Les nombres premiers ( Spécialité Maths) Terminale S

Dimension: px
Commencer à balayer dès la page:

Download "Les nombres premiers ( Spécialité Maths) Terminale S"

Transcription

1 Les nombres premers ( Spécalté Maths) Termnale S Dernère mse à jour : Mercred 23 Avrl 2008 Vncent OBATON, Ensegnant au lycée Stendhal de Grenoble (Année ) Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -1-

2 J amas et j ame encore les mathématques pour elles-mêmes comme n admettant pas l hypocrse et le vague, mes deux bêtes d averson. Stendhal Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -2-

3 Table des matères 1 Défnton 4 2 Décomposton des enters en produts de facteurs premers 5 3 Pett théorème de Fermat 6 4 Applcatons Le codage RSA Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -3-

4 1 Défnton Défnton 1 : On dt qu un nombre enter naturel st premer s l admet exactement deux dvseurs enters naturels dstncts : 1 et lu même. Notaton : Dans la sute de ce cours, on note P l ensemble des nombres premers. Théorème 1 : Tout enter naturel n dstnct de 1 admet au mons un dvseur premer. S n = 0 alors le théorème est vra car 2 dvse 0. On note n un enter naturel 2 et D n = {p N, p 1 tel que p n} n D n donc D n n est pas vde. D n admet un plus pett élément que l on note p 1. Démontrons que p 1 est premer. On note d un dvseur enter naturel 1 de p 1. Il en exste au mons un p 1 lu même. On a donc d p 1 et p 1 n donc d n or p 1 est le plus pett dvseur de n donc d p 1 De plus comme d p 1 alors d p 1 D après les deux remarques précédentes, d = p 1. p 1 admet donc d et 1 comme seul dvseur donc p 1 P Théorème 2 : L ensemble P est un ensemble nfn. Démontrons ce théorème par l absurde. On suppose que P est un ensemble fn et on note P = {p 1, p 2, p 3,..., p n }. n Sot d = p + 1 =1 d n est pas premer car l est plus grand que tous les p pour [ 1,.., n ] Il a donc un dvseur premer m d après le théorème précédent. m est dans l ensemble P = {p 1, p 2, p 3,..., p n }. n Comme m {p 1, p 2, p 3,..., p n } alors m dvse d et m dvse p donc m dvse 1. Ce qu est absurde. Donc l ensemble des nombres premers est nfn. =1 Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -4-

5 2 Décomposton des enters en produts de facteurs premers Théorème 3 : Tout enter naturel non nul m dstncts de 1 se décompose de façon unqe sous la forme : m = p α pαn n (1) avec p des nombres premers tels que 0 < p 1 < p 2 <... < p n et α N Exstence de la décomposton : Récurrence sur m 2 : On note P m la proprété : Tout enter naturel k ( 2 k m) admet une décomposton de la forme (1). Intalsaton : P 2 est vrae car 2 = 2 1. Hérédté : On suppose que P m est vrae : 1. S m + 1 P alors m + 1 = (m + 1) 1 donc P m+1 est vrae. 2. S m + 1 P : D après le théorème 1 m + 1 admet un dvseur premer p et m + 1 = pq avec q N et 2 q m On a q 0 car m et q 1 car m + 1 P. On applque alors l hypothèse de récurrence sur q et donc P m+1 est vrae. Concluson : Tout enter naturel non nul m dstncts de 1 se décompose sous la forme : m = p α pαn n avec p des nombres premers tels que 0 < p 1 < p 2 <... < p n et α N Démontrons mantenant l uncté d une telle décomposton : Les seuls nombres premers dvsant m d après le théorème de Gauss, sont p 1, 2..., p n. Pour tout [ 1; n ], p α dvse m mas p α +1 ne dvse pas m. En effet, s p α +1 dvse m alors l exste q N tel que m = p α +1 q et en smplfant on aurat : p α 1 2 pα 2... pα +2 2 p αn n = p 1 q et donc p = p 1 ou p = p 2... ou p = p n ce qu n est pas le cas. Donc les α sont les exposants des plus grande pussances de p, dvsant m. Donc la décomposton est unque car nous n avons pas le chox des p et des α. Proposton 1 : On note m un enter dont la décomposton en facteurs premers est m = p α 1 Les dvseurs (postfs)de m sont les enters de la forme : p β 1 1 pβ pβn n avec pour tout [ 1; n ], 0 β α 2... pαn n Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -5-

6 Théorème 4 : Tout enter naturel n 2 non premer admet au mons un dvseur premer p tel que p n On note n un enter naturel 2 et n P. On note p 1 le plus pett des dvseurs premers de n. alors l exste k N tel que n = p 1 k avec k p 1 On a donc n = p 1 k p 2 1 Or la foncton x x est strctement crossante sur R + donc n p 1. 3 Pett théorème de Fermat Théorème 5 : Sot p un nombre premer et a un enter non dvsble par p. Alors a p 1 1 est dvsble par p a p 1 1 [p] 1. Explquez pourquo p ne dvse aucun de la sute a, 2a,..., (p 1)a. 2. Démontrer par l absurde, que le reste des dvsons de a, 2a,..., (p 1)a par p sont tous dfférents. 3. En dédure les restes possbles de la dvson de a, 2a,..., (p 1)a par p. 4. En dédure que a p (p 1) (p 1) [p] 5. En dédure que a p 1 1 [p] Corollare : S p est un nombre premer et a un enter quelconque Alors a p a est dvsble par p a p a [p] A fare... Proprété 1 : S p est un nombre premer et a un enter, alors p dvse a ou p et a sont premers entre eux Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -6-

7 A fare... Proprété 2 : S p est un nombre premer et a et b deux enters, alors S p dvse ab Alors p dvse a ou p dvse b. A fare... 4 Applcatons 4.1 Le codage RSA Vor prochan DM Lycée Stendhal, Grenoble ( Document de : Vncent Obaton ) -7-

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010.

Analyse Numérique - Projet A rendre au plus tard le jour de l examen final, en Janvier 2010. Master 1ère année de Mathématques Analyse Numérque - Projet A rendre au plus tard le jour de l examen fnal, en Janver 2010. CMI, Unversté de Provence Année 2009-2010 Ce qu vous est demandé : Rédger les

Plus en détail

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite.

- Tracer une droite dans le plan repéré. - Interpréter graphiquement le coefficient directeur d une droite. www.mathsenlgne.com 2G3 - EQUATINS DE DRITES CURS (1/5) CNTENUS CAPACITES ATTENDUES CMMENTAIRES Drote comme courbe représentatve d une foncton affne. - Tracer une drote dans le plan repéré. - Interpréter

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Divers raisonnements en mathématiques ( Spécialité Maths) Terminale S

Divers raisonnements en mathématiques ( Spécialité Maths) Terminale S 008 009 Généralités et raisonnement Classe de Terminale S (Option Maths) Divers raisonnements en mathématiques ( Spécialité Maths) Terminale S Dernière mise à jour : Jeudi 4 Septembre 008 Vincent OBATON,

Plus en détail

Chap. C1 : structure et arithmétique dans Z (fin)

Chap. C1 : structure et arithmétique dans Z (fin) Chap. C1 : structure et arthmétque dans Z (fn) The aftermath of Gauss... or the math after Gauss (P. Rbenbom, My Number My frends). V Nombres premers 1) Proprétés élémentares a) Défnton : () Termnologe

Plus en détail

Cours Corporate finance

Cours Corporate finance Cours Corporate fnance Eléments de théore du portefeulle Le edaf Franços Longn www.longn.fr lan Notons de rentablté Défnton odélsaton Eléments de théore du portefeulle ortefeulle Dversfcaton Le edaf Le

Plus en détail

Information mutuelle et partition optimale du support d une mesure de probabilité

Information mutuelle et partition optimale du support d une mesure de probabilité Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada bernard.coln@usherbrooke.ca

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

TD n 3. 1 Modules libres. MM002 (Algèbre et théorie de Galois) Automne 2012

TD n 3. 1 Modules libres. MM002 (Algèbre et théorie de Galois) Automne 2012 Unversté Perre & Mare Cure M de Mathématques MM002 (Algèbre et théore de Galos) Automne 202 TD n 3. Modules lbres Exercce. Montrer que Z/nZ n est pas un Z-module lbre. Plus généralement, montrer que s

Plus en détail

Ch.5. Le modèle d évaluation par arbitrage et les modèles multifactoriels

Ch.5. Le modèle d évaluation par arbitrage et les modèles multifactoriels Unversté ars-dauphne aster 4 Evaluaton d'actfs Ch.5. e modèle d évaluaton par arbtrage et les modèles multfactorels oton d arbtrage Théorème fondamental d évaluaton par arbtrage AT et modèles multfactorels

Plus en détail

Cours élémentaire d arithmétique. Valentin Vinoles

Cours élémentaire d arithmétique. Valentin Vinoles Cours élémentaire d arithmétique Valentin Vinoles décembre 2009 Introduction «Wir müssen wissen. Wir werden wissen.» (Nous devons savoir. Nous saurons.) David Hilbert Voici un document présentant les principales

Plus en détail

«Dans l'arithmétique de l'amour, un plus un égal l'infini,

«Dans l'arithmétique de l'amour, un plus un égal l'infini, 1 Niveau : Terminale S Spé Maths Titre Cours : Etude de et (Partie II) PGCD-PPCM Année : 2014-2015 (Etienne BEZOUT 1730-1883) «Dans l'arithmétique de l'amour, un plus un égal l'infini, et deux moins un

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant

Champ magnétique. 1 Notions préliminaires. 1.1 Courant électrique et densité de courant 4 Champ magnétque 1 Notons prélmnares 1.1 Courant électrque et densté de courant Un courant électrque est défn par un déplacement de charges électrques élémentares (ex : les électrons de conducton dans

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSION 1 - Correction - Minimum Moyenne Ecart-type EAME FIAL DE STATISTIQUES DESCRIPTIVES L1 ECO - SESSIO 1 - Correcton - Exercce 1 : 1) Questons à Chox Multples (QCM). Cochez la bonne réponse Classer ces statstques selon leur nature (ndcateur de poston

Plus en détail

108y= 1 où x et y sont des entiers

108y= 1 où x et y sont des entiers Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Étude de N et Z ( Spécialité Maths) Terminale S

Étude de N et Z ( Spécialité Maths) Terminale S Étude de N et Z ( Spécialité Maths) Terminale S Dernière mise à jour : Jeudi 22 Novembre 2007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

Chapitre 1 : Images données par une lentille mince convergente

Chapitre 1 : Images données par une lentille mince convergente Chaptre 1 : Images données par une lentlle mnce convergente Termnale S Spécalté Chaptre 1 : Images données par une lentlle mnce convergente bectfs : - Constructon graphque de l mage d un obet plan perpendculare

Plus en détail

SIMNUM : Simulation de systèmes auto-gravitants en orbite

SIMNUM : Simulation de systèmes auto-gravitants en orbite SIMNUM : Smulaton de systèmes auto-gravtants en orbte sujet proposé par Ncolas Kelbasewcz : ncolas.kelbasewcz@ensta-parstech.fr 14 janver 2014 1 Établssement du modèle 1.1 Approxmaton de champ lontan La

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Editions ENI. Excel 2013. Collection Référence Bureautique. Extrait

Editions ENI. Excel 2013. Collection Référence Bureautique. Extrait Edtons ENI Collecton Référence Bureautque Extrat Tableaux de données Tableaux de données Créer un tableau de données Un tableau de données, auss appelé lste de données (dans les ancennes versons d Excel),

Plus en détail

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b.

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b. PGCD de deux entiers naturels Diviseurs communs à deux entiers naturels Soient a et b deux entiers naturels non tous les deux nuls. L ensemble des diviseurs communs à a et b est une partie de Z non vide

Plus en détail

Exemples de champs électrostatiques

Exemples de champs électrostatiques Exemples de champs électostatques A. Exemples smples A.. Chage ponctuelle unque Le champ électque et le potentel absolu en un pont M nduts pa une chage ponctuelle q placée en O sont : q E 4 π u et V q

Plus en détail

- donc n explique pas très bien le commerce entre pays industrialisés en particulier le commerce intraeuropéen

- donc n explique pas très bien le commerce entre pays industrialisés en particulier le commerce intraeuropéen Le commerce nternatonale en stuaton de concurrence mparfate: ros problèmes essentels des modèles théorques Rcardo, HOS, Standard: - fondés sur la CPP: le commerce n augmente pas la concurrence - pas d

Plus en détail

I. Fonctionnalités du tableur

I. Fonctionnalités du tableur Olver Coma Macro MRP pour Excel Decembre 1999 I. Fonctonnaltés du tableur I.1. Feulle «Nomenclature «Le tableur propose pluseurs optons à l ouverture du fcher. Cnq boutons apparassent à drote de la feulle

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

Soutien : Modèle de Potts mars 2015

Soutien : Modèle de Potts mars 2015 Année 04 05 Physque Statstque hors équlbre et transtons de phase Souten : Modèle de Potts mars 05 On onsdère une varante du modèle d Isng, dte de Potts, dans laquelle les N degrés de lberté (qu on appellera

Plus en détail

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle

Miroirs sphériques Dioptres sphériques. 1 Miroirs sphériques. 1.1 Introduction : focaliser la lumière. 1.2 Miroir concaves faisceau parallèle Mrors spérques Doptres spérques Nous allons mantenant aborder des systèmes optques un peu plus complexes, couramment utlsés pour produre des mages. Nous allons commencer par étuder un mror spérque de façon

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005)

(D après sujet de BEP Secteur 6 Groupement interacadémique II Session juin 2005) EXERCICES SUR LES STATISTIQUES Exercce 1 Un commerçant effectue des lvrasons de fuel pour les chaudères. La répartton des volumes dstrbués à chaque lvrason s effectue selon le tableau suvant : Volumes

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

Arithmétique modulaire et applications à la cryptographie

Arithmétique modulaire et applications à la cryptographie Arithmétique modulaire et applications à la cryptographie Etant donné un entier n, l arithmétique modulo n consiste à faire des calculs sur les restes dans la division euclidienne des entiers par n. Exemples

Plus en détail

Enseignement secondaire. PHYSI Physique Programme

Enseignement secondaire. PHYSI Physique Programme Ensegnement secondare Dvson supéreure PHYSI Physque Programme 3CB_3CC_3CF_3MB_3MC_3MF Langue véhculare : franças Nombre mnmal de devors par trmestre : 1 PHYSI_3CB_3CC_3CF_3MB_3MC_3MF_PROG_10-11 Page 1

Plus en détail

L algorithme PageRank de Google : Une promenade sur la toile

L algorithme PageRank de Google : Une promenade sur la toile APMEP Pour chercher et approfondr 473 L algorthme PageRank de Google : Une promenade sur la tole Mchael Esermann (*) Depus plus d une décenne Google domne le marché des moteurs de recherche sur nternet

Plus en détail

Cours de Terminale S - Nombres remarquables dont les nombres premiers. E. Dostal

Cours de Terminale S - Nombres remarquables dont les nombres premiers. E. Dostal Cours de Terminale S - Nombres remarquables dont les nombres premiers E. Dostal juin 2015 Table des matières 2 Nombres remarquables dont les nombres premiers 2 2.1 Introduction............................................

Plus en détail

Chapitre 5: La programmation dynamique

Chapitre 5: La programmation dynamique Chaptre 5: La programmaton dynamque. Introducton La programmaton dynamque est un paradgme de concepton qu l est possble de vor comme une améloraton ou une adaptaton de la méthode dvser et régner. Ce concept

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

L anonymat dans les protocoles cryptographiques

L anonymat dans les protocoles cryptographiques École normale supéreure Département d nformatque Équpe CASCADE INRIA Unversté Pars 7 Dens Dderot L anonymat dans les protocoles cryptographques Thèse présentée et soutenue publquement le jeud 1 er octobre

Plus en détail

Représentation de l'information

Représentation de l'information 1. L nformaton 1-1 Dualté état et temps Représentaton de l'nformaton La noton d'nformaton correspond à la connassance d'un état donné parm pluseurs possbles à un nstant donné. La Fgure 1 llustre cette

Plus en détail

PEB: EXEMPLES DE DIVISION DE PROJET

PEB: EXEMPLES DE DIVISION DE PROJET Performance Energétque des âtments > pour archtectes et bureaux d études PE: EXEMPLES DE DIVISION DE PROJET Annexes au VADE-MECUM PE Verson jun 2008 Plus d nfos : www.bruxellesenvronnement.be > professonnels

Plus en détail

L essentiel du cours

L essentiel du cours Terminale S et concours L essentiel du cours mathématiques Arithmétique - matrices Jean-Marc FITOUSSI Progress Editions Table des matières Arithmétique 01 LA DIVISIBILITÉ page 6 02 LA DIVISION EUCLIDIENNE

Plus en détail

LEÇON N 13 : 13.1 Définitions et premières propriétés Définition et remarques Trois résultats importants

LEÇON N 13 : 13.1 Définitions et premières propriétés Définition et remarques Trois résultats importants LEÇON N 13 : Nombres premiers ; existence et unicité de la décomposition d un nombre en facteurs premiers. Infinitude de l ensemble des nombres premiers. Exemple(s) d algorithme(s) de recherche de nombres

Plus en détail

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM

DEFINITIONS ET PRINCIPES FONDAMENTAUX DE LA RDM DEFINITIONS ET PRINCIPES FONDMENTUX DE L RDM 1 OJET DE L RDM PRINCIPES DE L STTIQUE.1 Défnton de l équlbre statque.1.1 Epresson du torseur des actons, moment d une force.1. Sstèmes de forces dvers 3. Les

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 11/03/2014 Table des matères 1 POUQUOI T

Plus en détail

ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE

ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE ÉCHANTILLON REPRÉSENTATIF (D UNE POPULATION FINIE) : DÉFINITION STATISTIQUE ET PROPRIÉTÉS Léo Gervlle-Réache, Vncent Coualler To cte ths verson: Léo Gervlle-Réache, Vncent Coualler. ÉCHANTILLON REPRÉSENTATIF

Plus en détail

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S Valère BONNET (postmaster@mathsaulycee.info) 1 er novembre 2006 Lycée PONTUS DE TYARD 13 rue des Gaillardons 71100 CHALON SUR SAÔNE Tél. : (33) 03 85 46 85

Plus en détail

CLASSICITÉ DE FORMES MODULAIRES DE HILBERT. par. Stéphane Bijakowski

CLASSICITÉ DE FORMES MODULAIRES DE HILBERT. par. Stéphane Bijakowski CLASSICITÉ DE FORMES MODULAIRES DE HILBERT par Stéphane Bjakowsk Résumé. Nous prouvons un résultat de classcté pour les formes modulares de Hlbert surconvergentes. Nous utlsons pour démontrer ce résultat

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

Les mots de Sturm. Fathi BEN ARIBI 20 décembre 2008

Les mots de Sturm. Fathi BEN ARIBI 20 décembre 2008 Les mots de Sturm Fathi BEN ARIBI 20 décembre 2008 1 Objectifs Dans cette présentation, nous donnerons quelques résultats de combinatoire des mots. Avant tout, il est nécessaire d introduire quelques notations

Plus en détail

Partie I: Différences finies avec centrage partiel

Partie I: Différences finies avec centrage partiel U. PARIS VI et ÉCOLE POLYTECHNIQUE 7 anver 04 Spécalté Probablté et Fnance du Master de Scences et Technologe EXAMEN DU COURS ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES EN FINANCE verson 03/0/04

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

THEOREME DES RESIDUS ET CALCUL D INTEGRALES

THEOREME DES RESIDUS ET CALCUL D INTEGRALES Unvrsté du Mn - Fculté ds Scncs tour ésdus THEOEME DES ESIDUS ET ALUL D INTEGALES I Défnton L coffcnt - du dévloppnt n sér d Lurnt d f n s ppll l résdu d f n On : s fu du S f st holoorph n c résdu st nul

Plus en détail

Livret pédagogique. 5 e à 3 e. A bientôt à l Airborne Museum!

Livret pédagogique. 5 e à 3 e. A bientôt à l Airborne Museum! Réalse un croqus sute à ta vste. Dessne ce qu t a le plus touché, marqué, ou un objet que tu as partculèrement apprécé : A bentôt à l Arborne Museum! 14, rue Esenhower - 50480 Sante-Mère-Eglse Tél. 02

Plus en détail

Livret pédagogique. 5 e à 3 e. A bientôt à l Airborne Museum!

Livret pédagogique. 5 e à 3 e. A bientôt à l Airborne Museum! Réalse un croqus sute à ta vste. Dessne ce qu t a le plus touché, marqué, ou un objet que tu as partculèrement apprécé : A bentôt à l Arborne Museum! 14, rue Esenhower - 50480 Sante-Mère-Eglse Tél. 02

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

APPLICATION DE HODGE-TATE DUALE D UN GROUPE DE LUBIN-TATE, IMMEUBLE DE BRUHAT-TITS DU GROUPE LINÉAIRE ET FILTRATIONS DE RAMIFICATION

APPLICATION DE HODGE-TATE DUALE D UN GROUPE DE LUBIN-TATE, IMMEUBLE DE BRUHAT-TITS DU GROUPE LINÉAIRE ET FILTRATIONS DE RAMIFICATION APPLICATION DE HODGE-TATE DUALE D UN GROUPE DE LUBIN-TATE, IMMEUBLE DE BRUHAT-TITS DU GROUPE LINÉAIRE ET FILTRATIONS DE RAMIFICATION LAURENT FARGUES Résumé. L un des buts de cet artcle est de décrre l

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Démontrer par récurrence que pour tout entier naturel n, le nombre est un multiple de 22.

Démontrer par récurrence que pour tout entier naturel n, le nombre est un multiple de 22. Exercice n 1 Montrer que, pour tout entier naturel n, le nombre est un multiple de 3. Exercice n 2 Démontrer par récurrence que pour tout entier naturel n, le nombre est un multiple de 22. Exercice n 3

Plus en détail

o cl o a L'Aide Personnalisée aux élèves en mise en place par I'Etat, difficulté un dispositif irréaliste (1) CL (1, (1) (1, ffi

o cl o a L'Aide Personnalisée aux élèves en mise en place par I'Etat, difficulté un dispositif irréaliste (1) CL (1, (1) (1, ffi ff ----a L'Ade Personnalsée aux élèves en dffculté (1) o a (1) L CL (1, E L (1, II a o cl mse en place par I'Etat, un dspostf rréalste Vendred ltoctobre 2008 à 14h Mare de Mourenx Sommare ---o : : ----r

Plus en détail

L ALGORITHME PAGERANK DE GOOGLE: UNE PROMENADE SUR LA TOILE L E WEB EST UN GRAPHE!

L ALGORITHME PAGERANK DE GOOGLE: UNE PROMENADE SUR LA TOILE L E WEB EST UN GRAPHE! Preprnt verson avalable at http://www-fourer.uf-grenoble.fr/ eserm L ALGORITHME PAGERANK DE GOOGLE: UNE PROMENADE SUR LA TOILE MICHAEL EISERMANN Depus plus d une de cenne Google domne le marche des moteurs

Plus en détail

L'INDUCTION ON5WF (MNS)

L'INDUCTION ON5WF (MNS) 'IDUCTIO ème parte / O5WF (MS) Dans la ère parte de cet artcle, nous avons vu qu'un courant électrque donnat leu à un champ magnétque (expérence d'oersted). ous avons ensute vu comment Faraday, après avor

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Hansard OnLine. Guide relatif au Unit Fund Centre

Hansard OnLine. Guide relatif au Unit Fund Centre Hansard OnLne Gude relatf au Unt Fund Centre Table des matères Page Présentaton du Unt Fund Centre (UFC) 3 Utlsaton de crtères de recherche parm les fonds 4-5 Explotaton des résultats des recherches par

Plus en détail

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes)

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes) Interprétaton crstallne de l somorphsme de Delgne-Illuse (cas des courbes) C. Huyghe et N. Wach 6 avrl 23 Abstract In 987, Delgne and Illuse proved the degeneraton of the spectral sequence de Hodge vers

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Équations et racines

Équations et racines CHAPITRE III Équatons et racnes III.1. Quadratques et cubques Équatons quadratques. On dspose de formules pour la résoluton des équatons quadratques (c est à dre du second degré). En fat, la résoluton

Plus en détail