Intégrale de Riemann cours et exercices de Licence, L1, PC, S2
|
|
- Floriane Lavoie
- il y a 2 ans
- Total affichages :
Transcription
1 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn Qu est-ce qu une fonction intégrble u sens de Riemnn? Fonctions monotones sur [, b] Fonctions continues sur [, b]. Fonctions continues pr morceux Sommes de Riemnn 4 5 Propriétés Chsles etc Première formule de l moyenne Primitives et intégrles Intégrle indéfinie Conséquence fondmentle Chngements de vribles Intégrtion pr prties Pnorm Primitives de frctions rtionnelles Différentes techniques Intégrle de l forme R(sin x, cos x, tn x)dx Intégrle de l forme R(e λx )dx Intégrle de l forme R( x 2 + bx + c, x)dx Intégrle de l forme R( n x + b, x)dx Formule de Tylor vec reste intégrle Une formule importnte Nouvelle écriture des polynômes
2 notes de cours (Hervé Le Ferrnd) 2 1 Des premières méthodes Au lycée, dès l clsse de première l notion de dérivée été introduite. En terminle, l notion d intégrle, vi le clcul d ire sous une courbe, est bordée (historiquement, on clculé des ires vnt des nombres dérivés). Ainsi, un premier trvil, consiste à prendre une feuille de brouillon, de fire deux colonnes, d un côté l fonction et de l utre, si cel est possible, s dérivée. L lecture inverse donne les premières primitives, qui sont à connître. On prendr grde ussi à toujours préciser l intervlle sur lequel on cherche une primitive : pr exemple donner une primitive de x 1 sur ]1, + [, puis sur ], 1[. Il n est ps difficile de x 1 donner une primitive de x 1 x. Cette quntité s écrit ussi. Et si on vous 2 2 x (x 1) (x 1) vit demndé de déterminer une primitive de cette dernière expression! C est pour cel qu il fut voir quelques notions sur le développement en éléments simples d une frction rtionnelle. Dns l prtique, on regrde si l frction est simplifible ou non, si tel n est ps le cs on effectue u prélble une division de polynômes. Puis, si le dénominteur de l prtie qui tend vers 0 en est scindé sur IR, on décline selon les puissnces. Si pr contre, on des puissnces de polynômes du second degré à rcines non réelles, on prend grde de mettres ux numérteurs des polynômes du premier degré. Comment retrouver une primitive de x 1? Il suffit de revenir à l définition de l fonction 1 + x2 rctn : rctn(tn(x)) = x... Il fut svoir trouver rpidement une primitive de x 1 x ou de 2 + x2 1 x 2 + 2x + 2. Que ce soit en Mthémtiques ou en Physique, des notions de trigonométrie s imposent. On doit svoir les formules de bses, mnipuler les quntités e iα (i 2 = 1, α IR), connître les formules de De Moivre et du binôme qui permettront de linériser des expressions du type cos 3 (α) puis d en donner une primitive. Pr illeurs, on doit être cpble d exprimer cos α et sin α à l ide de t = tn( α ). Ceci 2 permet entre utre, de donner une prmétristion du cercle trigonométrique (suf un point). 2 Sommes de Drboux On trville vec des fonctions bornées sur un intervlle fermé borné. Définition 2.1 Une subdivision de l intervlle [, b], est une ensemble de points D = {x 0, x 1,..., x n } tels que : = x 0 < x 1 <... < x n = b. On considère lors δ i = x i x i 1, i.e l longueur du i e sous-intervlle. Soit f une fonction bornée sur [, b]. Définition 2.2 Les petites et les grndes sommes de Drboux ssociées à f et à l subdivision D sont les quntités : n s(d) = f i δ i, où f i = inf f(x) (1) x i 1 x x i S(D) = i=1 n i=1 F i δ i, où F i = sup f(x) (2) x i 1 x x i
3 notes de cours (Hervé Le Ferrnd) 3 Remrque 2.3 s(d) S(D). Exemple 2.4 Ecrire les sommes de Drboux pour f(x) = x sur [, b] vec des subdivisions équidistntes. Lemme 2.5 Si D est plus fine que D, i.e D D, lors : s(d) s(d ) S(D ) S(D). Lemme 2.6 Si D 1 et D 2 sont deux subdivisions quelconques de [, b], lors 3 Fonction intégrble u sens de Riemnn s(d 1 ) S(D 2 ). (3) 3.1 Qu est-ce qu une fonction intégrble u sens de Riemnn? D près ce qui précède, on peut considérer les deux quntités suivntes : I + = inf D S(D) l intégrle supérieure I = sup s(d) D l intégrle inférieure Définition 3.1 On dir que f est intégrble u sens de Riemnn, si I = I +. On noter lors cette quntité : f(x)dx. Proposition 3.2 L fonction f : [, b] IR est intégrble si et seulement si Exemple 3.3 L fonction définie f : [0, 1] IR pr est-elle intégrble? ε > 0 D S(D) s(d) < ε (4) f(x) = 3.2 Fonctions monotones sur [, b] { 1 x rtionnel 0 x irrtionnel Proposition 3.4 Si f : [, b] IR est monotone, lors elle est intégrble. 3.3 Fonctions continues sur [, b]. Fonctions continues pr morceux Proposition 3.5 Si f : [, b] IR est continue, lors elle est intégrble. L démonstrtion repose sur le fit que si f est continue sur [, b], lors elle y est uniformément continue. Ce résultt reste vri si on remplce continue pr continue pr morceux.
4 notes de cours (Hervé Le Ferrnd) 4 4 Sommes de Riemnn Soit = x 0 < x 1 < < x n = b une subdivision de [, b] et ζ 1,..., ζ n tels que On ppelle somme de Riemnn, l quntité : On dmettr que si f est intégrble, x 0 ζ 1 x 1 ζ 2 x 2 ζ 3 n σ = f(ζ i )δ i (δ i = x i x i 1 ). i=1 n f(ζ i )δ i i=1 (à titre d ppliction, clculer lim n u n où u n = 1 n 1 n 2 5 Propriétés 5.1 Chsles etc... somme, produit, quotient, vleur bsolue, respect de vec les bonnes hypothèses : c f(x)dx si mx δ i 0 i k=1 k 2 sin kπ n ) f(x)dx f(x) dx. f(x)dx = c f(x)dx + f(x)dx. b soit f continue sur [, b], f 0, on que f(x)dx = 0 x [, b] f(x) = 0. inéglité de Cuchy-Schwrz : f(x)g(x)dx 5.2 Première formule de l moyenne f 2 (x)dx g 2 (x)dx. Soit f une fonction continue sur [, b], g intégrble sur[, b]. On suppose g 0. Alors il existe c [, b],tel que : g(x)f(x)dx = f(c) g(x)dx. exercice 1 Quel est l ensemble de définition de φ(x) = x 2 x dt ln t. Clculer lim x 1 φ(x).
5 notes de cours (Hervé Le Ferrnd) 5 6 Primitives et intégrles 6.1 Intégrle indéfinie Soit f une fonction définie sur un intervlle I IR, on dit que f est loclement intégrble sur I si f est intégrble sur tout intervlle fermé borné contenu dns I.Fixons α I, ce qui précède nous permet de considérer l fonction de I IR, x x α f(t)dt. On prler d intégrle indéfinie. On remrquer que deux intégrles indéfinies diffèrent d une constnte et que si F est une intégrle indéfinie, on : v f(t)dt = F (v) F (u) = [F (t)] v u, u, v I. On les propriétés suivntes : u Proposition 6.1 Toute intégrle indéfinie F ssociée à une fonction loclement intégrble sur I, est continue sur I Proposition 6.2 Si de plus f est continue en un point x 0 I, lors F est dérivble en x 0 vec F (x 0 ) = f(x 0 ). 6.2 Conséquence fondmentle Proposition 6.3 Si f est continue sur I intervlle de IR, elle dmet des primitives toutes de l forme et elles sont une intégrle indéfinie quelconque + une constnte. exercice 2 Soit f une fonction continue sur IR et u et v deux fonctions dérivbles sur IR. Expliquer pourquoi l fonction x v(x) u(x) f(t)dt est dérivble sur IR. 6.3 Chngements de vribles Soit φ de clsse C 1 sur [, b] et f continue sur φ([, b]), lors φ(b) φ() f(x)dx = f(φ(t))φ (t)dt. (l proposition peut servir dns les deux sens et souvent dns l prtique φ est un difféomorphisme) exercice 3 Reprendre l exemple d une primitive de t 2. exercice 4 Primitive, u bon endroit, de x 1 x 2. Pour les frction en cos t et sin t, en fisnt ttention ux intervlles où l on se plce, le chngement de vrible u = tn( t 2 ) permet de se rmener à l intégrtion d une frction rtionnelle clssique. Essyer sur t cos(t)! exercice 5 Clculer I = 1 0 dx (1 + x) 1 + x 2.
6 notes de cours (Hervé Le Ferrnd) Intégrtion pr prties Soit u et v deux fonctions de clsse C 1 sur [, b], on exercice 6 Si 0 < < b, clculer u (t)v(t)dt = [u(t)v(t)] u(t)v (t)dt. ln xdx. exercice 7 Donner une primitive de rctn x sur IR. exercice 8 Donner une primitive de x rcsin x sur [ 1, 1]. exercice 9 Pour n IN, on pose : I n (x) = x 0 dt (1 + t 2 ) n. Etblir une reltion de récurrence entre I n+1 (x) et I n (x). Donner les expressions de I 1 (x), I 2 (x), I 3 (x). exercice 10 Pouvez-vous clculer une primitive de t 1 2+cos t 7 Pnorm 7.1 Primitives de frctions rtionnelles sur IR? P (x) Soit R(x) = une frction rtionnelle, c est à dire un quotient de deux polynômes. On commence Q(x) pr se rmener u cs où deg P < deg Q en divisnt P pr Q : P (x) Q(x) = S(x) + ˆP (x) Q(x), où P (x) = S(x)Q(x) + ˆP (x) vec deg ˆP < deg Q. On suppose à présent que P et Q sont deux polynômes à coefficients réels tels que deg P < deg Q. Le polynôme Q(x) soit des rcines réelles, soit des rcines complexes dont les conjugués sont ussi des rcines de Q. Ainsi, on l décomposition sur IR : On le résultt : Q(x) = Π k i=1(x γ i ) n i Π l i=1((x α i ) 2 + β 2 i ) m i. Proposition 7.1 Il existe des réels A ij, B ij et C ij tels que : P (x) Q(x) = l m i i=1 j=1 A ij + B ij x k ((x α i ) 2 + βi 2 + )j n i i=1 j=1 C ij (x γ i ) j. exercice 11 Décomposer en éléments simples l frction rtionnelle suivnte : F (x) = En donner une primitive sur un bon intervlle. 2x 1 x(x + 1) 2 (x 2 + x + 1) 2.
7 notes de cours (Hervé Le Ferrnd) Différentes techniques On suppose que R est une frction rtionnelle d une ou plusieurs vribles Intégrle de l forme R(sin x, cos x, tn x)dx En se plçnt sur un bon intervlle, on peut fire le chngement de vrible u = tn x Intégrle de l forme R(e λx )dx On pose u = e λx Intégrle de l forme R( x 2 + bx + c, x)dx On suppose = 0 et on utilise l fctoristion cnonique de x 2 + bx + c. Un chngement linéire de vrible z = αx + β conduit lors à une des formes suivntes : z z z 2. Dns l ordre, on pose soit : z = sinh u, z = cosh u, z = sin u Intégrle de l forme R( n x + b, x)dx On pose u = n x + b. 8 Formule de Tylor vec reste intégrle 8.1 Une formule importnte Soit f une fonction de clsse C k+1 sur [, b]. 1. On peut déjà écrire que x f(x) = f() + 1 f (t)dt. En fisnt une intégrtion pr prties utilisnt u(t) = (x t) (x est fixé) et v(t) = f (t) on étblit que : x f(x) = f() + (x )f () + (x t)f (t)dt. (5) 2. On montre pr une méthode nlogue que : 3. Plus générlement : Proposition 8.1 f(x) = f() + (x )f () + i=0 (x )2 x f () + 2! (x t) 2 f (t)dt. (6) 2! k (x ) i x f(x) = f (i) (x t) k () + f (k+1) (t)dt. (7) i! k!
8 notes de cours (Hervé Le Ferrnd) 8 Exemple 8.2 Ecrivons cette formule dns le cs f(x) = exp(x). 4. Que se psse-t-il si on pplique cette formule à un polynôme de degré k? 8.2 Nouvelle écriture des polynômes On fixe n IN et IR. Soit P l ensemble des polynômes à coefficients réel, de degré inférieur ou égl à n. 1. Montrons que tout polynôme P P sécrit : P (x) = n i=0 P (i) () (x ) i. (8) i! 2. On peut voir que si P (x) = n i=0 α i i! (x )i, nécessirement α i = P (i) () pour i = 0... n. 3. On fixe k {0,..., n}. On considère l ppliction φ : P IR k+1 définie pr : () L ppliction φ est linéire, i.e (b) Montrons que φ est surjective. φ(p ) = (P (), P (),..., P (k) ()). (9) α, β IR P, Q P φ(αp + βq) = αφ(p ) + βφ(q). (10) (c) Il s git de trouver tous les P P tels que φ(p ) = (0,..., 0) (0 pprît k + 1 fois). (d) Soit Q P donné, trouver tous les P P tels que φ(p ) = φ(q).
9
10
11 An Approximtion of the Integrl of f(x) = x*(x-2)*(x-3) on the Intervl [0, 5] Using n Upper Riemnn Sum 30 Are: Prtitions: x f(x)
12 An Approximtion of the Integrl of f(x) = x*(x-2)*(x-3) on the Intervl [0, 5] Using Lower Riemnn Sum 30 Are: Prtitions: x 20 f(x)
13
14
15
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre
Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
Intégration sur un intervalle quelconque MP
ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à
Le Calcul Intégral. niveau maturité. Daniel Farquet
Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................
Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1
Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
Licence M.A.S.S. Cours d Analyse S4
Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,
semestre 3 des Licences MISM annnée universitaire 2004-2005
MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................
Résumé du cours d analyse de maths spé MP
1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville
Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se
COURS D ANALYSE. Licence d Informatique, première. Laurent Michel
COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
ANALYSE NUMERIQUE NON-LINEAIRE
Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre
Les règles de Descartes et de Budan Fourier
Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document
Chapitre 1 : Fonctions analytiques - introduction
2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux
Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad
Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................
mémento de mathématiques pour les ECE1
mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3
Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement
TOUT SUR LE TRIANGLE
PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit
Chapitre 9: Primitives et intégrales
PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures
Université Joseph Fourier MAT231 2008-2009
Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de
Séquence 7. Intégration. Sommaire
Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce
ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE
Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr
Exercices de mathématiques MPSI et PCSI
Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections
GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2
GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune
MATHEMATIQUES GENERALES partim A
Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction
Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.
C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
L2 MIEE 2012-2013 VAR Université de Rennes 1
. Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
gfaubert septembre 2010 1
Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
M42. Compléments d analyse (résumé).
Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions
ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.
EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes
ESTIMER LA PRÉCISION DES MESURES
ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.
3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution
.8 Aperçu de l intégrle.8 APERÇU DE L INTÉGRALE Estimtion de l ire d une région curviligne Erreur d pproimtion Aire ecte d une région curviligne 4 Intégrle définie 5 Intégrle définie négtive 6 Propriétés
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA
MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5
Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
P (X) = (X a) 2 T (X)
Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel
Cf. Document : Les différents modes de financement des entreprises
/ 7 3 e rtie : Les modes de finncement (à moyen et long terme) Cf. Document : Les différents modes de finncement des entrerises Cf. Fiche conseil.37 : Les modes de finncement des investissements - L utofinncement
Electromagne tisme 2 : Induction
Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns
BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2
BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose
Table des matières Dénombrer et sommer Événements et Probabilités
Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2
Chimie Avancement d une réaction chimique Chap.8
ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr
Automtes temporisés Aml El Fllh Seghrouchni Aml.Elfllh@lip6.fr Pln Introduction Définition d un utomte temporisé Composition d utomtes temporisés Automtes hybrides Conclusion Le problème à résoudre monde
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges
Mathématiques Résumé du cours en fiches MPsi MP Daniel Fredon Ancien maître de conférences à l université de Limoges Dunod, Paris, 2010. ISBN 978-2-10-055590-1 Table des matières Partie 1 Analyse dans
SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures!
SESSION 2013 MPIN007 EPREUVE SPECIFIQUE - FILIERE MP " INFORMATIQUE Durée : 3 heures " N.B. : Le cndidt ttcher l plus grnde importnce à l clrté, à l précision et à l concision de l rédction. Si un cndidt
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
Théorie spectrale. Stéphane Maingot & David Manceau
Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions
Chapitre VI Contraintes holonomiques
55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :
Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009
Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
X-ENS PSI - 2009 Un corrigé
X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)
Préparation à l'examen écrit de maturité Mathématiques 2013
Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Feuilles de TD du cours d Algèbre S4
Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 203-204 Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMM) Email: bardet@univ-paris.fr Page oueb: http://samm.univ-paris.fr/-jean-marc-bardet-
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à
Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries
Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de
La fonction exponentielle
La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant
Exercices Mathématiques Discrètes : Relations
Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Opérateurs non-bornés
Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances
Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits
Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths
Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est
Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)
Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est
Guide d'utilisation Easy Interactive Tools Ver. 2
Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Calibration absolue par la mesure du faisceau direct
DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont
Mathématiques I. Recueil d exercices #2. Analyse II
FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Programmes des classes préparatoires aux Grandes Ecoles
Progrmmes des clsses préprtoires ux Grndes Ecoles Filière : scientifique Voie : Mthémtiques et physique (MP) Discipline : Mthémtiques Seconde nnée Clsse préprtoire MP Progrmme de mthémtiques Tble des mtières
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Théorèmes du Point Fixe et Applications aux Equations Diérentielles
Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité