 Sommaie Le petes de chage dans
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
( Codes : voir verso du feuillet 3 ) SPECIMEN
Aide demandeu d emploi Pojet pesonnalisé d accès à l emploi Pesciption de Pô emploi RFPE AREF CRP - CTP ou d un patenaie de Pô emploi Pécisez : N d AIS Concene de naissance Pénom Né(e) Inscit(e) depuis
tudes & documents ÉCONOMIE ET ÉVALUATION L assurance habitation dans les départements d Outre Mer n 24 Juin 2010
COMMISSARIAT GÉNÉRAL AU DÉVELOPPEMENT DURABLE n 24 Juin 2010 É tudes & documents L assuance habitation dans les dépatements d Oute Me RISQUES ÉCONOMIE ET ÉVALUATION Sevice de l économie, de l évaluation
SOMMAIRE. ATRACOM-Centrafrique Manuel de Procédures Administratives Financiers et Comptables
ATRACOM-Centafique Manuel de Pocédues Administatives Financies et Comptables G MODULE G GESTION DE LA TRESORERIE SOMMAIRE G MODULE G GESTION DE LA TRESORERIE... 1 G.1 COMPOSANTES DE LA TRESORERIE... 2
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique.
N d ode: 005-7 ECOLE DOCTORALE 43 Ecole Nationale Supéieue d At et Métie Cente de Lille THÈSE péentée pou obteni le tite de DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS Spécialité: Génie Electique
Préface. Le programme d électricité du S2 se compose de deux grandes parties :
Péface. Ce cus d électicité a été édigé à l intentin des étudiants qui pépaent, dans le cade de la éfme L.M.D 1, une licence dans les dmaines des Sciences de la Matièe et des Sciences et Technlgies. Il
CLOUD CX263 MÉLANGEUR
COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF
GESTION DES RELATIONS HUMAINES ET COMPÉTENCES
GESTION DES RELATIONS HUMAINES ET COMPÉTENCES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion des elations humaines et des compétences? Photocopiez
Rupture et plasticité
Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements
Chapitre 1.5a Le champ électrique généré par plusieurs particules
hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel
PCB 20 Plancher collaborant. Fiche technique Avis technique CSTB N 3/11-678
Plancher collaborant Fiche technique Avis technique CSTB N 3/11-678 V1/2011 caractéristiques du profil DÉTAIL GÉOMÉTRIQUE DU 22 728 104 épaisseur (mm) 0,5 0,7 poids (dan/m 2 ) 5,3 7,4 APPLICATION CONSEILLÉE
Moments partiels crédibilistes et application à l évaluation de la performance de fonds spéculatifs
Moments patiels cédibilistes et application à l évaluation de la pefomance de fonds spéculatifs Alfed MBAIRADJIM M. 1 & Jules SADEFO K. 2 & Michel TERRAZA 3 1 LAMETA- Univesité Montpellie 1 et moussa [email protected]
CONDUCTEURS EN EQUILIBRE ELECTROSTATIQUE
Chapit II CONDUCTEURS EN EQUILIRE ELECTROSTTIQUE En élcticité, un conductu st un miliu matéil dans lqul ctains chags élctiqus, dits «chags libs», sont suscptibls d s déplac sous l action d un champ élctiqu.
Guide de l acheteur de logiciel de Paie
Note pespicacité Pivilégie les essouces humaines Guide de l acheteu de logiciel de Paie Table des matièes Intoduction Tendances écentes de Paie L automation de Paie avec libe-sevice pou employés Analyse
DISQUE DUR. Figure 1 Disque dur ouvert
DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions
Guide 2005 GESTION. des solutions partenaires logiciels. IBM Software. commerciale (CRM) comptable et financière logistique marketing de la qualité
IBM Softwae Guide 2005 des solutions patenaies logiciels GESTION commeciale (CRM) comptable et financièe logistique maketing de la qualité des elations humaines et compétences documentaie (GED) des appels,
D'CLICS CONSO. ayez les bons réflexes! Logement, téléphonie, mobilité, budget : soyez acteur de votre consommation! www.crij.org.
n 26 2013/2014 Jounal du Cente Régional d Infomation Jeunesse Midi-Pyénées D'CLICS CONSO ayez les bons éflexes! d o s s i e Logement, téléphonie, mobilité, budget : soyez acteu de vote consommation! www.cij.og
SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS
SYSTÈME D ALARME ET PRODUITS TRANSMETTEURS NOTICE D UTILISATION Vous venez d acquéi un système de sécuité DAITEM adapté à vos besoins de potection et nous vous en emecions. Quelques pécautions L'installation
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE)
GESTION DE LA SAUVEGARDE DES DONNÉES (SÉCURITÉ ET STOCKAGE) SAUVEGARDE DES DONNÉES DEMANDE D INFORMATION Vous souhaitez ecevoi de l infomation elative aux solutions de la thématique Gestion de la sauvegade
Mémoire de DEA. Modélisation opérationnelle des domaines de référence
Mémoie e DEA Ecole octoale IAEM Loaine / DEA Infomatique e Loaine Univesité Heni Poincaé, Nancy 1 LORIA Moélisation opéationnelle es omaines e éféence soutenu le Mai 22 juin 2004 pa Alexane Denis membes
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
ANALYSE STATIQUE D UNE POUTRE SOUMISE A UNE CHARGE VARIABLE
ANALYSE STATIQUE D UNE POUTRE SOUMISE A UNE CHARGE VARIABLE Description du problème L écoulement sur une plaque plane fait partie des problèmes classiques de la mécanique des fluides les plus étudiés.
BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR
BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2008 ÉPREUVE: ÉTUDE DES CONSTRUCTIONS Durée: 4 heures Coefficient : 6 POSITIONNEUR DE PANNEAU SOLAIRE
SDLV120 - Absorption d'une onde de compression dans un barreau élastique
Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux
LE LOGEMENT AU NUNAVIK
SOCIÉTÉ D HABITATION DU QUÉBEC LE LOGEMENT AU NUNAVIK DOCUMENT D INFORMATION WWW.HABITATION.GOUV.QC.CA Coodination du contenu et édaction Diection des affaies integouvenementales et autochtones Coodination
TUBES ET ACCESSOIRES Serrurier A ailettes Construction Canalisation Spéciaux
TUBES ET ACCESSOIRES 47 Serrurier A ailettes Construction Canalisation Spéciaux Possibilité d autres sections sur demande. Les caractéristiques indiquées sont théoriques et non garanties. TUBES 48 TUBES
Jean-Marc Schaffner Ateliers SCHAFFNER. Laure Delaporte ConstruirAcier. Jérémy Trouart Union des Métalliers
Jean-Marc Schaffner Ateliers SCHAFFNER Laure Delaporte ConstruirAcier Jérémy Trouart Union des Métalliers Jean-Marc SCHAFFNER des Ateliers SCHAFFNER chef de file du GT4 Jérémy TROUART de l Union des Métalliers
P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte
Matière : Couleur : Polyuréthane (PUR) Cellulaire mixte Gris Recommandations d usage : Pression (dépend du facteur de forme) Déflexion Pression statique maximum :. N/mm ~ % Pression dyn. maximum :. N/mm
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)
Analyse de la charge transmise aux roulements de la roue dentée, notamment en rajoutant les efforts axiaux dus aux ressorts de l embrayage (via la cloche) (Exemple ici de calcul pour une Ducati 748 biposto,
Évaluation de l'incertitude de mesure par une méthode statistique ("méthode de type A") Voir cours d'instrumentation
G. Pinson - Physique ppliquée Mesues - 16 / 1 16 - Instuments de mesues Eeu et incetitude su la mesue d'une gandeu Ce qui suit découle des pesciptions du IPM (ueau Intenational des Poids et Mesues, Fance),
Utilisation des tabelles de dimensionnement
ponctuelle Tabelle A - Sans tuyaux de chauffage sol Tabelle B - Avec tuyaux de chauffage sol répartie Tabelle C - Résistance à la compression de l'isolation thermique par m 2 Utilisation des tabelles de
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Cinétique et dynamique des systèmes de solides
Cinétique et dynamique des systèmes de solides Page 2/30 CINÉTIQUE des systèmes matériels... 3 1.) Notion de masse...3 2.) Centre de masse d'un ensemble matériel...4 3.) Torseurs cinétique et dynamique...6
SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP
Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 1/14 Manuel e Valiation Fascicule V6.04 : Statique non linéaire es structures volumiques Document V6.04.14 SSNV14
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques
Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Descriptif du support pédagogique Le banc d essais des structures permet de réaliser des essais et des études
Flux Réseau et Sécurité
Flux Réseau et Sécuité v1.01 Yann BERTHIER Spécialiste Sécuité Systèmes et Réseaux [email protected] Nicolas FISCHBACH Senio Manage, Netwok Engineeing Secuity, COLT Telecom [email protected] - http://www.secuite.og/nico/
PITTSBURGH CORNING EUROPE N.V. / S.A. Lasne Business Park, Chaussée de Louvain, 431 D E S C R I P T I O N FOAMGLAS T4/T4 WDS S3 F 40 (**)-50-60
UBAt 04/1626 Valale du 12.07.2004 au 11.07.2009 http://www.uat.e Union elge pou l Agément tehnique dans la onstution Sevie Puli Fédéal (SPF) Eonomie, Classes moyennes, PME et Enegie, Sevie Agément et Spéifiations
Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation.
Prise en compte des Eurocodes dans le dimensionnement d ouvrages d art courant en béton armé. Comparaison avec «l ancienne» réglementation. Projet de Fin d Etude Auteur : GODARD Sandy Elève ingénieur en
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.
Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa
II - 2 Schéma statique
II - 2 Schéma statique [email protected] version 7 septembre 2006 Schéma statique Définition Appuis et liaisons [Frey, 1990, Vol. 1, Chap. 5-6] Éléments structuraux Sans références Les dias
Considérations sur les contraintes liées à la gestion des données thermodynamiques en vue de la création de la base de données THERMODDEM
Cnsidéatins su les cntaintes liées à la gestin des dnnées themdynamiques en vue de la céatin de la base de dnnées THERMODDEM Rappt final BRGM/RP-55118- FR Décembe 2006 Gnsidéatins su les cntaintes liées
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE
562 ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 563 TABLE DES MATIÈRES ANNEXE J... 562 POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS
Exemples de dynamique sur base modale
Dynamique sur base modale 1 Exemples de dynamique sur base modale L. CHAMPANEY et Ph. TROMPETTE Objectifs : Dynamique sur base modale réduite, Comparaison avec solution de référence, Influence des modes
Département de Génie Civil
Sommaire Chapitre 01 : RAPPEL... 5 I Rappel de mathématiques... 5 I-1 Equation du 1 ier degrés à deu inconnues... 5 I- Equation du Second degré à deu inconnues... 5 I-3 Calcul d intégrale... 6 I-4 Equation
RAISONNER L INVESTIGATION EN RHUMATOLOGIE
NOVEMBRE L objectif de ce document est de guide le médecin omnipaticien dans le choix des modalités de laboatoie et d imageie pou l investigation d une condition humatologique. En effet, les analyses de
Rencontrez votre filleul... au Bangladesh
Rencontez vote filleul... au Bangladesh Vote guide de visite Afin d oganise au mieux vote visite et de péveni l équipe locale ainsi que vote filleul de vote aivée, Contactez-nous 2 mois avant il est impotant
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
DG-ADAJ: Une plateforme Desktop Grid
DG-ADAJ: Une plateforme pour Desktop Grid Olejnik Richard, Bernard Toursel Université des Sciences et Technologies de Lille Laboratoire d Informatique Fondamentale de Lille (LIFL UMR CNRS 8022) Bât M3
ESSAIS DE CHARGEMENT DYNAMIQUES ET STATIQUES POUR FONDATIONS PROFONDES A L INES
ESSAIS DE CHAGEMENT DYNAMIQUES ET STATIQUES POU FONDATIONS POFONDES A L INES Dynamic load testing and static compression test on fondation pile at the INES Jérôme GIPPON 1, aphaël DE TOUY 2 1 FANKI FONDATION
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
MODE D EMPLOI ENFANT MINEUR MONFINANCIER LIBERTE VIE
MODE D EMPLOI ENFANT MINEUR MONFINANCIER LIBERTE VIE Pou établi vote contat MonFinancie Libeté Vie pou un enfant mineu, nous vous emecions de bien vouloi éuni les éléments suivants : Le bulletin de sousciption
