Corrigé CNC MP 2003, Math 1
|
|
|
- Marie-Thérèse Gravel
- il y a 10 ans
- Total affichages :
Transcription
1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [, + [.. ],+ [, ϕ e d. a Faies bien aenion ici, les inégaliés demandées son srices. Soi >. ϕ > car la foncion e es coninue posiive non nulle sur [,+ [. e Ensuie ], + [, < e donc : ϕ < e d avec e d e donc ϕ < e. e b On peu écrire ϕ d e d. e La foncion d es de classe C sur ],+ [ d après le héorème fondamenal du calcul inégral. Donc ϕ es de classe C sur ],+ [ e pour ou ],+ [, c pour un >, ϕ+ln ϕ+ ϕ+ La foncion e e d. Alors +ϕ+ln ϕ ϕ e. ϕ e d+ln ϕ d+ d e d es in sur ],], donc + e d. e d d La foncion ρ : ϕ+ln es de classe C sur ],+ [, donc d après le hm fondamenal du calcul inégral on a pour ou > ρ ρ+ ρ d. Ce qui donne e e e ϕ + ln ϕ + d C + d + d e C+ d. Ensuie, en uilisan le DSE de la foncion eponenielle on a pou e + n n. n! ce qui au passage perme de jusifier que la foncion e es prolongeable en une foncion de classe C sur R. n E par primiivisaion de la somme d une série enière : e + n d n. n.n! Ainsi pour ou >, ϕ+ln C+ 3. ],+ [, ψ ϕ. n + n n n. n.n! a ψ es une foncion paire, il suffi de jusifier son inégrabilié sur ],+ [. Sur ],+ [, ψ es coninue par coninuié de ϕ e d après la quesion.a, ψ < e ce qui jusifie l inégrabilié de ψ sur [,+ [. D après la quesion.c ψ ln donc ψ, ce qui prouve que ψ es inégrable sur ],] Alors ψ es inégrable sur ],+ [. b Signalons un déail qui pose problème : l écriure ψe i d serai incorrece puisque la foncion ψe i n es pas CPM sur R ψe i +, Une convenion dans de pareil cas es de poser ψ ψe i d. ψe i d+ ϕ es inégrable sur ],+ [ donc ψ es inégrable sur les inervalles ],[ e
2 ],+ [. e on a pour ou, ψ ψe i d+ ψ e i d+ ψe i +e i d ψ cosd ψe i d ψe i d ϕ cosd c La foncion Ψ :, ϕcos es coninue sur D R ],+ [, e adme pour ou k N une dérivée parielle k Ψ :, k k ϕcos +k π coninue sur D. De plus pou ou, D : Ψ, ϕ e ϕ es inégrable sur ],+ [. k Ψ, k k ϕ. La foncion k ϕ es coninue sur ],+ [. Elle es prolongeable par coninuié en car k ϕ k ln e donc k ϕ. Sur [,+ [ on a la majoraion k ϕ k e e donc k ϕ ce qui achève la + jusificaion de l inégrabilié de la foncion k ϕ sur ],+ [. Alors ψ es bien définie de classe C sur R e pour ous k N e R + ψ k k ϕcos +k π d d La foncion ϕ cos éan inégrable sur ], + [, une inégraion par parie en uilisan la suie ehausive [ n,n] n> donne : ψ /n ϕ cosd [ ϕ sin /n e ] n /n sind /n ϕ sind e sind Car d un coé la foncion ϕ sin end vers en e en + e de l aure la foncion e sin es inégrable sur ], + [.les deu poins à la charge du leceur. Ensuie ψ ϕd e d, soi ψ. [ϕ] n /n ϕ d /n puisque ϕ end vers quand end vers e vers + 4. ],+ [, Φ e sind ψ a Première façon : On uilise la foncion ψ e d /n L epression Φ ψ eplique que Φ es de classe C sur ],+ [ e que pour ou ],+ [ Φ ψ+ ψ ψ Une inégraion par parie à faire correcemen donne : + ϕ sind e cosd E donc : Φ e cosd Deuième façon : On uilise la formule de Leibniz. ϕ sind ϕ + ϕ cosd ψ La foncion k :, e sin e coninue sur ],+ [ ],+ [ e sa dérivée parielle k :, e cos es coninue sur. Via l inégalié sinu u si u, on a pour ou,, k, e. Soi donc a >., ],a] ],+ [, k, ae, ], + [ ], + [, k, e les foncions e e ae éan coninues inégrables sur ],+ [. Alors Φ es de classe C sur ],+ [ e ],+ [, Φ e cosd. Mainenan la foncion e e i es inégrable sur ],+ [ puisque e e i e. donc [e e cosd Re e e i +i d Re Re +i + +i ] +
3 Parie II Alors : ],+ [, Φ + b Pour ou >, Φ + e la relaion Φ ψ implique qu en fai Φ es coninue en puisque ψ es coninue sur R, e que Φ. Alors Φ arcan. Anisi arcan >, ψ. Ensuie l écriure ψ ϕcosd valable pour ou non nul implique que ψ es paire sur R. Donc R, ψ arcan. a f une foncion CPM inégrable sur R. Soi R, l inégalié R, fe i f monre que lafoncion fe i es inégrable sur R. Donc fes bien définie sur R. Ensuie pour ou R, f f d. Donc f es bornée sur R. b Si f es coninue, la foncion, fe i es coninue sur R R e, R R, fe i f, f éan coninue inégrable sur R. Alors f es coninue sur R.. a La linéarié de F découle de la linéarié de l inégrale. b Les foncions f a e âf son bien définie puisque les foncions f a e fa son CPM inégrables sur R. Soi R. f a f ae i d ranslaion e si a e ǫ signa af ǫ a fae i d ua a fue ia+u du e ia f. +ǫ ǫ fue iu/a du a f a c Considérons la foncion g : fe ia. Soi R, ĝ fe ia d f a. fue iu/a du d Ayan fe i d f e i d, f fe i +f e i d. e donc : f f cosd si f es paire. f i + f sind si f es impaire. e Si f es une foncion réelle paire, f es paire e à valeurs réelles. Si f es réelle impaire, f es impaire e à valeurs imaginaires pures. 3. f es une foncion de classe C sur R, e f e f son inégrables sur R. a f es inégrable sur [,+ [ donc la foncion finie en +, comme ie finie en +. Soi l cee ie. f d adme une ie f d f f ceci revien à ce que f admee une Supposons que l, alors il eise A > el que : [A,+ [, f l. La foncion consane l n es pas inégrable sur [A,+ [ donc f ne serai pas inégrable sur [A, + [. conradicion. Alors l f. On obien f en appliquan ce dernier résula à la + foncion f. b Une inégraion par parie à eécuer correcemen avec des bornes finies donne pour ou R : f f e i d + fe i fe i +i fe i d. fe i f donc d après la quesion précédene ± fe i. Alors f i f. c D après II-.a, f es bornée sur R. La relaion f f implique alors que i f. ± d On suppose que la foncion g : f es inégrable sur R. Uiliser le héorème de dérivaion d une inégrale dépendan d un paramère formule de Leibniz pour jusifier que dans ce cas f es de classe C sur R e que pour ou R. f i fe i d iĝ N.B : Ici on a juse besoin que f soi coninue inégrable sur R e que la foncion f soi inégrable sur R. Nul besoin que f soi de classe C e encore 3
4 Parie III moins que f soi inégrable comme peu le suggérer l enchaînemen des quesions de l énoncé. Par eension si f es coninue sur R CPM suffi e pour ou k N, la foncion k f es inégrable sur R, alors la ransformée de Fourier f de f es de classe C sur R e : On considère la foncion h : e. k N, f k A. k fe i d. h es coninue inégrable sur R e la foncion h es inégrable sur R puisque ± 3 h. D après la quesion II-3.c ĥ es de classe C sur R e pour ou R ĥ i Une inégraion par parie donne alors ĥ i [e e i ] + + i e e i d e e i d ĥ ĥ es donc une soluion de l équaion différenielle y + y e e i d. Les soluions de l équaion sur R son les foncions de la forme λe /4 où λ R. Il eise donc λ R el que pour ou R, ĥ /4 λe. Comme ĥ e d π alors λ π. Ainsi R, ĥ e i d πe /4 3. Soien ε > e la foncion εh : e ε. D après II-.b, R, ε h π /4ε ĥ ε ε ε e f une foncion coninue, bornée e inégrable sur R elle que f soi inégrable sur R. n une suie de réels sricemen posiifs qui converge vers. B.. a v une foncion coninue inégrable sur R. Si on pose v n y vye εny, les foncions v n son coninues sur R, la suie de foncions v n n CVS vers v sur R puisque n converge vers e v es coninue sur R.. De plus y R, v n y vy e v es inégrable sur R. Le héorème de la convergence dominée s applique ici, il donne : vye εny dy vydy. b Soi R, le même héorème se base ici sur la dominaion : w+ ye y Me y où M sup wu. Il donne : u R w+ ye y dy we y dy w π. e iy εny dy π εn h e /4 donc π + f e iy εny dy d fe /4 d En posan s, soi +s on obien : π f e iy εny dy d. 3. u réel donné. a Soien ε > e p,q N. π f+s e s ds f+s e s ds Sachan que la foncion y, fe iy εy iy es coninue sur [ p,p] [,q], le héorème de Fubini donne : p p fe iy d dy f e iy εy dy d. p pe iy εy q b Posons pour ou q N, F q y e iy εy fe iy d. Du au fai que fe iy d fy, la suie de foncion Fq q CVS sur R vers la foncion F : y e iy εy fy, foncion qui es coninue puisque f es coninue sur R. De plus pour ou y R, F q y e εy f d Ie εy où I f d. 4
5 la foncion y Ie εy éan coninue inégrable sur R. Le héoreme de la convergence dominée donne alors Fydy, soi : e iy εy fe dy iy c De façon similaire on démonre que : p f p e iy εy dy p d F q ydy e iy εy fe dy iy f e iy εy dy d d La foncion A : y e iy εy fe iy d es inégrable sur R puisque Résumons, Si f es coninue inégrable sur R e sa ransformée de Fourier es aussi inégrable sur R, alors on a la relaion die formule d inversion de la ransformée de Fourier : R, f π fe i d Ay Ie εy où I f d. Donc p p p Aydy Aydy. En faisan endre p vers l infini dans la relaion du III-B-3.a e via le résula démonré dans la quesion III-B-3.c on obien : e iy εy fe dy iy f e iy εy dy d Mainenan en considéran la foncion B : f e iy εy dy, e vu que f es inégrable sur R : + f e iy εy dy d f e iy εy dy d La relaion précédene, via la quesion III-B-3.b donne alors : f e iy εy dy d e iy εy fe dy iy e iy εy fydy 4. Soi R. D après III-B- e III-B-3.c, en remplaçan ε par on obien : e iy εny fydy + π f+s e s ds D après III-B-.b E d après III-B-.a f+s e s ds π f e iy εny fydy e iy fydy Alors : e iy fydy π f. Fin. 5
Exemples de résolutions d équations différentielles
Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................
Fonction dont la variable est borne d intégration
[hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes
TD/TP : Taux d un emprunt (méthode de Newton)
TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel
2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.
1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%
Texte Ruine d une compagnie d assurance
Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
MATHEMATIQUES FINANCIERES
MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial
Caractéristiques des signaux électriques
Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme
Les circuits électriques en régime transitoire
Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Oscillations forcées en régime sinusoïdal.
Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
VA(1+r) = C 1. VA = C 1 v 1
Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Calcul Stochastique 2 Annie Millet
M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Développement en Série de Fourier
F-IRIS-5.ex Développeme e Série de Fourier Développer e série de Fourier les focios de période T défiies aisi : a b { f impaire T = f = si ] ; { f paire T = f = si ; ] Faire das chaque cas ue représeaio
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3
Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE
AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
La rentabilité des investissements
La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles
Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL
Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
CHAPITRE I : Cinématique du point matériel
I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons
Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.
Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Recueil d'exercices de logique séquentielle
Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET
Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple
Fonctions Analytiques
5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION
2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Intégration de Net2 avec un système d alarme intrusion
Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
choisir H 1 quand H 0 est vraie - fausse alarme
étection et Estimation GEL-64943 Hiver 5 Tests Neyman-Pearson Règles de Bayes: coûts connus min π R ( ) + ( π ) R ( ) { } Règles Minimax: coûts connus min max R ( ), R ( ) Règles Neyman Pearson: coûts
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques
Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
Mathématiques financières. Peter Tankov
Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
Signaux numériques : Multiplexage temporel : TDM
Signaux numériques : Multiplexage temporel : TDM Pour la hiérarchie TDM, il y a deux catégorie : Le multiplexage dans les systèmes informatiques : La transmission TDM dans des lignes haute vitesse à partir
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t
Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
C1 : Fonctions de plusieurs variables
1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
