R.D.M. Résistance des Matériaux

Dimension: px
Commencer à balayer dès la page:

Download "R.D.M. Résistance des Matériaux"

Transcription

1 R.D.. Réitance de atéiau 1 UT DE L R.d.. La éitance de matéiau et la mécanique de olide défomable. Elle pemet de : Caactéie le matéiau ; Dimenionne une pièce à pati de effot qu elle uppote ; Détemine la défomation d une pièce à pati de effot qu elle uppote ; Détemine le effot maimum que peut uppote une pièce (e : pont oulant). 2 - HYPOTHESES DE L R.d Su le matéiau Il doit ête : Continu (aangement de a tuctue citalline continue ) ; Homogène (tuctue identique en tout point) ; Iotope (même popiété mécanique en un point de la tuctue dan toute le diection) Su la géométie de pièce On étudiea en Rd uniquement de olide aant la fome d une poute : La ligne moenne d une poute et le lieu de cente de gavité ou cente de uface ou bacente,...,... de ection ucceive ; Le ection doite ont de ection plane et pependiculaie à la ligne moenne de la poute ; Le ection doite doivent ete contante ou ne vaie que tè pogeivement ente et. Section doite plane Ligne moenne Su le cage appliquée u le pièce Plan de métie Le cage uppotée pa la poute ont contenue dan le plan de métie ; Elle pouont ête concentée ou épatie ; Le éultat obtenu en RD ne eont valable qu a une ditance uffiante de point d application de foce (potèe de aé de Saint-Venant) Su le défomation u cou de la défomation, le ection doite etent plane et pependiculaie à la ligne moenne (potèe de avie enoulli). Le défomation etent faible compaativement au dimenion de la poute. RD Cou 1/8

2 3 - TORSEUR DE COHÉSIO DS UE SECTIO PLE Le effot intéieu ou de coéion ont le effot qui agient à l intéieu de poute et qui auent l équilibe ou la coéion de la tuctue ou l action de cage etéieue eecée. La connaiance de ce effot de coéion nou eneignea u l état de ollicitation de la poute étudiée, et pemetta d évalue a éitance au effot qui lui ont appliqué. 3.1 Pincipe de calcul Pou mette en évidence le effot tanmi pa la matièe au niveau d une ection doite d une poute, nou effectuon une coupue imaginaie pa un plan pependiculaie à la fibe moenne. Ce plan définit une ection S de bacente qui divie la poute en deu tonçon fictif ( et ). Caque tonçon et en équilibe et l application du Pincipe ondamental de la tatique, à l un ou à l aute, pemet d identifie et de calcule le effot intéieu eecé ente le deu tonçon au niveau de la coupue. 1 Plan de coupe imaginaie / Le action mécanique ente le deu tonçon ont de effot intéieu à la poute que l on peut modélie pa un toeu appelé Toeu de Coéion { T co} et dont le élément de éduction au point cente de uface ont : une éultante R, et un moment éultant R { T co} R 1/ 2 1 / R 2/1 Deu convention d écitue ont poible. Convention 1 : le toeu de coéion modélie le action mécanique de la patie (2) u la patie (1) ; Convention 2 : le toeu de coéion modélie le action mécanique de la patie (1) u la patie (2). Pou la uite, nou adopteon la COVETIO 1 tout à fait abitaiement. Pou détemine ce toeu de coéion il uffit d effectue l équilibe tatique du tonçon (1) ou du tonçon (2). Etude de l équilibe du tonçon (1) ou de la patie gauce { T co} T 1 + T { T et 1} 1 { T co} { T et 1} R R, R et 1, et 1 RD Cou 2/8

3 Définition1 : le toeu de coéion au cente de uface d une uface doite de poute e défini en effectuant la omme de toeu, au même point, de action mécanique agiant à gauce de la ection doite, omme pécédée du igne -. Etude de l équilibe du tonçon (2) ou de la patie doite Comme { T co} R R alo { T co} { T et 2}, R 1 / 2,1 / 2 R R, R 1 / 2,1 / 2 R et 2, et 2 Définition 2 : le toeu de coéion au cente de uface d une uface doite de poute e défini en effectuant la omme de toeu, au même point, de action mécanique agiant à doite de la ection doite, omme pécédée du igne Eemple de calcul de toeu de coéion Soit une poute epoant u 2 appui et oumie à une foce odèle de la poute Donnée C Détemination du toeu de coéion On décompoe la poute en deu one : [C] et [C]. Zone [C] ou allon détemine le toeu de coéion au cente de uface 1 d une ection de poute ituée ente et C, epéée pa l abcie. Le toeu de coéion au point 1 e détemine en effectuant la omme de.. agiant à gauce de la coupue, omme pécédée du igne «-» (voi définition 1 eouce page 3/7). 1 C P { T co } 1 ( ) Y Y 1 Y a Y f1.y T T T1 Y ; ; f1 f m Zone [C] Pou la détemination de ce toeu de coéion, il et péféable d utilie l aute définition Le toeu de coéion au point 1 e détemine en effectuant la omme de.. agiant à doite de la coupue, omme pécédée du igne «+» (voi définition 2 cou Rd page 3). RD Cou 3/8

4 P C 2 { T co } 2 ( ) ( + 4, 2 ). ( + a + b) Y ( + a + b). Y 5714 T 2 Y 5714 f2 12, T f m ( + 4, 2 ) , 2 T ; f1 ; 3.3 Compoante de effot intéieu ou du toeu de coéion Le compoante du toeu de coéion e notent conventionnellement comme ci-deou : (S) T R t R { } T co. T f t T,, T f, f f ( ) (, ) : effot nomal ; T Y : effot tancant uivant ; T Z : effot tancant uivant. t : moment ou couple de toion ; f Y : moment fléciant ou moment de fleion uivant ; f Z : moment fléciant ou moment de fleion uivant. 4 IDETIICTIO DE L TURE DES SOLLICITTIOS t SOLLICITTIOS SIPLES Eemple Toeu de coéion Sollicitation ou RD Cou 4/8 t ou T T (,,) (,,) (,,) (,,) TRCTIO (pou la compeion, le vecteu foce ont en en invee) CISILLEET t TORSIO

5 f f ou f f (,,) (,,) LEXIO PURE t SOLLICITTIOS COPOSÉES Eemple Toeu de coéion Sollicitation t ou T ou T ou T f f T f (,,) (,,) f (,,) (,,) LEXIO PLE SIPLE LEXIO + TRCTIO t T LEXIO f + (,,) TORSIO t f T (,,) LE f (,,) 5 OTIO DE COTRITE (S) d df τ d σ C (,n) df σ + τ C(, n) d σ : containte nomale ; τ : containte tangentielle L'unité de la containte et le Pacal : 1 Pa 1 / m 2 Le toeu de coéion cématie le action de coéion eeçant dan une ection doite de la poute, il contitue donc une epéentation globale. Pou avoi une epéentation plu détaillée en caque point de la ection, nou utilieon la notion de containte. RD Cou 5/8

6 6 IDETIICTIO DES SOLLICITTIOS 6.1 SOLLICITTIO DE TRCTIO COPRESSIO { T co }. Etat de containte (,, ) Containte nomale : (igma) Condition de éitance : σ S : effot nomal en ewton S : ection de la poute en mm 2 avec R e Loqu il a de vaiation buque de ection, la épatition de containte nomale n et pa unifome. Il a COCETRTIO DE COTRITES. L COTRITE XILE EST DOEE PR : σ ma Kt. σ ai σ ai avec, : effot nomal de taction en ewton ; S S : ection de la poute en mm 2 Kt : coefficient de concentation de containte donnée pa de abaque. Pa eemple pou un filetage ISO, Kt 2,5. avec (effot nomal en ewton) poté pa l'ae paallèle à la fibe moenne de la poute. σ ma σ pe : containte patique σ pe R e : limite élatique du matéiau ; : coefficient de écuité (2 pou la contuction aéonautique, 4 pou la mécanique couante, 1 pou le matéiel de tavau public ). D d σ ma Etat de défomation llongement elatif : ε (epilon) Loi de Hooke σ E. ε L L L Contaction latéale : ε d d d vec σ : containte d etenion en pa ; E : module de Young en pa ; ε : allongement elatif. Coefficient de Poion υ (nu) : εd contaction latéale υ ε allongement elatif L 6.2 SOLLICITTIO DE CISILLEET Hpotèe : épatition unifome de containte. T ou (,,) Etat de containte T Z Containte tangentielle moenne : T T (tau) τ mo ou S S S : ection de la poute en mm 2 RD Cou 6/8 Etat de défomation τ mo γ avec γ : angle de gliement (adian) : module d'élaticité tanveal (.mm -2 ) (pou le métau,4 E) E 2 avec ν (nu) : coefficient de poion ( 1+ ν) T ou T (effot tancant) ont leu uppot pependiculaie à l'ae de la fibe moenne. (,,) τ e Condition de éitance : τ mo τ p τ p : coefficient de écuité (2 pou la contuction aéonautique, 4 pou la mécanique couante, 1 pou le matéiel de tavau public ). pou le matéiau tende τ e,5 R e pou le matéiau due τ e,8 R e 2 / 3 L 1/ 3 γ

7 6.3 TORSIO DES POUTRES CIRCULIRES Une poute et ollicitée en toion imple loqu elle et oumie à deu couple poté pa a ligne moenne qui tendent à la tode. Hpotèe upplémentaie : La poute a une ection doite ciculaie ; Son diamète et contant ; Son poid et négligé. t t : moment de toion en.m t (,, ) Etat de défomation α (téta) θ angle unitaie de toion en ad/m (alpa) α : angle de défomation en ad ; : longueu de la poute en m. épatition de containte dan une ection doite la containte τ ai en un point quelconque de la coupue et popotionnelle à la ditance ρ. τ ai θ ρ τ : containte tangentielle en pa ; : module d élaticité tanveal, ou module de Coulomb en pa ; θ : angle unitaie de toion en ad/m ; (ô) ρ : en mète. Relation ente T et θ t θ I I : moment quadatique polaie en mm 4 4 π d Pou une ection ciculaie pleine : I 32 Condition téoique de éitance à la toion τ Relation ente T et τ À pati de τ θ ρ et T θ I ; on obtient : τ T I ρ 4 4 π ; Pou une ection tubulaie : I ( D d ) τ mai t t τ e ρ ma i v τ p (containte patique) avec : τ p ; : coefficient de écuité I I v ρ mai Condition patique de éitance à la toion τ ma i t I ρ t ma i v R pg I 6.4 LEXIO PLE SIPLE R eg pou le métau : R eg (éitance patique au gliement) En contuction mécanique, la fleion de poute et de abe et une ollicitation que l on enconte féquemment. ome du toeu de coéion T ou T : effot tancant ; T ou f f ou f : moment fléciant f (,,) T Z uivant ou (,,) R e 2 32 ρ RD Cou 7/8

8 Etat de containte nomale 1 σ Containte nomale au point : σ f I σ f ai mai I σ ai et popotionnelle à l éloignement du point / plan de la fibe moenne. I : moment quadatique de la ection flécie b I I 3 b 12 3 b 12 d I I 4 π d 32 Etat de containte tangentielle lo que le containte nomale ont iue de moment fléciant, le containte tangentielle éultent de effot tancant. oin pépondéante que le containte nomale, leu détemination et néceaie dan cetain ca. POUR UE POUTRE DE SECTIO RECTULIRE b τ LLURE DES COTRITES TETIELLES τ τ mai DS CE CS 3 T τ ma i 2 S T 8 2 I Condition de éitance Citèe de containte nomale K t. σ f Re a ma R pe (éitance patique) I avec Re : limite élatique du matéiau en pa : coefficient de écuité (de 2 à 1). K t : coef de concentation de containte Citèe de containte tangentielle τ e τ unifome τ p avec τ p T avec : τ unifome ota : le calcul de éitance d une poute ollicitée en fleion imple e fait généalement elon le citèe de la containte nomale. Condition de défomation Relation ente moment fléciant et effot tancant : df T ; d Le poute ollicitée en fleion imple ont ouvent dimenionnée en epimant le condition limite de défomation. Une poute peut éite à une ollicitation de fleion, mai e défome dan de popotion inacceptable. RD Cou 8/8

Chapitre 6: Moment cinétique

Chapitre 6: Moment cinétique Chapite 6: oment cinétique Intoduction http://www.youtube.com/watch?v=vefd0bltgya consevation du moment cinétique 1 - angula momentum consevation 1 - Collège éici_(360p).mp4 http://www.youtube.com/watch?v=w6qaxdppjae

Plus en détail

CARACTERISTIQUES DES SECTIONS PLANES

CARACTERISTIQUES DES SECTIONS PLANES CRCTERITIQUE DE ECTION PLNE OENT TTIQUE D UNE ECTION PLNE oient une aie pane et une doite Le moment statiue de a section pa appot à m est défini pa intégae : m ( ) ( ) δ d (doénavant, on note e moment

Plus en détail

11.5 Le moment de force τ (tau) : Production d une accélération angulaire

11.5 Le moment de force τ (tau) : Production d une accélération angulaire 11.5 Le moment de foce τ (tau) : Poduction d une accéléation angulaie La tige suivante est soumise à deux foces égales et en sens contaie: elle est en équilibe N La tige suivante est soumise à deux foces

Plus en détail

TRAVAUX DIRIGÉS DE M 6

TRAVAUX DIRIGÉS DE M 6 D M 6 Coection PCSI 1 013 014 RVUX DIRIGÉS DE M 6 Execice 1 : Pemie vol habité (pa un homme) Le 1 avil 1961, le commandant soviétique Y Gagaine fut le pemie cosmonaute, le vaisseau spatial satellisé était

Plus en détail

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0.

où «p» représente le nombre de paramètres estimés de la loi de distribution testée sous H 0. 7- Tests d austement, d indépendance et de coélation - Chapite 7 : Tests d austements, d indépendance et de coélation 7. Test d austement du Khi-deux... 7. Test d austement de Kolmogoov-Sminov... 7.. Test

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

CHAPITRE VI : Le potentiel électrique

CHAPITRE VI : Le potentiel électrique CHPITRE VI : Le potentiel électiue VI. 1 u chapite III, nous avons vu ue losu'une foce est consevative, il est possible de lui associe une énegie potentielle ui conduit à une loi de consevation de l'énegie.

Plus en détail

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d

M F. F O Unité: [m. N] La norme du moment de force peut se calculer en introduit le bras de levier d Chapite 2: But: connaîte les lois auxquelles doit obéi un cops solide en équilibe. Ceci pemet de décie la station debout ainsi que les conditions nécessaies pou teni une tasse dans la main, souleve une

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

Cours de Résistance des Matériaux (RDM)

Cours de Résistance des Matériaux (RDM) Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION

Plus en détail

Modélisation d une section de poutre fissurée en flexion

Modélisation d une section de poutre fissurée en flexion Moéliation une ection e poutre fiurée en flexion Prie en compte e effort tranchant Chritophe Varé* Stéphane Anrieux** * EDF R&D, Département AMA 1, av. u Général e Gaulle, 92141 Clamart ceex [email protected]

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM.

CIRCULAIRE N 02/04. Elle précise les méthodes de valorisation des titres de capital et des titres de créances contenus dans les actifs de l OPCVM. Rabat, le 02 juillet 2004 CIRCULIRE N 02/04 RELTIVE UX CONDITIONS D ÉVLUTION DES VLEURS PPORTÉES À UN ORGNISME DE PLCEMENT COLLECTIF EN VLEURS MOBILIÈRES OU DÉTENUES PR LUI La pésente ciculaie vient en

Plus en détail

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude

Plus en détail

Cours de résistance des matériaux

Cours de résistance des matériaux ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables

Plus en détail

Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs

Informations Techniques A7 A141. Roulements à Billes à Gorge Profonde. Roulements à Billes à Contact Oblique. Roulements à Billes Auto-Aligneurs ROULEMENTS Pages Infomations Techniques A7 A141 Infos Tech. Roulements à Billes à Goge Pofonde B4 B45 Roulements à Billes à Contact Oblique Roulements à Billes Auto-Aligneus Roulements à Rouleaux Cylindiques

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail

Mécanique du point : forces Newtoniennes (PCSI)

Mécanique du point : forces Newtoniennes (PCSI) écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante

Plus en détail

Magister en : Electrotechnique

Magister en : Electrotechnique انج س ت انجضائش ت انذ مشاط ت انشعب ت République Algéienne Démocatique et Populaie صاسة انتعه ى انعان انبحث انعه Minitèe de l Eneignement Supéieu et de la Recheche Scientifique Univeité Mohamed Khide Bika

Plus en détail

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

La direction des solidarités Se loger à Moissy

La direction des solidarités Se loger à Moissy La direction de olidarité Se loger à Moiy La direction de olidarité La Source - Place du Souvenir - BP24-77550 Moiy-Cramayel cedex Tél. : 01 64 88 15 80 - Fax : 01 64 88 15 26 QU EST CE QUE LA GUP LA GESTION

Plus en détail

CONSTANTES DIELECTRIQUES

CONSTANTES DIELECTRIQUES 9 E7 CONTANTE DIELECTRIQUE I. INTRODUCTION Dans cette expéience, nous étuieons es conensateus et nous éiveons les popiétés e iélectiques tels que l'ai et le plexiglas. II. THEORIE A) Conensateus et iélectiques

Plus en détail

DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES

DEUXIEME ANNEE TRONC COMMUN TECHNOLOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS ONDES UNIVERSITE DES SCIENCES ET DE A TECHNOOGIE HOUARI BOUMEDIENNE INSTITUT DE PHYSIQUE DEPARTEMENT DES ENSEIGNEMENTS DE PHYSIQUE DE BASE DEUXIEME ANNEE TRONC COMMUN TECHNOOGIE TRAVAUX DIRIGES DE PHYSIQUE VIBRATIONS

Plus en détail

THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique.

THÈSE. présentée pour obtenir le titre de. DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS. Spécialité: Génie Electrique. N d ode: 005-7 ECOLE DOCTORALE 43 Ecole Nationale Supéieue d At et Métie Cente de Lille THÈSE péentée pou obteni le tite de DOCTEUR de L ÉCOLE NATIONALE SUPÉRIEURE D ARTS ET MÉTIERS Spécialité: Génie Electique

Plus en détail

Roulements à rotule sur deux rangées de rouleaux en deux parties

Roulements à rotule sur deux rangées de rouleaux en deux parties Roulements à otule su deux angées de ouleaux en deux paties Réduction des coûts gâce au changement apide du oulement difficilement accessible Contenu Changement apide du oulement 2 Réduction des coûts

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Roulements à billes et à rouleaux

Roulements à billes et à rouleaux Fo New Technology Netwok R copoation Roulements à billes et à ouleaux CAT. NO. 222-VIII/F Manuel technique A- Roulements à billes à goges pofondes B- Roulements miniatues B- 1 Roulements à billes à contact

Plus en détail

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

( Mecanique des fluides )

( Mecanique des fluides ) INSTITUT NTION GRONOMIUE ERTEMENT U GENIE RUR SECTION YRUIUE GRICOE YRUIUE GENERE ( Mecanique des fluides ) TRONC COMMUN ème NNEE atie : Statique des Fluides ( ydostatique ) atie : ynamique des Fluides

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.

Plus en détail

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Quels polygones sont formés par les milieux des côtés d un autre polygone? La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Guide de configuration d'une classe

Guide de configuration d'une classe Guide de configuration d'une clae Viion ME Guide de configuration d'une clae Contenu 1. Introduction...2 2. Ajouter de cour...4 3. Ajouter de reource à une leçon...5 4. Meilleure pratique...7 4.1. Organier

Plus en détail

Amélioration des performances des aérogénérateurs

Amélioration des performances des aérogénérateurs N d ode : Séie : الجمهورية الجزاي رية الديمقراطية الشعبية REPUBIQUE AGERIENNE DEMOCRATIQUE ET POPUAIRE MINISTERE DE ENSEIGNEMENT SUPERIEUR ET DE A RECHERCHE SCIENTIFIQUE UNIERSITE CONSTANTINE I Faculté

Plus en détail

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine) Analyse de la charge transmise aux roulements de la roue dentée, notamment en rajoutant les efforts axiaux dus aux ressorts de l embrayage (via la cloche) (Exemple ici de calcul pour une Ducati 748 biposto,

Plus en détail

DiaDent Group International

DiaDent Group International www.diagun.co.k DiaDent Goup Intenational Dispositif de compactage sans fil à chaleu intégée Copyight 2010 DiaDent Goup Intenational www.diadent.com Dispositif de compactage sans fil à chaleu intégée w

Plus en détail

1 Comment faire un document Open Office /writer de façon intelligente?

1 Comment faire un document Open Office /writer de façon intelligente? 1 Comment faire un document Open Office /writer de façon intelligente? 1.1 Comment fonctionne un traitement de texte?: les balises. Un fichier de traitement de texte (WRITER ou WORD) comporte en plus du

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Commande Prédictive Non Linéaire à un pas de la Machine Asynchrone (1) Université de Djelfa (2)

Commande Prédictive Non Linéaire à un pas de la Machine Asynchrone (1) Université de Djelfa (2) 37 Commande Pédictive Non Linéaie à un a de la achine Aynchone Khana Bdiina () Hilal Naimi () et Ramdhan Hae () () Univeité de Delfa () King Saoud univeity Aabia Saudi [email protected] Réumé Cet aticle

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

COMMUNE DE FELLETIN. P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 septembre 2011

COMMUNE DE FELLETIN. P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 septembre 2011 R E P U B L I Q U E F R A N Ç A I S E DEPARTEMENT DE LA CREUSE ARRONDISSEMENT D AUBUSSON COMMUNE DE FELLETIN P R O C E S V E R B A L D U C O N S E I L M U N I C I P A L Séance ordinaire du jeudi 8 eptembre

Plus en détail

FINANCE Mathématiques Financières

FINANCE Mathématiques Financières INSTITUT D ETUDES POLITIQUES 4ème Année, Economie et Entepises 2005/2006 C.M. : M. Godlewski Intéêts Simples Définitions et concepts FINANCE Mathématiques Financièes L intéêt est la émunéation d un pêt.

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Calcul des pertes de pression et dimensionnement des conduits de ventilation Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Po ur d o nne r un é lan à vo tre re traite

Po ur d o nne r un é lan à vo tre re traite Po u d o nne un é lan à vo te e taite ez a p é P aite t e e vot joud'hui dès au E N EN T TR RE E N NOOUUSS,, CC EESSTT FFAA CC I I LL EE DD EE SS EE O M M PP RR EE NN DDRRE E CC O Toutes les gaanties de

Plus en détail

Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel )

Serveur vidéo IP. caméras analogiques PC serveur. PC Client 1. Serveur de stockage ( optionnel ) Sony RealShot Manage V3 Info Poduit Mas 2005 RealShot Manage V3.0 Logiciel de gestion des caméas IP MJPEG, MPEG-4, Audio, il sait tout enegiste! Une nouvelle vesion du logiciel RealShot Manage de Sony

Plus en détail

Impact de l éolien sur le réseau de transport et la qualité de l énergie

Impact de l éolien sur le réseau de transport et la qualité de l énergie 1 Impact de l éolien ur le réeau de tranport et la qualité de l énergie B. Robyn 1,2, A. Davigny 1,2, C. Saudemont 1,2, A. Anel 1,2, V. Courtecuie 1,2 B. Françoi 1,3, S. Plumel 4, J. Deue 5 Centre National

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Le compte épargne temps

Le compte épargne temps 2010 N 10-06- 05 Mi à jour le 15 juin 2010 L e D o i e r d e l a D o c 1. Définition Sommaire 2. Modification iue du décret n 2010-531 3. Principe du compte épargne temp Bénéficiaire potentiel Alimentation

Plus en détail

Département de Génie Civil

Département de Génie Civil Sommaire Chapitre 01 : RAPPEL... 5 I Rappel de mathématiques... 5 I-1 Equation du 1 ier degrés à deu inconnues... 5 I- Equation du Second degré à deu inconnues... 5 I-3 Calcul d intégrale... 6 I-4 Equation

Plus en détail

CLOUD CX263 MÉLANGEUR

CLOUD CX263 MÉLANGEUR COUD CX6 MÉANGEU Clealy bette soun ZONE ZONE MUSIC SOUCE MUSIC SOUCE MUSIC SOUCE MUSIC EVE MUSIC EVE MUSIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE MIC EVE 6 6 6 5 5 5 MICOPHONE CX6 4 4 4 F HF F HF

Plus en détail

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P

BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.

Plus en détail

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de

Plus en détail

PHYSIQUE DES SEMI-CONDUCTEURS

PHYSIQUE DES SEMI-CONDUCTEURS Dépatement Mico-électonique et télécommunications Pemièe année 004/005 PHYSIQUE DES SEMI-CONDUCTEURS Rouge Violet Infa-Rouge Visible Ulta-Violet Cd x Hg 1-x Te InSb Ge Si GaAs CdSe AlAs CdS GaP SiC GaN

Plus en détail

Gestion des services IT Foundation basée sur la norme ISO/CIE 20000

Gestion des services IT Foundation basée sur la norme ISO/CIE 20000 Guide de Préparation Getion de ervice IT Foundation baée ur la norme ISO/CIE 20000 Édition Novembre 2013 Copyright 2013 EXIN All right reerved. No part of thi publication may be publihed, reproduced, copied

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Ekoconstruct / Catalogue 2014. ek construct

Ekoconstruct / Catalogue 2014. ek construct Ekoconstruct / Catalogue 2014 ek construct 1 Nos engagements Nos engagements Une entreprise familiale avec un savoir faire Une société tournée vers le développement durable Une construction rapide et personnalisée

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe. TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e

Plus en détail

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007 BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une

Plus en détail

Trilax. Données Faits. La spécificité de ce siège tient à la découverte qu il faut trois points d articulation

Trilax. Données Faits. La spécificité de ce siège tient à la découverte qu il faut trois points d articulation Donnée Fait La pécificité de ce iège tient à la découverte qu il faut troi point d articulation pour aurer au corp un outien ergonomique efficace dan toute le poition. vou relaxe et vou accompagne comme

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel

Validation CFD axisymétrique de modèle zonal des écoulements gazeux de chambre de combustion de moteur Diesel CONSERVATOIRE NATIONAL DES ARTS ET METIERS Cente d enseignement de Genoble Mémoie Mécanique des stuctues et des systèmes Validation CFD axisymétique de modèle zonal des écoulements gazeux de Auditeu: Jean-Michel

Plus en détail

O p é r a t i o n s i m m o b i l i è r e s. I n f r a s t r u c t u r e s. C P E R

O p é r a t i o n s i m m o b i l i è r e s. I n f r a s t r u c t u r e s. C P E R O p é t i o n i m m o b i l i è e. I n f t u c t u e. C P E R 9 Opétion immobilièe. Inftuctue. CPER OPERATIONS IOBILIERES Cinq opétion ont à ignle en : Réhbilittion et mie ux nome de l'immeuble de l'venue

Plus en détail

Trouver des sources de capital

Trouver des sources de capital Trouver de ource de capital SÉRIE PARTENAIRES EN AFFAIRES Emprunt garanti et non garanti Vente de part de capital Programme gouvernementaux Source moin courante SÉRIE PARTENAIRES EN AFFAIRES Quelque principe

Plus en détail

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter

Plus en détail

MIPOLAM EL. gerflor.fr

MIPOLAM EL. gerflor.fr MIPOLAM EL gerflor.fr MIPOLAM EL Électronique Salle propre et térile Santé, Plateaux technique 2 Une gamme complète de produit pour tou locaux enible aux rique ESD L électricité tatique L électricité tatique

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette

Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette Tutoriel Infuse Learning Créer des quizzes multimédias sur ordinateur ou tablette 1- Présentation Infuselearning.com est un service web (en ligne) gratuit qui permet aux enseignants de créer des exercices

Plus en détail

La santé de votre entreprise mérite notre protection.

La santé de votre entreprise mérite notre protection. mutuelle mclr La santé de votre entreprise mérite notre protection. www.mclr.fr Qui sommes-nous? En tant que mutuelle régionale, nous partageons avec vous un certain nombre de valeurs liées à la taille

Plus en détail

Analyse statique d une pièce

Analyse statique d une pièce Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages

Plus en détail

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps

Mouvement d'une particule chargée dans un champ magnétique indépendant du temps Moueent d'une patiule hagée dans un hap agnétique indépendant du teps iblio: Pee elat Gaing Magnétise Into expéientale: Dispositif: On obsee une déiation du faseau d'életons losqu'il aie ae une itesse

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Profits et rendements maximum.

Profits et rendements maximum. Profits et rendements maimum. Nos services d eploitation et de maintenance pour centrales solaires Tout pour le bon fonctionnement de votre installation. Un service complet pour une eploitation sans soucis

Plus en détail

DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ

DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ SIT Group SIT -3-5 SIGMA 9.955.53 1 Le contenu du présent document peut subir des modifications sans aucun préavis DISPOSITIF DE CONTROLE MULTIFONCTIONNEL POUR APPAREILS A GAZ Domaine d'application Appareils

Plus en détail

Fiche d animation n 1 : Pêle-mêle

Fiche d animation n 1 : Pêle-mêle Fiche d animation n 1 : Pêle-mêle Cette animation permet au participants de découvrir les différents pièges du crédit à la consommation et plus particulièrement des ouvertures de crédit. Elle suscite également

Plus en détail

Quelques éléments d écologie utiles au forestier

Quelques éléments d écologie utiles au forestier BTSA Gestion Foestièe Module D41 V.1.1. Avil 1997 Quelques éléments d écologie utiles au foestie Paysage vosgien : un exemple d écocomplexe divesifié. Sylvain Gaudin CFPPA/CFAA de Châteaufaine E 10 ue

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques.

Créer un observatoire de la concurrence. Créer un observatoire de la concurrence. Démarche. ntérêt. C aractéristiques. Cée un obsevatoie de la concuence poblématique I Quelle est l'étendue d'un maché? Quelle pat du maché, une entepise peut-elle espée pende? Quels sont les atouts des entepises pésentes su le maché? ntéêt

Plus en détail

A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et

A la mémoire de ma grande mère A mes parents A Mon épouse A Mes tantes et sœurs A Mes beaux parents A Toute ma famille A Mes amis A Rihab, Lina et Remeciements e tavail a été effectué au sein du laboatoie optoélectonique et composants de l univesité Fehat Abbas (Sétif, Algéie) en collaboation avec le goupe MALTA consolido du Dépatement du Physique

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Ventilation à la demande

Ventilation à la demande PRÉSENTATION Ventilation à la demande Produit de pointe pour ventilation à la demande! www.wegon.com La ventilation à la demande améliore le confort et réduit le coût d exploitation Lorque la pièce et

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail