R.D.M. Résistance des Matériaux
|
|
|
- Raymonde Larocque
- il y a 9 ans
- Total affichages :
Transcription
1 R.D.. Réitance de atéiau 1 UT DE L R.d.. La éitance de matéiau et la mécanique de olide défomable. Elle pemet de : Caactéie le matéiau ; Dimenionne une pièce à pati de effot qu elle uppote ; Détemine la défomation d une pièce à pati de effot qu elle uppote ; Détemine le effot maimum que peut uppote une pièce (e : pont oulant). 2 - HYPOTHESES DE L R.d Su le matéiau Il doit ête : Continu (aangement de a tuctue citalline continue ) ; Homogène (tuctue identique en tout point) ; Iotope (même popiété mécanique en un point de la tuctue dan toute le diection) Su la géométie de pièce On étudiea en Rd uniquement de olide aant la fome d une poute : La ligne moenne d une poute et le lieu de cente de gavité ou cente de uface ou bacente,...,... de ection ucceive ; Le ection doite ont de ection plane et pependiculaie à la ligne moenne de la poute ; Le ection doite doivent ete contante ou ne vaie que tè pogeivement ente et. Section doite plane Ligne moenne Su le cage appliquée u le pièce Plan de métie Le cage uppotée pa la poute ont contenue dan le plan de métie ; Elle pouont ête concentée ou épatie ; Le éultat obtenu en RD ne eont valable qu a une ditance uffiante de point d application de foce (potèe de aé de Saint-Venant) Su le défomation u cou de la défomation, le ection doite etent plane et pependiculaie à la ligne moenne (potèe de avie enoulli). Le défomation etent faible compaativement au dimenion de la poute. RD Cou 1/8
2 3 - TORSEUR DE COHÉSIO DS UE SECTIO PLE Le effot intéieu ou de coéion ont le effot qui agient à l intéieu de poute et qui auent l équilibe ou la coéion de la tuctue ou l action de cage etéieue eecée. La connaiance de ce effot de coéion nou eneignea u l état de ollicitation de la poute étudiée, et pemetta d évalue a éitance au effot qui lui ont appliqué. 3.1 Pincipe de calcul Pou mette en évidence le effot tanmi pa la matièe au niveau d une ection doite d une poute, nou effectuon une coupue imaginaie pa un plan pependiculaie à la fibe moenne. Ce plan définit une ection S de bacente qui divie la poute en deu tonçon fictif ( et ). Caque tonçon et en équilibe et l application du Pincipe ondamental de la tatique, à l un ou à l aute, pemet d identifie et de calcule le effot intéieu eecé ente le deu tonçon au niveau de la coupue. 1 Plan de coupe imaginaie / Le action mécanique ente le deu tonçon ont de effot intéieu à la poute que l on peut modélie pa un toeu appelé Toeu de Coéion { T co} et dont le élément de éduction au point cente de uface ont : une éultante R, et un moment éultant R { T co} R 1/ 2 1 / R 2/1 Deu convention d écitue ont poible. Convention 1 : le toeu de coéion modélie le action mécanique de la patie (2) u la patie (1) ; Convention 2 : le toeu de coéion modélie le action mécanique de la patie (1) u la patie (2). Pou la uite, nou adopteon la COVETIO 1 tout à fait abitaiement. Pou détemine ce toeu de coéion il uffit d effectue l équilibe tatique du tonçon (1) ou du tonçon (2). Etude de l équilibe du tonçon (1) ou de la patie gauce { T co} T 1 + T { T et 1} 1 { T co} { T et 1} R R, R et 1, et 1 RD Cou 2/8
3 Définition1 : le toeu de coéion au cente de uface d une uface doite de poute e défini en effectuant la omme de toeu, au même point, de action mécanique agiant à gauce de la ection doite, omme pécédée du igne -. Etude de l équilibe du tonçon (2) ou de la patie doite Comme { T co} R R alo { T co} { T et 2}, R 1 / 2,1 / 2 R R, R 1 / 2,1 / 2 R et 2, et 2 Définition 2 : le toeu de coéion au cente de uface d une uface doite de poute e défini en effectuant la omme de toeu, au même point, de action mécanique agiant à doite de la ection doite, omme pécédée du igne Eemple de calcul de toeu de coéion Soit une poute epoant u 2 appui et oumie à une foce odèle de la poute Donnée C Détemination du toeu de coéion On décompoe la poute en deu one : [C] et [C]. Zone [C] ou allon détemine le toeu de coéion au cente de uface 1 d une ection de poute ituée ente et C, epéée pa l abcie. Le toeu de coéion au point 1 e détemine en effectuant la omme de.. agiant à gauce de la coupue, omme pécédée du igne «-» (voi définition 1 eouce page 3/7). 1 C P { T co } 1 ( ) Y Y 1 Y a Y f1.y T T T1 Y ; ; f1 f m Zone [C] Pou la détemination de ce toeu de coéion, il et péféable d utilie l aute définition Le toeu de coéion au point 1 e détemine en effectuant la omme de.. agiant à doite de la coupue, omme pécédée du igne «+» (voi définition 2 cou Rd page 3). RD Cou 3/8
4 P C 2 { T co } 2 ( ) ( + 4, 2 ). ( + a + b) Y ( + a + b). Y 5714 T 2 Y 5714 f2 12, T f m ( + 4, 2 ) , 2 T ; f1 ; 3.3 Compoante de effot intéieu ou du toeu de coéion Le compoante du toeu de coéion e notent conventionnellement comme ci-deou : (S) T R t R { } T co. T f t T,, T f, f f ( ) (, ) : effot nomal ; T Y : effot tancant uivant ; T Z : effot tancant uivant. t : moment ou couple de toion ; f Y : moment fléciant ou moment de fleion uivant ; f Z : moment fléciant ou moment de fleion uivant. 4 IDETIICTIO DE L TURE DES SOLLICITTIOS t SOLLICITTIOS SIPLES Eemple Toeu de coéion Sollicitation ou RD Cou 4/8 t ou T T (,,) (,,) (,,) (,,) TRCTIO (pou la compeion, le vecteu foce ont en en invee) CISILLEET t TORSIO
5 f f ou f f (,,) (,,) LEXIO PURE t SOLLICITTIOS COPOSÉES Eemple Toeu de coéion Sollicitation t ou T ou T ou T f f T f (,,) (,,) f (,,) (,,) LEXIO PLE SIPLE LEXIO + TRCTIO t T LEXIO f + (,,) TORSIO t f T (,,) LE f (,,) 5 OTIO DE COTRITE (S) d df τ d σ C (,n) df σ + τ C(, n) d σ : containte nomale ; τ : containte tangentielle L'unité de la containte et le Pacal : 1 Pa 1 / m 2 Le toeu de coéion cématie le action de coéion eeçant dan une ection doite de la poute, il contitue donc une epéentation globale. Pou avoi une epéentation plu détaillée en caque point de la ection, nou utilieon la notion de containte. RD Cou 5/8
6 6 IDETIICTIO DES SOLLICITTIOS 6.1 SOLLICITTIO DE TRCTIO COPRESSIO { T co }. Etat de containte (,, ) Containte nomale : (igma) Condition de éitance : σ S : effot nomal en ewton S : ection de la poute en mm 2 avec R e Loqu il a de vaiation buque de ection, la épatition de containte nomale n et pa unifome. Il a COCETRTIO DE COTRITES. L COTRITE XILE EST DOEE PR : σ ma Kt. σ ai σ ai avec, : effot nomal de taction en ewton ; S S : ection de la poute en mm 2 Kt : coefficient de concentation de containte donnée pa de abaque. Pa eemple pou un filetage ISO, Kt 2,5. avec (effot nomal en ewton) poté pa l'ae paallèle à la fibe moenne de la poute. σ ma σ pe : containte patique σ pe R e : limite élatique du matéiau ; : coefficient de écuité (2 pou la contuction aéonautique, 4 pou la mécanique couante, 1 pou le matéiel de tavau public ). D d σ ma Etat de défomation llongement elatif : ε (epilon) Loi de Hooke σ E. ε L L L Contaction latéale : ε d d d vec σ : containte d etenion en pa ; E : module de Young en pa ; ε : allongement elatif. Coefficient de Poion υ (nu) : εd contaction latéale υ ε allongement elatif L 6.2 SOLLICITTIO DE CISILLEET Hpotèe : épatition unifome de containte. T ou (,,) Etat de containte T Z Containte tangentielle moenne : T T (tau) τ mo ou S S S : ection de la poute en mm 2 RD Cou 6/8 Etat de défomation τ mo γ avec γ : angle de gliement (adian) : module d'élaticité tanveal (.mm -2 ) (pou le métau,4 E) E 2 avec ν (nu) : coefficient de poion ( 1+ ν) T ou T (effot tancant) ont leu uppot pependiculaie à l'ae de la fibe moenne. (,,) τ e Condition de éitance : τ mo τ p τ p : coefficient de écuité (2 pou la contuction aéonautique, 4 pou la mécanique couante, 1 pou le matéiel de tavau public ). pou le matéiau tende τ e,5 R e pou le matéiau due τ e,8 R e 2 / 3 L 1/ 3 γ
7 6.3 TORSIO DES POUTRES CIRCULIRES Une poute et ollicitée en toion imple loqu elle et oumie à deu couple poté pa a ligne moenne qui tendent à la tode. Hpotèe upplémentaie : La poute a une ection doite ciculaie ; Son diamète et contant ; Son poid et négligé. t t : moment de toion en.m t (,, ) Etat de défomation α (téta) θ angle unitaie de toion en ad/m (alpa) α : angle de défomation en ad ; : longueu de la poute en m. épatition de containte dan une ection doite la containte τ ai en un point quelconque de la coupue et popotionnelle à la ditance ρ. τ ai θ ρ τ : containte tangentielle en pa ; : module d élaticité tanveal, ou module de Coulomb en pa ; θ : angle unitaie de toion en ad/m ; (ô) ρ : en mète. Relation ente T et θ t θ I I : moment quadatique polaie en mm 4 4 π d Pou une ection ciculaie pleine : I 32 Condition téoique de éitance à la toion τ Relation ente T et τ À pati de τ θ ρ et T θ I ; on obtient : τ T I ρ 4 4 π ; Pou une ection tubulaie : I ( D d ) τ mai t t τ e ρ ma i v τ p (containte patique) avec : τ p ; : coefficient de écuité I I v ρ mai Condition patique de éitance à la toion τ ma i t I ρ t ma i v R pg I 6.4 LEXIO PLE SIPLE R eg pou le métau : R eg (éitance patique au gliement) En contuction mécanique, la fleion de poute et de abe et une ollicitation que l on enconte féquemment. ome du toeu de coéion T ou T : effot tancant ; T ou f f ou f : moment fléciant f (,,) T Z uivant ou (,,) R e 2 32 ρ RD Cou 7/8
8 Etat de containte nomale 1 σ Containte nomale au point : σ f I σ f ai mai I σ ai et popotionnelle à l éloignement du point / plan de la fibe moenne. I : moment quadatique de la ection flécie b I I 3 b 12 3 b 12 d I I 4 π d 32 Etat de containte tangentielle lo que le containte nomale ont iue de moment fléciant, le containte tangentielle éultent de effot tancant. oin pépondéante que le containte nomale, leu détemination et néceaie dan cetain ca. POUR UE POUTRE DE SECTIO RECTULIRE b τ LLURE DES COTRITES TETIELLES τ τ mai DS CE CS 3 T τ ma i 2 S T 8 2 I Condition de éitance Citèe de containte nomale K t. σ f Re a ma R pe (éitance patique) I avec Re : limite élatique du matéiau en pa : coefficient de écuité (de 2 à 1). K t : coef de concentation de containte Citèe de containte tangentielle τ e τ unifome τ p avec τ p T avec : τ unifome ota : le calcul de éitance d une poute ollicitée en fleion imple e fait généalement elon le citèe de la containte nomale. Condition de défomation Relation ente moment fléciant et effot tancant : df T ; d Le poute ollicitée en fleion imple ont ouvent dimenionnée en epimant le condition limite de défomation. Une poute peut éite à une ollicitation de fleion, mai e défome dan de popotion inacceptable. RD Cou 8/8
Chapitre 6: Moment cinétique
Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae
CARACTERISTIQUES DES SECTIONS PLANES
CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment
11.5 Le moment de force τ (tau) : Production d une accélération angulaire
11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces
TRAVAUX DIRIGÉS DE M 6
D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était
où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.
7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test
EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian
1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul
Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.
Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante
CHAPITRE VI : Le potentiel électrique
CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.
M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d
Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une
Caractérisation de l interface Si/SiO 2 par mesure C(V)
TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe
Cours de Résistance des Matériaux (RDM)
Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION
Modélisation d une section de poutre fissurée en flexion
Moéliation une ection e poutre fiurée en flexion Prie en compte e effort tranchant Chritophe Varé* Stéphane Anrieux** * EDF R&D, Département AMA 1, av. u Général e Gaulle, 92141 Clamart ceex [email protected]
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.
Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en
TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION
P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude
Cours de résistance des matériaux
ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables
Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs
ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques
LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.
LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont
Mécanique du point : forces Newtoniennes (PCSI)
écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante
Magister en : Electrotechnique
انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika
Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM
Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
La direction des solidarités Se loger à Moissy
La direction de olidarité Se loger à Moiy La direction de olidarité La Source - Place du Souvenir - BP24-77550 Moiy-Cramayel cedex Tél. : 01 64 88 15 80 - Fax : 01 64 88 15 26 QU EST CE QUE LA GUP LA GESTION
CONSTANTES DIELECTRIQUES
9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques
DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES
UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS
THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique.
N d ode: 005-7 ECOLE DOCTORALE 43 Ecole Nationale Supéieue d At et Métie Cente de Lille THÈSE péentée pou obteni le tite de DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS Spécialité: Génie Electique
Roulements à rotule sur deux rangées de rouleaux en deux parties
Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts
Chapitre 1.5a Le champ électrique généré par plusieurs particules
hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Roulements à billes et à rouleaux
Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
( Mecanique des fluides )
INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant
Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.
Quels polygones sont formés par les milieux des côtés d un autre polygone?
La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Guide de configuration d'une classe
Guide de configuration d'une clae Viion ME Guide de configuration d'une clae Contenu 1. Introduction...2 2. Ajouter de cour...4 3. Ajouter de reource à une leçon...5 4. Meilleure pratique...7 4.1. Organier
Amélioration des performances des aérogénérateurs
N d ode : Séie : الجمهورية الجزاي رية الديمقراطية الشعبية REPUBIQUE AGERIENNE DEMOCRATIQUE ET POPUAIRE MINISTERE DE ENSEIGNEMENT SUPERIEUR ET DE A RECHERCHE SCIENTIFIQUE UNIERSITE CONSTANTINE I Faculté
(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)
Analyse de la charge transmise aux roulements de la roue dentée, notamment en rajoutant les efforts axiaux dus aux ressorts de l embrayage (via la cloche) (Exemple ici de calcul pour une Ducati 748 biposto,
DiaDent Group International
www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w
1 Comment faire un document Open Office /writer de façon intelligente?
1 Comment faire un document Open Office /writer de façon intelligente? 1.1 Comment fonctionne un traitement de texte?: les balises. Un fichier de traitement de texte (WRITER ou WORD) comporte en plus du
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Commande Prédictive Non Linéaire à un pas de la Machine Asynchrone (1) Université de Djelfa (2)
37 Commande Pédictive Non Linéaie à un a de la achine Aynchone Khana Bdiina () Hilal Naimi () et Ramdhan Hae () () Univeité de Delfa () King Saoud univeity Aabia Saudi [email protected] Réumé Cet aticle
Progressons vers l internet de demain
Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?
COMMUNE DE FELLETIN. P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 septembre 2011
R E P U B L I Q U E F R A N Ç A I S E DEPARTEMENT DE LA CREUSE ARRONDISSEMENT D AUBUSSON COMMUNE DE FELLETIN P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 eptembre
FINANCE Mathématiques Financières
INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Calcul des pertes de pression et dimensionnement des conduits de ventilation
Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Po ur d o nne r un é lan à vo tre re traite
Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de
Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )
Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony
Impact de l éolien sur le réseau de transport et la qualité de l énergie
1 Impact de l éolien ur le réeau de tranport et la qualité de l énergie B. Robyn 1,2, A. Davigny 1,2, C. Saudemont 1,2, A. Anel 1,2, V. Courtecuie 1,2 B. Françoi 1,3, S. Plumel 4, J. Deue 5 Centre National
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Le compte épargne temps
2010 N 10-06- 05 Mi à jour le 15 juin 2010 L e D o i e r d e l a D o c 1. Définition Sommaire 2. Modification iue du décret n 2010-531 3. Principe du compte épargne temp Bénéficiaire potentiel Alimentation
Département de Génie Civil
Sommaire Chapitre 01 : RAPPEL... 5 I Rappel de mathématiques... 5 I-1 Equation du 1 ier degrés à deu inconnues... 5 I- Equation du Second degré à deu inconnues... 5 I-3 Calcul d intégrale... 6 I-4 Equation
CLOUD CX263 MÉLANGEUR
COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF
BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P
BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.
RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ
LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de
PHYSIQUE DES SEMI-CONDUCTEURS
Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN
Gestion des services IT Foundation basée sur la norme ISO/CIE 20000
Guide de Préparation Getion de ervice IT Foundation baée ur la norme ISO/CIE 20000 Édition Novembre 2013 Copyright 2013 EXIN All right reerved. No part of thi publication may be publihed, reproduced, copied
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Ekoconstruct / Catalogue 2014. ek construct
Ekoconstruct / Catalogue 2014 ek construct 1 Nos engagements Nos engagements Une entreprise familiale avec un savoir faire Une société tournée vers le développement durable Une construction rapide et personnalisée
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.
TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e
BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007
BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une
Trilax. Données Faits. La spécificité de ce siège tient à la découverte qu il faut trois points d articulation
Donnée Fait La pécificité de ce iège tient à la découverte qu il faut troi point d articulation pour aurer au corp un outien ergonomique efficace dan toute le poition. vou relaxe et vou accompagne comme
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie
VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol
Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel
CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel
O p é r a t i o n s i m m o b i l i è r e s. I n f r a s t r u c t u r e s. C P E R
O p é t i o n i m m o b i l i è e. I n f t u c t u e. C P E R 9 Opétion immobilièe. Inftuctue. CPER OPERATIONS IOBILIERES Cinq opétion ont à ignle en : Réhbilittion et mie ux nome de l'immeuble de l'venue
Trouver des sources de capital
Trouver de ource de capital SÉRIE PARTENAIRES EN AFFAIRES Emprunt garanti et non garanti Vente de part de capital Programme gouvernementaux Source moin courante SÉRIE PARTENAIRES EN AFFAIRES Quelque principe
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
MIPOLAM EL. gerflor.fr
MIPOLAM EL gerflor.fr MIPOLAM EL Électronique Salle propre et térile Santé, Plateaux technique 2 Une gamme complète de produit pour tou locaux enible aux rique ESD L électricité tatique L électricité tatique
Compression Compression par dictionnaires
Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une
Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette
Tutoriel Infuse Learning Créer des quizzes multimédias sur ordinateur ou tablette 1- Présentation Infuselearning.com est un service web (en ligne) gratuit qui permet aux enseignants de créer des exercices
La santé de votre entreprise mérite notre protection.
mutuelle mclr La santé de votre entreprise mérite notre protection. www.mclr.fr Qui sommes-nous? En tant que mutuelle régionale, nous partageons avec vous un certain nombre de valeurs liées à la taille
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
Mouvement d'une particule chargée dans un champ magnétique indépendant du temps
Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Profits et rendements maximum.
Profits et rendements maimum. Nos services d eploitation et de maintenance pour centrales solaires Tout pour le bon fonctionnement de votre installation. Un service complet pour une eploitation sans soucis
DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ
SIT Group SIT -3-5 SIGMA 9.955.53 1 Le contenu du présent document peut subir des modifications sans aucun préavis DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ Domaine d'application Appareils
Fiche d animation n 1 : Pêle-mêle
Fiche d animation n 1 : Pêle-mêle Cette animation permet au participants de découvrir les différents pièges du crédit à la consommation et plus particulièrement des ouvertures de crédit. Elle suscite également
Quelques éléments d écologie utiles au forestier
BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.
Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt
A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et
Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique
Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité
Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
Equations cartésiennes d une droite
Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la
Ventilation à la demande
PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
