Sujet de révision n 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Sujet de révision n 1"

Transcription

1 4 ème année Secton : Scences Sujet de révson n 1 Ma 010 A. LAATAOUI Thèmes abordés : Complexes ; Probabltés ; Géométre dans l espace ; oncton exponentelle et lecture graphque. Exercce n 1 Sot θ un réel de l ntervalle ] 0,π [. 1. Résoudre l équaton z z e θ 1 = 0.. Dans le plan complexe, rapporté à un repère orthonormé drect ( Ouv ; ; ) on consdère les ponts A, M et N d affxes respectves 1+ ; + e θ et e θ 0,π. a) Montrer que les vecteurs AM et AN sont orthogonaux. b) Montrer que lorsque θ vare dans ] 0,π [, les ponts M et N varent sur un cercle ( C ) que l on détermnera. 3. a) Détermner en foncton de θ l are A (θ ) du trangle AMN. b) Détermner la valeur de θ pour la quelle l are A (θ ) est maxmale et placer dans ce cas les ponts M et N sur le cercle ( C ). Exercce n où θ est un réel de l ntervalle ] [ Cet exercce est un questonnare à chox multples consttué de sx questons ; chacune comporte tros réponses, une seule est exacte. On notera sur la cope unquement la lettre correspondant â la réponse chose. Un lecteur d une bblothèque est passonné de romans polcers et de bographes. Cette bblothèque lu propose 150 romans polcers et 50 bographes. 40% des écrvans de romans polcers sont franças et 70% des écrvans de bographes sont franças. Le lecteur chost un lvre au hasard parm les 00 ouvrages. 1. La probablté que le lecteur chossse un roman polcer est : 1 a. 0,4 b. 0,75 c Le lecteur ayant chos un roman polcer, la probablté que l auteur sot franças est : a. 0,3 b. 0,8 c. 0,4 3. La probablté que Ie lecteur chossse un roman polcer franças est : a. 1,15 b. 0,4 c. 0,3 4. La probablté que le lecteur chossse un lvre d un écrvan franças est : a. 0,9 b. 0,7 c. 0, La probablté que le lecteur at chos un roman polcer sachant que l écrvan est franças est : 4 a. b. 1 c. 0, Le lecteur est venu 0 fos à la bblothèque. La probablté qu l at chos au mons un roman polcer est : a. 1 (0,5) 0 b. 0 0,75 c. 0,75 (0,5) 0 1 Sujet de révson n 1. 4 ème Scences

2 Exercce n 3 L espace est rapporté au repère orthonormé drect ( O ;, j, k ). On consdère le plan P d équaton x+ y z+ 4= 0 et les ponts A de coordonnées ( 3,,6 ), B de coordonnées ( 1,,4 ) et C de coordonnées ( 4,,5). 1. a. Vérfer que les ponts A, B et C défnssent un plan. b. Vérfer que ce plan est P.. a. Montrer que le trangle ABC est rectangle. b. Ecrre un système d équatons paramétrques de la drote passant par O et perpendculare au plan P. c. Sot K le projeté orthogonal de O sur P. Calculer la dstance OK. d. Calculer le volume du tétraèdre OABC. 3. On consdère dans cette queston le pont G barycentre du système de ponts pondérés S = {( O,3 ),( A,1 ),( B,1 ),( C,1) }. a. On note I le centre de gravté du trangle ABC. Montrer que G appartent à ( OI ). b. Détermner la dstance de G au plan P. 4. Sot Γ l ensemble des ponts M de l espace vérfant 3MO+ MA+ MB+ MC = 5. Détermner Γ. Quelle est la nature de l ensemble des ponts communs à P et Γ? Exercce n 4 Au dessous, fgurent la courbe représentatve (C) dans le repère orthonormé ( O ;, j) d'une foncton f défne et dérvable sur R ans que son asymptote (D) et sa tangente (T) au pont d'abscsse O. On sat que le pont J(0 ; 1) est le centre de symétre de la courbe (C), que l'asymptote (D) passe par les ponts K( 1 ; 0) et J, et que la tangente (T) a pour équaton y = (1 e)x + 1. (T) 3 (D) J 1 (C) K -1 Sujet de révson n 1. 4 ème Scences

3 1. Détermner une équaton de (D).. On suppose qu'l exste deux réels m et p et une foncton ϕ défne sur R telle que, pour tout réel x, f(x) = mx + p + ϕ (x) avec lm ϕ( x) = 0. x + a) Démontrer que m = p = 1. b) En utlsant le pont J, montrer que, pour tout réel x, on a f(x) + f( x) =. c) En dédure, après avor exprmé f(x) et f( x), que la foncton ϕ est mpare. d) Dédure de la queston b. que f ', dérvée de f, est pare. 3. On suppose mantenant que, pour tout réel x, ϕ( x) = ( ax+ be ) où a et b sont des réels. a) En utlsant la parté de ϕ, démontrer que b = 0. b) Calculer f '(x). c) En utlsant le coeffcent drecteur de (T), démontrer que a = e. d) Démontrer que x 1 f( x) = x+ 1 xe +. 3 Sujet de révson n 1. 4 ème Scences

4 4 ème année Secton : Scences Sujet de révson n 1 Corrgé Ma 010 A. LAATAOUI Exercce n 1 Sot θ un réel de l ntervalle ] [ 1. 0,π. z z 1 e θ = 0 θ θ θ θ = ( ) ( 1 e ) = e = e = ( e ) z' = e θ et z' = + e θ. A, M et N d affxes respectves 1+ ; + e θ et a) z zm za 1 e θ = = + ; z = z 1 AM AN N za = e θ 1+ cosθ 1 cosθ AM snθ et AN snθ AM AN = ( 1+ cosθ)( 1 cosθ) sn² θ = 1 ( cos² θ + sn² θ) = 0 AM et AN sont orthogonaux. θ b) Sot I le pont d affxe, on a : zm zi = e = 1 M ζ ( I,1) θ De même zn zi = e = 1 N ζ ( I,1) 3. a) A (θ ) Remarque : ( ) ( ) e θ où θ est un réel de l ntervalle ] [ AM AN 1+ cosθ + sn² θ 1 cosθ + sn² θ = = + cosθ cosθ = = snθ π 0, π. Dans ce cas M() et N(0) = O. b) A (θ ) est maxmale lorsque snθ = 1 θ = ] [ 0,π. θ θ z = zm za = 1+ e = cos e AM θ θ θ θ z = zn za = 1 e = sn e AN z AN θ = tan z c est un magnare pur AM et AN sont orthogonaux. AM θ θ cos sn AM AN A (θ ) = = = snθ 4 Sujet de révson n 1. 4 ème Scences

5 Exercce n On note P l évènement : «le roman est polcer» et l évènement : «l écrvan est franças» On peut modélser la stuaton proposée par l arbre pondéré c-dessous : /5 p(p ) = 3/10 3/4 P 1/5 p( P )= 3/0 1/4 P 7/10 p( P )=7 /40 3/10 p( P ) = 3/40 1. La probablté que le lecteur chossse un roman polcer est : b. 0,75. Le lecteur ayant chos un roman polcer, la probablté que l auteur sot franças est : c. 0,4 3. La probablté que Ie lecteur chossse un roman polcer franças est : c. 0,3 4. La probablté que le lecteur chossse un lvre d un écrvan franças est : c. 0, La probablté que le lecteur at chos un roman polcer sachant que l écrvan est franças est : b Le lecteur est venu 0 fos à la bblothèque. La probablté qu l at chos au mons un roman polcer est : a. 1 (0,5) 0 Exercce n a) AB 0 et AC 4 1 ne sont pas colnéares = 8 0 A, B et C ne sont pas algnés A, B et C détermnent un plan. b) On vérfe que les coordonnées de chacun des ponts A, B et C vérfent l équaton x+ y z+ 4= 0 P = (ABC). = = 0 ABC est un trangle rectangle en A.. a) AB AC ( ) ( ) ( ) 5 Sujet de révson n 1. 4 ème Scences

6 b) est la perpendculare à P passant par O n 1 vecteur normal de P est drecteur de x = α : y = α ; α IR z = α c) Sot K le projeté orthogonal de O sur P OK = d(o, P) = =. ² + 1² + ( )² 3 d) V(OABC) = 1 1 AB AC 4 / ( ) / 3 AABC OK = = 4 = / / Autrement : V(OABC) = ( AB AC) AO 6 8 Où AB AC 4 V(OABC) = 1 8 ( 3) + ( 4) ( ) + 8 ( 6) = 1 16 = G barycentre du système de ponts pondérés S = {( O,3 ),( A,1 ),( B,1 ),( C,1) } 3GO+ GA+ GB+ GC = 0 (1) a) I est le centre de gravté du trangle ABC IA+ IB+ IC = 0 En ntercalant le pont I dans (1), on obtent : 3GO+ 3GI = 0 GO+ GI = 0 G est le mleu de [OI] G (OI). b) dgp (, ) =? I,, I,, G est le mleu de [OI] G,, dgp (, ) = = MO+ MA+ MB+ MC = 5 6MG = 5 GM = M S 5 : la sphère de centre G et de 6 G,6 rayon dgp (, ) = < Γ P est un cercle de centre le pont H projeté orthogonal de G sur P et de 3 6 rayon r = = = Sujet de révson n 1. 4 ème Scences

7 Exercce n 4 1. La drote (D) passe par les ponts J(0 ; 1) et K( 1 ; 0), une équaton est donc y = x a. lm ϕ( x) = 0 lm f( x) ( mx+ p) = 0, c'est-à-dre que la drote d'équaton y = mx + p est x + x + asymptote à la courbe en +, c'est la drote (D). Donc m = p = 1. b. Le pont J est centre de symétre de la courbe, on a donc la relaton : f( 0 - x) = 1 - f(x), ou encore :f(x) + f( x) =. c. f(x) = x ϕ (x), f( x) = x ϕ ( x) donc f(x) + f( x) = + ϕ (x) + ϕ ( x). Or, on sat que f(x) + f( x) =, on en dédut que ϕ (x) + ϕ ( x) = 0, ou encore que ϕ (x) = ϕ ( x), c'est-à-dre que la foncton ϕ est mpare. d. f(x) + f( x) =, donc, en dérvant chaque terme : f '(x) f '( x) = 0, sot f '(x) = f '( x). Concluson : f ' est pare. Attenton, la dérvée de f( x) est f '( x) (dérvée des fonctons composées). 3. a. ϕ ( x) ( ax be ) ϕ( x) ( ax be ) = + = + ; comme ϕ est mpare, on a ax + b = ax + b, sot b = 0. x x x x b. f( x) = x+ 1 + ϕ( x) = x+ 1 + axe f ' ( x) = 1 + ϕ ( x) = 1 + ae + ( ax)( xe ) = 1 + a(1 x ) e. c. Le coeffcent drecteur de la tangente au pont d'abscsse 0, sot J, est f '(0) = (1 e) (équaton de (T)). On a donc l'égalté : f '(0) = 1+ a= 1 e a= e. d. Il reste à conclure : f( x) = x+ 1+ axe = x+ 1 exe. 7 Sujet de révson n 1. 4 ème Scences

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

Exercices sur les courbes en coordonnées polaires dans le plan

Exercices sur les courbes en coordonnées polaires dans le plan Exercces sur les courbes en coordonnées polares dans le plan Dans le plan orenté P mun d un repère orthonormé drect,, polare sn. ) Détermner les symétres de ; en dédure un domane d étude. ) Etuder et tracer

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Nombres complexes. i² = -1

Nombres complexes. i² = -1 Prof : Hadj Salem Habb I ] Forme 1. Défntons Le nombre complexe est tel que algébrque ² = -1 Un nombre complexe s'écrt de façon unque sous la forme a + b ; a IR, b IR C = ensemble des nombres complexes

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1.

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1. Trgonométre Défnton du snus et cosnus d'un réel quelconque. (révson de seconde) Len avec la défnton du snus et du cosnus d'un angle agu (dans un trangle rectangle) vue au collège. S O J C I Cette généralsaton

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

Nombres complexes Sessions antérieures

Nombres complexes Sessions antérieures ème aée Maths Nombres complexes Sessos atéreures Aée scolare 9 - A LAATAOUI Exercce N (SP) Das le pla complexe P rapporté à u repère orthoormé ( Ouv ; ; ) o cosdère les pots A et B d affxes respectves

Plus en détail

Chapitre 6 Statistiques Classe :4 SC-EXP

Chapitre 6 Statistiques Classe :4 SC-EXP L-P-Bourguba de Tuns Prof :Ben jedda chokr Chaptre 6 Statstques Classe :4 SC-EXP EXERCICES EXERCICE 1 : Le tableau c-dessous ndque le taux de départ en vacances de la populaton d un pays de 1965 à 1993

Plus en détail

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points Termnale S Nombres Complexes Exercces Dvers,QCM, France 00-5 ponts QCM, se 009, 4 ponts QCM, ntlles 009, 5 ponts 4 4 QCM, Polynése rempl 005 - ponts 5 QCM, N Calédone nov 007-4 ponts 4 5 6 QCM d après

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

. On considère les points A, B, C et D, d affixes respectives a, b, c et d :

. On considère les points A, B, C et D, d affixes respectives a, b, c et d : Nombres complexes Exercces corrgés s vous ave des remarques contacte mo EXERCICE Cet exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons,

Plus en détail

TS - NOMBRES COMPLEXES

TS - NOMBRES COMPLEXES TS - NOMBRES COMPLEXES Ce document totalement gratut (dsponble parm ben d'autres sur la page JGCUAZ.FR rubrque mathématques) a été conçu pour ader les élèves de Termnale S en mathématques. Conforme au

Plus en détail

et h l homothétie de centre Ω et de rapport.

et h l homothétie de centre Ω et de rapport. Termnale S Nombres Exercces Dvers,QCM, France 00 Qcm, Polynése rempl 005 QCM, N Calédone nov 007 4 QCM d après des sujets de concours GEIPI 5 Basque, ntlles 007 4 6 Basque, ntlles 006 5 7 nd degré et barycentre,

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécaltés : Mercatque, Comptablté et Fnance d Entreprse, Geston des systèmes d nformaton. SESSION 2013 ÉPREUVE DE MATHÉMATIQUES Mercatque, comptablté et fnance d entreprse

Plus en détail

CH7 Géométrie : Produit scalaire et vectoriel de l espace

CH7 Géométrie : Produit scalaire et vectoriel de l espace CH7 Géométre : Prodt scalare et vectorel de l espace 3 ème Maths Mars 2010 A. LAATAOUI Rappels sr le prodt scalare dans le plan Soent et v dex vecters d plan. On appelle prodt scalare des vecters et v

Plus en détail

Géométrie- Analytique- Cercles :

Géométrie- Analytique- Cercles : Géométre- Analytque- Cercles : Exercce 1 :, est un RON on donne les ponts A(1,0) ; B(5,) ; C(-1,4) 1/ Montrer que le trangle ABC est rectangle / Ecrre l équaton du cercle C crconscrt au trangle ABC 3/

Plus en détail

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices Géométrie du plan 1 Questions de cours 1 Énoncer et démontrer l inégalité de Schwarz Énoncer et démontrer l inégalité triangulaire pour la norme euclidienne 3 Soit u un vecteur unitaire du plan Combien

Plus en détail

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à

b) Déterminer les valeurs de m pour lesquelles la distance de A à P m est égale à 4 éme Année *** Maths Série d exercices Prof : Dhahbi. A *, Por : 97441893 Géométrie dans l espace Dans tous les exercices, 1'espace est rapporté à un repère orthonormé ( 0, i, j, k ). EXER CICE N 1 :

Plus en détail

BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE

BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I Durée : heures Coeffcent : 2 ÉPREUVE OBLIGATOIRE Le (la) canddat (e) dot trater tous les eercces. La qualté de la rédacton, la clarté et la

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

1 ère S Exercices sur le plan muni d un repère orthonormé

1 ère S Exercices sur le plan muni d un repère orthonormé ère S Exercces sur le plan un d un repère orthonoré ans tous les exercces, le plan est un d un repère orthonoré,,. n donne les ponts ( ; ), ( ; ) et ( ; ). n note H le proeté orthogonal de sur l axe des

Plus en détail

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2 1S Corrigé DS n o 9 Durée :h Exercice 1 ( 5,5 points ) Dans un repère orthonormé du plan, on considère les points A(3; 1), B(; ) et C( ; 1). 1. Déterminer une équation de la droite (d 1 ), médiatrice de

Plus en détail

MECANIQUE DU POINT Enoncés 1 à 61

MECANIQUE DU POINT Enoncés 1 à 61 MEANIQUE DU INT Enoncés 1 à 61 nématque 1. our ben ntégrer soluton page 31 Une partcule se déplace dans le plan horzontal (,, ), à la vtesse constante v 0, sur une courbe dont le raon de courbure R est

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

2. Simplification d un rapport de nombres complexes.

2. Simplification d un rapport de nombres complexes. chaptre. Calcul du module et de l argument d une pussance d un nombre complexe.. Smplfcaton d un rapport de nombres complexes. 3. Pour montrer qu un nombre complexe est réel. 4. Pour montrer qu un nombre

Plus en détail

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i Nombres complexes Exercces corrgés Qcm et exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons, s elle est vrae (V) où fausse (F) Une

Plus en détail

1 ère S Exercices sur les fonctions polynômes du second degré

1 ère S Exercices sur les fonctions polynômes du second degré ère S Exercces sur les fonctons polynômes du second degré 5 Mêmes questons que dans l exercce avec la foncton f défne sur par f ( x) x x Dans chaque cas, dresser sans rédger le tableau de varaton de la

Plus en détail

est minimale pour 1 a = et b = 0.

est minimale pour 1 a = et b = 0. EXERCICE. On consdère la sére chronologque suvante : x 3 4 5 0 5 33 4 5 0 Pour chacune des deux affrmatons suvantes, dre s elle est vrae ou s elle est fausse en justfant la réponse fourne. a. Le pont moen

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

1 ère S Fonctions de référence

1 ère S Fonctions de référence ère S Fonctons de référence Cette méthode est dffcle à mettre en œuvre pour certanes fonctons ; nous étuderons un ben melleur moyen cette année. 4 ) Tableau de varaton (pour mémore) bectfs : - Revor et

Plus en détail

Exercices d arithmétique

Exercices d arithmétique DOMAINE : Arthmétque NIVEAU : Intermédare CONTENU : Exercces AUTEUR : Noé DE RANCOURT STAGE : Cachan 011 (junor) Exercces d arthmétque Exercce 1 - Énoncés - a) Trouver tous les enters n N qu possèdent

Plus en détail

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases.

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases. Exercce 5 ASSERVISSEMENT DE VITESSE CORRECTION AVEC UN P.I.D. -Détermner K 3 K = 3 t mn K = 5 t mn V 6 V - Détermner les transmttances G, T,et A, avec C(p) =, sachant que le gan en boucle ouverte est égal

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M '

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M ' Exposé 27 : homothétes et translatons ; transformaton vectorelle assocée. Invarants élémentares : effets sur les dstances, les drectons, l'algnement... Applcatons à l'acton sur les confguratons usuelles

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optons : - Développeur d applcatons - Admnstrateur de réseaux locaux d entreprse SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures coeffcent

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématques 9 Entraˆnement au calcul Lcée La Bruère 0 avenue de Pars 78000 Versalles c 0, Polcopé du cours de mathématques de premère année. 8. Mode d emplo de ce document 8. Révson des fondamentau.

Plus en détail

Exercices spécialité géométrie

Exercices spécialité géométrie Termnale S Démonstratons -a : Toute smltude de rapport k (>0) est la composée d une homothéte de rapport k et d une sométre -b : Les sométres du plan sont les transformatons θ θ z' = e z+ b ou z' = e z

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

Première S chapitre 11 : Applications du produit scalaire

Première S chapitre 11 : Applications du produit scalaire SOMMAIRE XI. 1. VECTEUR NORMAL A UNE DROITE... THEOREME : VECTEUR DIRECTEUR... DEFINITION : VECTEUR NORMAL... THEOREME : DROITE ET VECTEUR NORMAL... EXERCICES :... 3 XI.. CARACTERISATION D UN CERCLE...

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

2 Produit scalaire - Exercices

2 Produit scalaire - Exercices 6 Edton 007-008 / DELM Géométre métrqe Prodt scalare - Exercces Les exercces dont le nméro content la lettre A, par exemple -A1, sont des exercces complémentares destnés ax élèves d nvea avancé. Lens hypertextes

Plus en détail

Géométrie dans l' espace

Géométrie dans l' espace Exercice 1 Le repère ( A, AB, AD,AF ) formé sur le cube ABCDEFGH est orthonormé direct Calculer les produits vectoriels suivants AB AD, AB AC, AC BD et AC FH Dans tous les exercices qui suivent, l espace

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Loi binomiale - Echantillonnage

Loi binomiale - Echantillonnage Lo bnomale - Echantllonnage I Epreuve de Bernoull Lo de Bernoull 1. Epreuve de Bernoull Une épreuve de Bernoull est une expérence aléatore qu n'a que deux ssues : - S appelé succès avec une probablté p.

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune!

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune! Bac Blanc TS 6 Phsque Chme sujet : Non spécalste PRENDRE UNE AUTRE FEUILLE Exercce 3 : Objectf Lune! Dans la BD d Hergé ( 953 ), Tntn et ses compagnons s embarquent à bord d une fusée pour rejondre la

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

Leçon 2. LE CIRCUIT RC

Leçon 2. LE CIRCUIT RC Leçon. LE CIRCUIT RC Rappels - Les conventons en électrcté On chost un sens postf du courant (flèche de ) et on lu assoce la tenson aux bornes du dpôle D (flèche de u). Deux chox de conventon sont possbles

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Similitudes du plan : Sessions antérieures

Similitudes du plan : Sessions antérieures 4 ème année Maths Similitudes du plan : Sessions antérieures Décembre 009 A LAATAOUI Session principale 008 : Le plan est orienté dans le sens direct OAB est un triangle rectangle et isocèle tel que OA

Plus en détail

Cinématique Newtonienne

Cinématique Newtonienne Cnématque Newtonenne 1. Chronophotographe du mouvement d un pont moble M : 1.1. nécessté de chosr un référentel : Vor l anmaton «changement de référentel» page 10 sur le ste www.phsquepovo.com Défnr ce

Plus en détail

Note de Géométrie Différentielle - Application de la Méthode du Repère Mobile à l ellipsoïde de Référence- Par Abdelmajid BEN HADJ SALEM

Note de Géométrie Différentielle - Application de la Méthode du Repère Mobile à l ellipsoïde de Référence- Par Abdelmajid BEN HADJ SALEM REPUBLIQUE TUNISIENNE MINISTERE DE L EQUIPEMENT Offce de la Topographe et du Cadastre Note de Géométre Dfférentelle - Applcaton de la Méthode du Repère Moble à l ellpsoïde de Référence- Par Abdelmajd BEN

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Les corrigés des examens DPECF - DECF

Les corrigés des examens DPECF - DECF 1 er centre de formaton comptable va Internet. Les corrgés des examens DPECF - DECF 2004 48h après l examen sur www.comptala.com L école en lgne qu en fat + pour votre réusste Préparaton aux DPECF et DECF

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

Exercices sur les Coniques

Exercices sur les Coniques Exercices sur les Coniques Christian CYRILLE 5 novembre 008 Racontez l odyssée d une jeune conique en mal d excentricité qui, échappée de ses foyers, y est ramenée par une amie de la directrice grâce à

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

TS Le plan muni d un repère orthonormé

TS Le plan muni d un repère orthonormé TS Le plan mn d n repère orthonormé n note P l ensemble des ponts d plan et P l ensemble des ecters d plan. I. Expresson analytqe d prodt scalare 1 ) Remarqe prélmnare ans tot le chaptre,,, est n repère

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan CH 1 Géométrie : 3 ème Sciences Septembre 009 A LAATAOUI Produit scalaire dans le plan 1 ) PRODUIT SCALAIRE A) DEFINITION Ce n est pas une multiplication Soit u et v deux vecteurs non nuls du plan Le produit

Plus en détail

Transformations du plan et complexes

Transformations du plan et complexes Transformatons du plan et complexes I Préambule. Une transformaton du plan est une bjecton du plan dans lu-même. Autrement dt, tout pont a une mage et tout pont a un antécédent unque. Ou encore, une transformaton

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Séries statistiques doubles 4 ème Sciences Mai 2010

Séries statistiques doubles 4 ème Sciences Mai 2010 Séres statstques doubles 4 ème Scences Ma 00 A. LAATAOUI I. Nuage de ponts. Introducton Une sére statstque à deu varables, X et Y, est le résultat de l observaton des deu caractères X et Y pour chaque

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

Exercices sur les Coniques

Exercices sur les Coniques Exercices sur les Coniques Christian CYRILLE 5 novembre 008 "Racontez l'odyssée d'une jeune conique en mal d'excentricité qui, échappée de ses foyers, y est ramenée par une amie de la directrice grâce

Plus en détail

Mathématiques obligatoires Terminales S, , Lycée Newton

Mathématiques obligatoires Terminales S, , Lycée Newton Mathématiques obligatoires -6-05-3- Terminales S, 0-03, Lycée Newton Exercice. reservé aux élèves qui ne suivent pas l enseignement de spécialité 5 points Les résultats seront arrondis à 0 près. On s intéresse

Plus en détail

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus :

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus : 1. Une dode est utlsée dans le montage c-dessous : 3,3 générateur + 2,5 =4,5 V V Fgure 43 Des relevés effectués sur cette dode branchée en drect sont donnés dans le tableau c-dessus : v (V) 0 0,6 0,7 0,8

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

Contrôle du lundi 14 janvier 2013 (30 min) 1 ère S1

Contrôle du lundi 14 janvier 2013 (30 min) 1 ère S1 1 ère 1 ontrôle du lund 1 anver 201 (0 mn) Prénom et nom :.. Note : /20 Dans les exercces et, on note le cercle trgonométrque dans le plan orenté mun d un repère orthonormé drect (,, ). es ponts,,, ont

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

MESURES ALGÉBRIQUES ET BARYCENTRES. I Mesures algébriques 2. 1 Définition 2. 2 Propriétés 2. II Barycentres 3

MESURES ALGÉBRIQUES ET BARYCENTRES. I Mesures algébriques 2. 1 Définition 2. 2 Propriétés 2. II Barycentres 3 MESURES ALGÉBRIQUES ET BARYCENTRES Table des matières I Mesures algébriques 2 1 Définition 2 2 Propriétés 2 II Barycentres 3 1 Barycentre d un système de deux points pondérés 3 1.1 Définitions.......................................................

Plus en détail

Annales sur la géométrie dans l espace

Annales sur la géométrie dans l espace Annales sur la géométrie dans l espace Exercice I : France juin 200 Soient a un réel strictement positif et OABC un tétraèdre tel que : OAB, OAC et OBC sont des triangles rectangles en O, OA = OB = OC

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

( ) ( BIG ) est : Produit scalaire et espace La droite ( OA ) avec A( 2; 4; et le plan P. Exercice 1 - qcm

( ) ( BIG ) est : Produit scalaire et espace La droite ( OA ) avec A( 2; 4; et le plan P. Exercice 1 - qcm ENSM cours pi Marc Bizet 0-04 Exercice - qcm Produit scalaire et espace ABCDEFGH est un cube d arête de longueur et on EF considère les milieux I et J des arêtes [ EH ] et [ ] La longueur BI 5 5 vaut BG

Plus en détail

NOM : ANGLES ET ROTATIONS 1ère S

NOM : ANGLES ET ROTATIONS 1ère S Exercice 1 ABC est un triangle de sens direct rectangle en A. On construit à l extérieur du triangle les carrés ACDE et BCF G. Démontrer que les droites (BD) et (AF ) sont perpendiculaires, et que BD =

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé - Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé - Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 2017 2018 L1 Économe Cours de B. Desgraupes Corrgé - Statstques Descrptves Séance 10: Régresson lnéare Corrgé ex. 1: Vtesse et dstance

Plus en détail

MATHÉMATIQUES II. 2 2 à coefficients réels dont l élément nul est noté 0, et S 2 formé des matrices symétriques.

MATHÉMATIQUES II. 2 2 à coefficients réels dont l élément nul est noté 0, et S 2 formé des matrices symétriques. MATHÉMATIQUES II Dans tout le problème, M désigne le IR -espace vectoriel des matrices carrées à coefficients réels dont l élément nul est noté 0, et S le sous-espace vectoriel de M formé des matrices

Plus en détail

Exercices d optique géométrique - correction : N.B : Pour les constructions géométriques, se reporter au cours, où tous les cas ont été inventoriés.

Exercices d optique géométrique - correction : N.B : Pour les constructions géométriques, se reporter au cours, où tous les cas ont été inventoriés. Exercces d optque géométrque - correcton : N.B : Pour les constructons géométrques, se reporter au cours, où tous les cas ont été nventorés. Ex : bre optque. ) La bre va transmettre à condton d avor une

Plus en détail

Méthodes sur le produit scalaire

Méthodes sur le produit scalaire Méthodes sur le produit scalaire G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur le produit scalaire 10 juin 2007 1 / 32 1 connaître les différentes façons de calculer

Plus en détail

CLASSE : 2 éme Scciencces EPREUVE : MATHEMATIQUES. Durée : 2h

CLASSE : 2 éme Scciencces EPREUVE : MATHEMATIQUES. Durée : 2h DEVOIR DE SYNTHESE N 3 CLASSE : ém Sccnccs EPREUVE : MATHEMATIQUES Duré : h Exrcc : (3 ponts) Répondr par Vra ou Faux aux sx propostons suvants. Aucun justfcaton n st dmandé.. Après avor corrgé ls cops

Plus en détail

Modélisation Géométrique des Manipulateurs Rigides

Modélisation Géométrique des Manipulateurs Rigides Modélsaton Géométrque des Manpulateurs Rgdes http://rmerzouk.pll.fr R. Merzouk Master SMART 2010-2011 Introducton z 4 Le système artculé rgde est une structure arborescente artculé smple ou multple; o

Plus en détail

Seconde sujets Année

Seconde sujets Année Seconde sujets Année 2016-2017 Ph DEPRESLE 0 avril 2017 Table des matières 1 Devoir n 1 Septembre 2016 2 heures 2 2 Devoir n 2 Octobre 2016 2 heures Devoir n Novembre 2016 2 heures 5 4 Devoir n 4 Novembre

Plus en détail

Chap. B2 : fonctions usuelles (fin)

Chap. B2 : fonctions usuelles (fin) MPSI Semane 7, du 4 au 8 Novembre 6 Chap. B : fonctons usuelles (fn) IV Fonctons trgonométrques : ) Proprétés admses des fonctons sn et cos Vor appendce pour une constructon des fonctons sn et cos, c on

Plus en détail

ANGLES ORIENTES+TRIGONOMETRIE

ANGLES ORIENTES+TRIGONOMETRIE ANGLES ORIENTES+TRIGONOMETRIE LISTE DES COMPETENCES CODE DENOMINATION T0 T0 T0 T0 T05 T0 T07 T08 T09 T0 T T T T T5 T T7 T8 T9 T0 T T T 99 Douala Mathematical Society : www.doualamaths.net : Workbook :

Plus en détail