Jour no1 Exercice 1.0 Exercice 1.1 Exercice 1.2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Jour no1 Exercice 1.0 Exercice 1.1 Exercice 1.2"

Transcription

1 Jour n o Exercice. ) Étudier l intégrbilité de x e x x2 sur ], + [. 2) Étudier l intégrbilité de x ln x x 2 + sur ], + [. Exercice. Soit f de clsse C 2 sur [, + [ telle que f est intégrble sur [, + [ et telle que l intégrle f(t) soit convergente. ) Montrer que lim x + f (x) = et lim f(x) =. x + 2) Étudier les séries f (n) et f(n). n n Exercice.2 Soit A =( i,j ) M n (C) (n 3) telle que, pour tout k [[,n]], k,n k+ =, les utres termes étnt égux à, et soit J l mtrice crrée d ordre n dont tous les coefficients sont égux à. ) Montrer qu il existe b et c tels que A 2 = bi n + cj. 2) Exprimer A 4 en fonction de I n et J. 3) A est-elle digonlisble? 4) QS Déterminer les éléments propres de A. Jour n o 9

2 Exercice. Bnque publique - Énoncé ) Étudier l intégrbilité de x e x x2 sur ], + [. 2) Étudier l intégrbilité de x ln x x 2 + sur ], + [. Anlyse strtégique de l énoncé Il s git d un exercice fcile consistnt à étudier l intégrbilité d une fonction sur un intervlle. Si nous vons choisi de corriger ces deux exercices qui font prtie de l bnque d exercices publiée sur Internet, c est prce qu ils permettent d illustrer les méthodes les plus utilisées pour étudier l existence d une intégrle. Et il y ur de toutes fçons de nombreuses utres intégrles impropres dns cet ouvrge! En premier lieu, il fut fire ttention u vocbulire employé pr l énoncé : dire que «f est intégrble sur I» signifie que l intégrle f est bsolument convergente, I c est-à-dire que l intégrle f converge. Il s git donc d une notion plus forte que I l simple convergence de f. Cel peut prfois poser problème dns le cs où le I signe de f vrie, mis ce n est ps le cs ici. Les méthodes de bse pour étudier l convergence d une intégrle sont souvent les mêmes, et sont exposées en détil dns le formulire qui suit. Si vous vez des difficultés pour résoudre ce genre d exercices, nous vous conseillons d essyer de suivre le pln donné fin d voir des repères et des idées sur l démrche à suivre. Il est vriment indispensble de svoir prouver l existence d une intégrle impropre ; c est l une des questions les plus courntes en nlyse, et on l rencontre dns de nombreuses situtions. Avec un peu d entrînement, vous devriez svoir résoudre ce type d exercices en quelques minutes. Corrigé ) Soit f : x e x x2 pour x>. On commence déjà pr remrquer que f est définie et continue sur ], + [ : en effet, x 2 est strictement positif sur cet intervlle, ce qui permet d ssurer l existence de f(x), et l continuité résulte des théorèmes usuels (plus précisément : x x 2 est continue en tnt que fonction polynôme, puis x x 2 l est en tnt que composée de fonctions continues, et enfin f est continue comme quotient de deux telles fonctions). Commencer l étude d une intégrle impropre en se précipitnt sur l étude ux bornes sns voir uprvnt étudié le domine de définition et l continuité de l fonction à intégrer est une fute grve! 2 Jour n o

3 Rpport du jury 2 Pour étudier l existence de f, le réflexe générl est de fire une étude générle en et en b en délissnt le plus souvent l régulrité de f.cel conduit certins cndidts à intégrer sns sourciller t entre zéro et t deux. f étnt continue sur ], + [, les problèmes d intégrbilité ne se posent donc qu u voisinge de + et de +. Notons ussi que f est à vleurs positives, donc étudier son intégrbilité équivut à démontrer l convergence de Au voisinge de + f(x)dx. On commence pr exminer l fonction pour se «débrrsser» des prties qui ne posent ps de problème. Ici, lim x e x = e donc on f(x) x + e x2. Or, pour x>, x 2 = (x )(x +)= x x +. Là encore, l expression x + ne pose ps de problème u voisinge de puisque e lim x += 2, et l on finlement : f(x) x x. + 2 x Or, l fonction x = est intégrble u voisinge de + :son x (x ) 2 intégrle est une intégrle de Riemnn, de même nture que celle de x u voisinge de +, donc convergente ( 2 < ). Puisqu il s git d une fonction positive (critère à ne ps oublier!), les théorèmes de comprison (ici, l utilistion de fonctions équivlentes) ssurent que f est ussi intégrble u voisinge de +. Au voisinge de + Là encore, on exmine l fonction, pour remrquer que le terme le plus importnt ici est e x. Cel suggère d utiliser une comprison vec une fonction de Riemnn. e Plus précisément, f(x) x + x donc lim x x + x2 f(x) = lim x + xe x =. Ainsi, ( ) f(x) = o ; puisque x est positive et intégrble u voisinge de x + x 2 x2 +, il en est de même de f. (Un utre rgument possible consiste à dire que f(x) = o(e x ), et d utiliser lors + l comprison vec l fonction x e x, qui fit ussi prtie des fonctions de référence). En rssemblnt les deux cs, on obtient : f est intégrble sur ], + [. x 2 Jour n o 2

4 2) Notons ici f : x ln x pour x>. x 2 + L existence et l continuité de f sur ], + [ ne posent ps de problème (mis, rppelons-le, il ne fut ps oublier ce point!). Les problèmes d intégrbilité ne se posent donc qu u voisinge de + et de +. Notons ussi que f est de signe constnt u voisinge de + et u voisinge de +, donc étudier son intégrbilité équivut à démontrer l convergence de Au voisinge de + f(x)dx. Comme dns l question précédente, on exmine d bord l fonction pour voir ce qui est importnt u voisinge de +.Ici,onimméditementf(x) ln x ; x + puisque l fonction ln est intégrble u voisinge de + (intégrle de référence) et qu elle y est de signe constnt, les théorèmes de comprison ssurent que f est ussi intégrble u voisinge de +. Au voisinge de + ln x Là encore, on simplifie un peu le problème en remrqunt que f(x) x + x. 2 Il s git là d une intégrle de Bertrnd, dont l étude est clssique, et dont le principe générl est indiqué dns le formulire. L étude de l intégrbilité de cette fonction consiste à l comprer en + à une fonction de l forme x x vec >. Or ln x x f(x) +, donc si l on choisit x2 pr exemple = 3 (ou plus générlemen quelconque dns ], 2[), on ur, 2 d près les croissnces comprées, lim x 3 2 f(x) =. x + ( ) Donc f(x) = o ; puisque x est positive et intégrble u voisinge x + x 3 2 x 3 2 de +, il en est de même de f. En rssemblnt les deux cs, on obtient : f est intégrble sur ], + [. Techniques à mémoriser Il fut se souvenir de l démrche à suivre pour étudier une intégrle impropre, et des méthodes qui ont été utilisées dns les exercices ci-dessus, cr elles sont représenttives de celles utilisées dns l grnde mjorité des cs. En prticulier, il est très importnt lors de l étude d une fonction en un point d rriver à déterminer l «prtie» de l fonction qui est prépondérnte. 22 Jour n o

5 Formulire Étude d une intégrle impropre Pln générl On expose ci-dessous un pln générl, qui estévidemmentàdpteràchquecs. Pour exposer ce pln, on se plcer dns le cdre suivnt : f est une fonction définie sur un intervlle [,b[, vec <<b +, àvleursdnsr. Vous dpterez sns difficulté l méthode u cs d une fonction définie sur un intervlle ],b] vec <b<+. Dns le cs d une fonction définie sur un intervlle ouvert ],b[, rppelons que f est dite convergente si et ],b[ seulement si pour tout/un c ],b[, les deux intégrles f et f le sont ; le problème se rmène donc lors ux précédents.. Vérifier que f est bien continue pr morceux sur [,b[, en prticulier que f(t) est bien défini pour tout t [,b[. Ainsi, pour tout c [,b[, l intégrle c f existe et, pour l suite, on peut se contenter d exminer le comportement de f u voisinge immédit de b. 2. Dns le cs où l on connît une primitive F de f (ce qui est loin d être toujours le cs), il suffit d exminer si limite (finie) en b. x ],c] [c,b[ f(t) = F (x) F () possède une 3. Dns le cs où l intervlle [,b[ est borné (c est-à-dire b fini), on peut prfois utiliser le résultt suivnt : Sif est bornée sur [,b[, elle y est intégrble. Sif dmet une limite finie en b, elle est intégrble (ce cs est un cs prticulier du précédent). L intégrle est lors dite fussement impropre. 4. Dns le cs générl, le signe de f u voisinge de b joue un rôle importnt : Cs n o : f un signe constnt u voisinge de b. Quitte à remplcer f pr f, on supposer ici f positive u voisinge de b. Le principe de bse consiste à comprer f, u voisinge de b, à une fonction de référence, dont on connît l intégrbilité. On utilise pour cel l un des résultts suivnts : Si f gu voisinge de b et si g est intégrble u voisinge de b, il en est de même de f. Sif g uvoisinge de b et si l intégrle de g diverge, il en est de même de celle de f. Jour n o 23

6 Sif = o(g) ouf = O(g), et si g est positive intégrble u voisinge de b b b, il en est de même de f. Sif λg vec g positive et λ constnte non nulle, lors les intégrles b de f et de g u voisinge de b sont de même nture. L utilistion d équivlents est l méthode à lquelle il fut penser en premier (ne serit-ce que mentlement). Ce n est que lorsqu elle échoué que l on peut penser à utiliser les «o» ou les «O», et en tout dernier lieu une inéglité. L comprison l plus fréquemment utilisée est celle vec les intégrles de Riemnn ou, elle est détillée un peu plus loin. t Cs n o 2: f n ps un signe constnt u voisinge de b (oubienonne connît ps son signe). Ce cs est le plus difficile. Trois méthodes peuvent être utiles dns ce cs. On peut étudier l convergence bsolue de l intégrle, en vertu du résultt suivnt : si f(t) converge, lors l intégrle f(t) converge. On est insi rmené u cs précédent. f(t) Dns le cs d une intégrle de l forme vec >, une intégrtion pr prties en dérivnt t permet de fire pprître t des termes en +,vecici +>, ce qui, pr comprison à une t intégrle de Riemnn, peut permettre de conclure. On peut ussi utiliser un développement limité de f u voisinge de b pour essyer d écrire f(t) = g(t)+h(t) ; si les deux intégrles de g et t b de h convergent, il en ser de même de celle de f ; si l une des intégrles est convergente et l utre divergente, l intégrle de f ser divergente. En fit, dnsbeucoup de cs, il n est ps utile de connître ou de préciser d emblée le signe de f (suf si l on veut utiliser une inéglité). En effet : Sif λg,oùg est une fonction positive u voisinge de b et λ un réel non t b nul, le signe de f ser celui de λ u voisinge de b. Sif = o(g) ou f = O(g), oùg est positive et intégrble u voisinge t b t b de b, on en fit, en revennt à l définition, f(t) kg(t) u voisinge de b vec k constnte, et l intégrle de f ser directement bsolument convergente. Comprison vec une intégrle de Riemnn Soit à étudier f,oùf est continue pr morceux sur [,b[. On cherche à [,b[ comprer l intégrle de f à une intégrle de l forme fini, ou à une intégrle de l forme lorsque b est (b t) lorsque b =+ et >. 24 Jour n o

7 On supposer ici f à vleurs positives. L comprison à une intégrle de Riemnn est certinement l méthode l plus usitée, et l plus rpide, pour étudier une intégrle impropre. C est celle à lquelle (suf cs élémentires) il fut penser en premier. Si l on peut voir directement un équivlent de f de l forme précédente, c est fini ; on utilise lors directement l un des deux résultts suivnts. Lorsquebest fini, l intégrle est convergente si et seulement si (b t) <. Si>, l intégrle est convergente si et seulement si >. Sinon, l comprison à une intégrle de Riemnn se fit de fçon un peu plus subtile. Dns le cs où b est fini, on peut étudier lim t b (b t) f(t). S il existe <etl fini tels que lim t b (b t) f(t) =l, lors, u voisinge cste de b, f(t) ser mjoré pr,doncf ser intégrble u voisinge (b t) de b (comprison d intégrles de fonctions positives). S il existe > tel que lim t b (b t) f(t) =+, lors, u voisinge de b, cste b f(t) ser minoré pr, donc l intégrle f(t) ser divergente. (b t) Dns le cs b =+, on peut étudier lim t + t f(t). S il existe >etl fini tels que lim t + t f(t) =l, lors, u voisinge de +, f(t) ser mjoré pr cste,doncf ser intégrble u voisinge de + (comprison d intégrles de fonctions positives). S il existe < tel que lim t + t f(t) =+, lors, u voisinge de +, f(t) ser minoré pr cste, donc l intégrle f(t) ser divergente. L méthode exposée ci-dessus s utilise de préférence lorsqu pprît dns l expression de f des exponentielles ou des logrithmes, qu il est fcile de comprer à. Intégrles de Bertrnd Il s git d intégrles impropres de l forme (vec < < ) et ln t β + (vec >). (ln t) β Les résultts concernnt ces intégrles ne sont ps u progrmme mis l méthode d étude est instructive et mérite d être pprofondie. Cette méthode est l suivnte. Jour n o 25

8 Dns le cs =, on peut clculer une primitive de l fonction t ln t β t (cr de l forme u u β ) ; on pourr donc conclure en cherchnt les limites de cette primitive. Dns le cs, on étudie lim tγ ou lim t + β ln t t + tγ (selon l intégrle (ln t) β étudiée), vec γ réel compris strictement entre et ; selon les cs, cette limite est ou + (à l ide des résultts sur les croissnces comprées des fonctions puissnces et ln), et l on peut lors conclure en comprnt, comme il été expliqué + ci-dessus, vec l intégrle de Riemnn ou t γ t. γ Vous pouvez vous entrîner à cette méthode pour démontrer les résultts suivnts : Si <<: ln t converge si et seulement si [ <ou( =etβ>) ]. β Si >: (ln t) converge si et seulement si [ >ou( =etβ>) ]. β Rppelons que ce résultt est hors progrmme, et qu il fut svoir le redémontrer sur des cs prticuliers, comme cel été fit dns le deuxième des exercices précédents. Intégrles de référence Fonctions de Riemnn Il s git des fonctions t pour t>et R. t En utilisnt une primitive d une telle fonction, on obtient fcilement les résultts suivnts : converge si et seulement si >. converge si et seulement si <. Et plus générlement, si et b sont des réels tels que <b,lors: (t ) converge si et seulement si <. Exponentielle et logrithme ln t converge (et ln t = ). e t converge si et seulement si > (et dns ce cs e t = ). 26 Jour n o

Résumé 07 : Intégrales généralisées

Résumé 07 : Intégrales généralisées Résumé 07 : Intégrles générlisées Dns tout ce chpitre, K ser le corps R ou C 1 INTÉGRALES GÉNÉRALISÉES 1 Convergence d une intégrle impropre Dns cette section, f ser ici indifféremment à vleurs dns R ou

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

Comparaison des fonctions au voisinage d un point

Comparaison des fonctions au voisinage d un point DOCUMENT 29 Comprison des fonctions u voisinge d un point Pour tout 0 R on pose : V 0 = {] 0 η, 0 + η[ η > 0} si 0 R; V 0 = {], + [ R} si 0 = + et V 0 = {], [ R} si 0 =. Un élément de V 0 est ppelé un

Plus en détail

Comparaison de fonctions, développements limités

Comparaison de fonctions, développements limités I Comprison de fonctions Définitions Comprison de fonctions, développements limités Négligeble Définition Soient f et g deu fonctions définies sur un même ensemble D et à vleurs dns R. Soit R tel que f

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales simples

Cours de remise à niveau Maths 2ème année. Intégrales simples Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles

Plus en détail

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral Clcul Intégrl christophe.profet@univ-evry.fr http://www.mths.univ-evry.fr/pges_perso/cprofet/ Amphi n 1 Jnvier 214 Objectifs du cours 1 donner une définition de l intégrle f (x)dx qui permet de comprendre

Plus en détail

Résumé de cours sur les intégrales dépendant d un paramètre

Résumé de cours sur les intégrales dépendant d un paramètre Résumé de cours sur les intégrles dépendnt d un prmètre On v considérer une fonction à deux vribles ' puis on étudier l existence, l continuité, dérivbilité,...de l fonction F dé nie pr x! F (x) = F est

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Rappels et compléments sur l intégrale de Riemann

Rappels et compléments sur l intégrale de Riemann Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Le Calcul de Primitives

Le Calcul de Primitives Le Clcul de Primitives MPSI Prytnée Ntionl Militire Pscl Delhye 25 octobre 27 ϕ(x) f(u) du = f(ϕ(t) )ϕ (t) }{{}}{{} u du Résultts préliminires Définition : Primitives Soit deux fonctions f et F définies

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

Nous admettrons et utiliserons souvent le théorème suivant:

Nous admettrons et utiliserons souvent le théorème suivant: < 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Espaces vectoriels normés ; espaces de Banach

Espaces vectoriels normés ; espaces de Banach Chpitre 7 Espces vectoriels normés ; espces de Bnch Un espce vectoriel normé complet est ppelé un espce de Bnch On note K pour R ou C 71 Exemples d espces vectoriels normés 711 Normes sur K n Sur K n,

Plus en détail

1. Intégrale de Riemann des fonctions réglées.

1. Intégrale de Riemann des fonctions réglées. Agrégtion de Mthémtiques 2012-2013 CMI Université d Aix-Mrseille Résumé du cours d Intégrtion 1. Intégrle de Riemnn des fonctions réglées. Fonctions réglées. f : [, b] C est dite réglée si et seulement

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

CHAPITRE 7. Rappel sur l intégrale simple.

CHAPITRE 7. Rappel sur l intégrale simple. CHPITRE 7 Rppel sur l intégrle simple. Les prochins chpitres triteront de l intégrtion. Dns un premier temps, nous rppellerons ce qu est l intégrle simple (l intégrtion pour les fonctions d une seule vrible

Plus en détail

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1 ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN

Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN Intégrle de Riemnn et Intégrle de Lebesgue Jen Gounon http://dm.ens.fr/culturemth Définitions INTEGRALE DE RIEMANN Dns tout le chpître, b et f est une fonction réelle bornée sur [,b] = I Définition. Un

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016

La formule de Simpson avec reste intégral Jean-François Burnol, septembre 2016 L formule de Simpson vec reste intégrl Jen-Frnçois Burnol, septembre 1 On cherche à pprocher l intégrle b f (t)dt pr une combinison linéire λf () + µf ( + b ) + νf (b) On v tout d bord prendre = et b =

Plus en détail

Résumé du cours d analyse de Sup et Spé

Résumé du cours d analyse de Sup et Spé Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Résolution d équations numériques

Résolution d équations numériques Résolution d équtions numériques Dniel PERRIN On présente ici trois méthodes de résolution d équtions : les méthodes de Newton, d interpoltion linéire et, très rièvement, d justement linéire. Pour des

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Rappels sur le calcul Littéral

Rappels sur le calcul Littéral Première prtie Rppels sur le clcul Littérl I Clculer vec les frctions, les puissnces, les rdicux I.1 les frctions I.1.1 générlités Bon, il est temps que je rppelle quelques règles de bse concernnt le clcul

Plus en détail

7. Applications du théorème des

7. Applications du théorème des 67 7. Applictions du théorème des résidus. Évlution d intégrles réelles impropres Une ppliction importnte de l théorie des résidus est l évlution de certins types d intégrles définies et d intégrles impropres

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Intégrales impropres et séries. Tewfik Sari. L2 Math

Intégrales impropres et séries. Tewfik Sari. L2 Math Intégrles impropres et séries Tewfik Sri L2 Mth Chpitre 1 Rppels sur l intégrtion 1.1 Intégrle de Riemnn des fonctions en esclier Soit [, b] un intervlle fermé et borné de R. Une subdivision de [, b] et

Plus en détail

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j).

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j). L.S.Mrs Elridh Clcul intégrl M : Zrii Le pln est rpporté à un repère orthogonl (O;i,j). A) Intégrle d une fonction continue et positive. 1 - Aire et intégrle. Définition Soit f une fonction continue et

Plus en détail

Une preuve élémentaire du théorème de convergence dominée

Une preuve élémentaire du théorème de convergence dominée Une preuve élémentire du théorème de convergence dominée Le but de ce texte, influencé pr l lecture de l rticle [2], est de proposer une preuve élémentire du théorème de convergence dominée, dns le cdre

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL. CHAPITRE : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.. Fonction népérien (logrithme d une fonction composée). Théorème Si u est une fonction strictement positive et dérivble sur un intervlle I ouvert,

Plus en détail

Remise en forme. Chapitre 1

Remise en forme. Chapitre 1 Chpitre 1 Remise en forme 1) Trigonométrie L fonction exponentielle est l réciproque de l fonction logrithme. Elle trnsforme une somme en un produit, lors que le logrithme trnsforme un produit en une somme

Plus en détail

11 Fonctions numériques - continuité

11 Fonctions numériques - continuité 11 Fonctions numériques - continuité 11.1 Ensemble des fonctions à vleurs réelles 11.1.1 Fonctions numériques Soit E un ensemble non vide. On note E l ensemble des pplictions de E dns. On définit les opértions

Plus en détail

dans un EVMPS Moindres carrés

dans un EVMPS Moindres carrés Meilleure pproximtion dns un EVMPS Moindres crrés Meilleure pproximtion Définition. Soit V un EVMPS, W un sous-espce quelconque de V, et u un vecteur quelconque de V. On ppelle meilleure pproximtion de

Plus en détail

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur Chpitre 21 Clcul de primitives 21.1 Clcul prtique de primitives On note f(x une primitive de l fonction f sur l intervlle I. Cette nottion désigne une fonction, à ne ps confondre vec une intégrle définie

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

Théorème de la bijection : exemples de rédaction

Théorème de la bijection : exemples de rédaction ECE-B 5-6 Théorème de l bijection : eemples de rédction Le but de cette fiche est de fire un point sur le théorème de l bijection. Après un retour sur l énoncé et s démonstrtion, on illustrer l utilistion

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

MAT 1720 A : Calcul différentiel et intégral I

MAT 1720 A : Calcul différentiel et intégral I MAT 1720 A : et intégrl I Pul-Eugène Prent Déprtement de mthémtiques et de sttistique Université d Ottw le 14 octobre 2015 Au menu ujourd hui 1 2 3 4 Le théorème de Stokes Voici le contenu d un peu plus

Plus en détail

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées. Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une

Plus en détail

Suites et séries de fonctions MP

Suites et séries de fonctions MP Suites et séries de fonctions MP 17 jnvier 2013 Tble des mtières 1 Convergence simple et convergence uniforme 2 1.1 L convergence simple.............................. 2 1.2 L convergence uniforme.............................

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond Mthémtiques Anlyse de Fourier D près des notes rédigées pr B. Helffer et T. Rmond Année 2007 2 Tble des mtières I Suites, Intégrles et Séries 1 1 Suites de nombres réels ou complexes 1 1.1 Générlités.........................................

Plus en détail

Chapitre 1 Suites de fonctions

Chapitre 1 Suites de fonctions Université de Bourgogne Déprtement de Mthémtiques Licence de Mthémtiques Résumé du cours Compléments d Anlyse Chpitre Suites de fonctions. Suites de nombres, suites de fonctions Dns tout ce chpitre, l

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

1. Notion d intégrale Interprétation graphique

1. Notion d intégrale Interprétation graphique Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine

Plus en détail

Convergence dominée et conséquences.

Convergence dominée et conséquences. Chpitre 3 Convergence dominée et conséquences.. nterversion ite-intégrle............................................................2 / Le cs d une CU sur un segment..................................................

Plus en détail

Feuille d exercices 2 : Analyse Intégrale

Feuille d exercices 2 : Analyse Intégrale Université Denis Diderot Pris 7 (3-4) TD Mths, Agro www.mth.jussieu.fr/ merle Mthieu Merle : merle@mth.univ-pris-diderot.fr Feuille d eercices : Anlyse Intégrle Eercice Trouver une primitive de f : rccos()

Plus en détail

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances:

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances: Terminles S Liste «non exhustive» des Restitutions Orgnisées des Connissnces: Théorème 1 : Critère de divergence d'une suite Théorème 2 : Comprison pr rpport à une suite divergente Théorème 3 : Théorème

Plus en détail

Synthèse de cours PanaMaths Variables aléatoires à densité

Synthèse de cours PanaMaths Variables aléatoires à densité Synthèse de cours PnMths Vriles létoires à densité Vrile létoire à densité Vrile létoire réelle continue Soit X une vrile létoire réelle. On dit que «X est une vrile létoire réelle continue» si elle prend

Plus en détail

DM n o 17 : Intégration

DM n o 17 : Intégration Lycée Louis-Le-Grnd, Pris Pour le 14/05/2015 MPSI 4 Mthémtiques A. Troesch DM n o 17 : Intégrtion Correction du problème 1 Intégrle de Lebesgue Prtie I Intégrtion pr rpport à une mesure 1. Soit f = α k

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN 1. Fonctions en esclier. Le but de l construction de l intégrle d une fonction f : [, b] R étit, initilement, de définir rigoureusement l ire de l figure

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

Définition d'une intégrale. Calcul intégral

Définition d'une intégrale. Calcul intégral Définition d'une intégrle Clcul intégrl. Introduction... p2 4. Primitives d'une fonction continue sur un intervlle... 2. Intégrle d'une fonction continue positive sur [;]... p5 p 5. Recherche de primitives...

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

Ordre et comparaisons

Ordre et comparaisons Seconde 0 - Année 2004 2005 ORDRE ET COMPARAISONS Ordre et comprisons. ACTIVITÉ SUR L ORDRE.. nomres positifs et nomres négtifs. Les réels se représentent sur l droite réelle. Dire que x est positif(ou

Plus en détail

TD n 6 : Fourier - Correction

TD n 6 : Fourier - Correction D n : Fourier- Correction - Pge sur D n : Fourier - Correction Séries de Fourier Coefficient de Fourier On considère une fonction f continue pr morceux et -périodique. c n f f t e in n Z n f [] f t cos

Plus en détail

Fiche Intégration MOSE Octobre 2014

Fiche Intégration MOSE Octobre 2014 Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl................................ Intégrle d une fonction de signe quelconque...............................

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales généralisées

Cours de remise à niveau Maths 2ème année. Intégrales généralisées Cours de remise à niveu Mths 2ème nnée Intégrles générlisées C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 24 Pln 1 Définitions et premières propriétés Intégrles

Plus en détail

LIMITE ET CONTINUITÉ DE FONCTIONS

LIMITE ET CONTINUITÉ DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot LIMITE ET CONTINUITÉ DE FONCTIONS Soit R. Dns tout ce chpitre, on dir qu une fonction f de domine de définition D f est définie u voisinge de s il existe un réel

Plus en détail

Nombres rationnels. 1 Définition de Q. On définit, sur l ensemble Z Z, la relation binaire R de la façon suivante : (a, b)r(a, b ) ab = ba

Nombres rationnels. 1 Définition de Q. On définit, sur l ensemble Z Z, la relation binaire R de la façon suivante : (a, b)r(a, b ) ab = ba Nomres rtionnels Définition de Q On définit, sur l ensemle Z Z, l reltion inire R de l fçon suivnte : (, )R(, ) = Propriété. R est une reltion d équivlence. Démonstrtion : Réflexivité : Elle découle de

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Les théorèmes fondamentaux

Les théorèmes fondamentaux Université d Artois Fculté des ciences Jen Perrin Mesure et Intégrtion (Licence 3 Mthémtiques-Informtique) Dniel Li Les théorèmes fondmentux 21 vril 28 1 L notion de presque prtout Avnt de donner les théorèmes

Plus en détail

CH 1 Analyse : Continuité et limites

CH 1 Analyse : Continuité et limites CH Anlyse : Continuité et ites 4 ème Sciences Septembre 9 A. LAATAOUI I. Rppels Notion de continuité : Grphiquement, on peut reconnître une onction continue sur un intervlle I pr le it que le trcé de l

Plus en détail

Série n 6 : Interpolation et méthodes des moindres carrés

Série n 6 : Interpolation et méthodes des moindres carrés Université Clude Bernrd, Lyon I 43, boulevrd du 11 novembre 1918 696 Villeurbnne Cedex Licence Sciences & Technologies Spécilité Mthémtiques UE : Clcul Scientifique 009-010 Série n 6 : Interpoltion et

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Cours d analyse, ECS deuxième année. Alain TROESCH

Cours d analyse, ECS deuxième année. Alain TROESCH Cours d nlyse, ECS deuxième nnée Alin TROESCH 2 septembre 2012 Tble des mtières 1 Suites numériques : révisions 5 1.1 Convergence........................................ 6 1.1.1 Limites......................................

Plus en détail

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN L fonction logrithme népérien Cours CHAPITRE : LA FONCTION LOGARITHME NEPERIEN. Définition de l fonction logrithme népérien L fonction logrithme népérien, notée ln, est définie sur ],+ [, prend l vleur

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

1. Fonctions fortement piquées. La fonction delta de Dirac. (x) ρ n. n = 8. Figure 1

1. Fonctions fortement piquées. La fonction delta de Dirac. (x) ρ n. n = 8. Figure 1 31 3. Fonction de Dirc 1. Fonctions fortement piquées. fonction delt de Dirc 1.1. Exemple en électrosttique ρ n (x n = 8 n = 4 n = 2 n = 1-1/2 O 1/2 x Figure 1 Considérons, sur une droite, une suite de

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry vril EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deu fonctions continues sur un intervlle [ ; b] donc g f est

Plus en détail

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3 Licence de Mthémtiques Fondmentles Clcul Scientifique feuille de TD 3 Intégrtion numérique Soit f : [, b] R une fonction continue On cherche à clculer numériquement l intégrle f(x) dx Pour cel, on subdivise

Plus en détail

Analyse M1 ENSM. Ch. Menini

Analyse M1 ENSM. Ch. Menini Anlyse M1 ENSM Ch. Menini 10 jnvier 2013 2 Tble des mtières 1 Suites et séries numériques 5 1.1 Premiers résultts sur les suites numériques................................. 5 1.2 Suites monotones et conséquences.......................................

Plus en détail