Formulaire de Math. θ P. Un moyen mnémotechnique pour retenir les valeurs du sinus de 0, π/6, π/4, π/3 et π / 2 consiste à écrire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Formulaire de Math. θ P. Un moyen mnémotechnique pour retenir les valeurs du sinus de 0, π/6, π/4, π/3 et π / 2 consiste à écrire"

Transcription

1 IUT Msurs Physqus Can Formular d Math M. Morals, Laorator d'etuds t d Rchrch sur ls MATérau, ISMRa, Can D. Chatgnr, Laorator CRIstallograph t Scncs ds MATérau, ISMRa, Can ) Trgonométr usull Q M O θ P OP! = cosθ! ; OQ = snθ! ; OM = cosθ! + snθ.. Valurs rmarquals: π/6 π/4 π/ π/ π Sn / Cos Tan / - - Un moyn mnémotchnqu pour rtnr ls valurs du snus d, π/6, π/4, π/ t π / consst à écrr cs valurs sous la form, sn + cos = tan =,,, sn avc π/ + kπ cos 4. cos = + tan cos(-) = cos sn(-)=-sn tan(-) = -tan.. Formuls d'addton: cos (a + ) = cos a cos sn a sn sn(a + ) = sn a cos + cos a sn cos (a - ) = cos a cos + sn a sn sn (a - ) = sn a cos cos a sn cos = cos sn = cos = sn sn = sn cos cos a = 4 cos a cos a sn a = -4 sn a + sn a Pag //

2 IUT Msurs Physqus Can tan (a + ) = tan a + - tan a tan tan tan (a - ) = tan a tan + tan a tan tan = tan tan.. Formuls d transformaton: sn p + sn q = sn cos p + cos q = cos p + q p + q cos cos p q p q sn p - sn q = sn cos p - cos q = - sn t t t s t = tan alors cos =, sn = t tan = + t + t t p q p + q cos sn p + q p q.4. Fonctons crculars: cos = + - sn = - tan = Pour tout nomr rél : = cos + sn t - = cos - sn..5. Fonctons crculars récproqus: Pour tout nomr rél appartnant à [-, ] : arcsn + arccos = π/ t arccos() + arccos(-) = π arctan a + arctan (/a) = π/ s a > t -π/ s a <. cos(arctan) = S y = arccos alors = cos y ; s y = arccos alors = sn y ; s y = arctan alors = tan y. Sur vos calculatrcs cs fonctons récproqus corrspondnt au outons tan -, cos - tc..!!!! (mas auss on put trouvr atan, acos.) Attnton dans l prmr cas: tan - = / tan au sns mathématqu, c'st très dfférnt d arctan()!!! + sn(arctan) = + ) Fonctons logarthms, ponntlls.. Fonctons ponntlls: y = avc rél t y >. + y = y - y = / y r = ( ) r = ( r ) = t = Foncton ponntll d as a: a = lna (a ) y = a y (a) = a Foncton pussanc: α avc α nomr rél... Fonctons logarthm népérn: y = ln avc > t y rél. Pag //

3 IUT Msurs Physqus Can ln(a) = lna + ln ln( a ) = lna ln ln(a n ) = n lna ln = ln = ln(a+) lna + ln!!! S y = ln alors = y t s y = ln alors = y : vor fonctons récproqus... Fonctons logarthm décmal: (logarthm n as ): y = log = ln. ln ) Fonctons hyprolqus - + ch =, sh = - t th = Pour tout nomr rél : = ch + sh t - = ch - sh ; ch sh =. ch (a + ) = cha * ch + sha * sh ch (a - ) = cha * ch - sha * sh sh (a + ) = sha * ch + cha * sh sh (a - ) = sha * ch - cha * sh th (a + ) = tha + th + tha th th (a - ) = ch a = ch a sh a = + sh a = ch a sh a = sha ch ch a = 4 ch a ch a sh a = 4 sh a + sh a th a = tha + th a t s t = th alors sh = - t th = + t - t ; ch = ch t + t t th = tha th tha th 4) Fonctons d un sul varal réll 4.. Dérvé: Sot f un foncton d un sul varal. La dérvé d f au pont st f ( ) t on a: f ( ) = lm f() - f(. - ) Formul d Taylor-Lagrang: Sont n un ntr t f un foncton n fos dérval sur un ntrvall [a, ] t n+ fos sur ]a, [; l st c d ]a, [ tl qu: f() = f(a) + f'(a)! (-a) + f''(a)! (-a) + + f (n) (a) (-a) n + n! (n+ ) f (c) (n + )! (-a) n+. Pag //

4 IUT Msurs Physqus Can Fonctons Dérvés n n n- u() n c a U() + v() U() * v() u() v() u() n u n- () u () c c a * lna u () + v () U () * v() + u() * v () u' () v() - v'() u() v () - u'() u () (g f)() f () * g (f) () ln (u()) u' () u() ln / log cos sn tan ch sh th Arccos /( ln) -sn cos /cos = + tan sh ch /ch = + th Arcsn Arctan Prmtv t Intégral: 4... Talau ds Prmtvs: k étant un constant qulconqu: Pag 4 //

5 IUT Msurs Physqus Can Fonctons Prmtvs (-c) n n ( - c) n + c ln c c + + k + k (ln - ) + k ln a + k - a cos sn tan ch sh th U r () u () a Sn -cos + k -ln cos + k sh + k ch + k ln ch + k + u () r + r + a ln a + k k 4... Calculs d'ntégrals: g() par changmnt d varals: = a f(g(t))dt f(u)du. par parts: g' (t) dt = [ f(t)g(t) ] a a a g(a) f(t) f' (t) g(t) dt. 4.. Dévloppmnt lmté: On dt qu un foncton f admt un dévloppmnt lmté à l ordr n au vosnag d s l st un polynôm P() d dgré nférur à n tl qu f() P() sot néglgal dvant ( - ) n. On not P n (f) l dévloppmnt lmté d f à l ordr n Formul d Taylor-young: f() = P n (f) = f( ) + f' ()! ( - ) + f' '( )! ( - ) + + (n) f ( ) n! ( - ) n. Pag 5 //

6 IUT Msurs Physqus Can 4... Empls Fondamntau: au vosnag d sn = - +! 5 n+ - + (-) n 5! (n + )! où n! = ***4* *n cos = tan = + +! + 4 4! 5 5 n - + (-) n (n)! + = + + +! ( + ) α = + α ! α(α -)! = (-) n n. n n! + + α(α -)(α - )...(α - n + ) n! n ln (+) = - + n + + (-) n-. n arcsn = +! + arccos = π - arcsn arctan = + sh = + th = + ch = + +! + 5 5! 4 4! + + 5) Fonctons d plusurs varals rélls Sot f un foncton dépndant ds varals, n,noté f(, n ). 5.. Dérvés partlls: On appll dérvé partll d f par rapport à la dérvé d f par rapport à avc constants: ' f = f. 5.. Dfférntll: Pag 6 //

7 IUT Msurs Physqus Can On appll dfférntll d f: df = d + d + + n d n = n = d S admt un dérvé partll par rapport à, cll-c s not: f '' f =. On dt qu f admt un dfférntll total act df s: '' f f f = = = f '' 5.. Dérvé d'un vctur: Dfférntll d un vctur: sot OM un vctur, la dfférntll d OM st noté d OM. Coordonnés cartésnns: Coordonnés polars: OM! =! + y + k! OM = r u! r d OM! = d! + dy + d k! d OM = dr u! r + rdθ u! θ Coordonnés cylndrqus: Coordonnés sphérqus: OM = r OM = r u! r d OM = dr u! r + u! d OM = dr u! r + rdθ u! θ + r snθ u! ϕ u! r + rdθ u! θ + d u! 6) Produt scalar t vctorl 6.. Produt scalar: Sont du vcturs u! t v! fasant un angl θ ntr u; on appll produt scalar: u!. v! = u!. v! cos θ c st un scalar!!!! u! = u!. u! : norm du vctur u! = dstanc. S u!. v! = alors u! v! ou un ds du vcturs st nul. Méthod d calcul :! u = y t! v = y : u!. v! =. + y.y Produt vctorl: Pag 7 //

8 IUT Msurs Physqus Can * Sont du vcturs u! t v! fasant un angl θ ntr u; on appll produt vctorl: w! = u! ^ v! = u! ^ v!. sn θ u! w On a w! v! t w! u!. c st un vctur!!!! t u! w st l vctur untar portur d w! S u! ^ v! =! alors u! t v! sont colnéars (parallèls) ou un ds du vcturs st nul. Méthod d calcul:! u = y t! v = y t on a u! ^ v! = y...y y...y. * Doul produt vctorl: u! ^( v! ^ w! ) = ( u! ^ w! ) v! - ( u! ^ v! ) w!. Pag 8 //

Chapitre 2:Nombres complexes

Chapitre 2:Nombres complexes haptr :Nombrs complxs I Défnton t rprésntaton Défnton : Un nombr complx st un nombr d la form x+y avc x t y dux réls t un nombr magnar tl qu ² = - L nsmbl ds nombrs complxs st noté Ls règls d calcul dans

Plus en détail

MTS1 A 2017 Etude de fonctions Aleth Chevalley

MTS1 A 2017 Etude de fonctions Aleth Chevalley MTS A 7 Etud d fonctions Alth Chvally. appls.. Plan d étud d un fonction f : E E f ( ) = y... Ensmbl d définition L nsmbl d définition ou domain d définition d un fonction corrspond à l nsmbl ds valurs

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

FONCTIONS D UNE VARIABLE COMPLEXE

FONCTIONS D UNE VARIABLE COMPLEXE Unvrsté du Man - Faculté ds Scncs! Rtour Varabl complx FONCTIONS D UNE VARIABLE COMPLEXE Ls nombrs complxs ont été ntroduts vrs 55 par ls talns Cardano t Frrar comm racns ds équatons du èm dgré dont l

Plus en détail

cos x = eix + e ix cos 2x = 2 cos 2 x 1 cos 2 x = cos a + cos b = 2 cos cos 2 cos a cos b = 2 sin sin sin a + sin b = 2 sin cos

cos x = eix + e ix cos 2x = 2 cos 2 x 1 cos 2 x = cos a + cos b = 2 cos cos 2 cos a cos b = 2 sin sin sin a + sin b = 2 sin cos Formulaire Trigonométrie Définition cos ei + e i sin ei e i i cos n + i sin n (cos + i sin ) n Angle double cos cos sin tan θ sin θ cos θ Angles opposés et cotan θ tan θ cos θ sin θ cos(θ) cos( θ) cos(π

Plus en détail

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

AN 1 FONCTIONS USUELLES et RÉCIPROQUES

AN 1 FONCTIONS USUELLES et RÉCIPROQUES Analyse /0 AN FONCTIONS USUELLES et ÉCIPOQUES Les notions de limites, dérivées, primitives, continuité sont supposées connues, elles seront revues ultérieurement THEOEMES FONDAMENTAUX D ANALYSE Théorème

Plus en détail

CORRECTION DU BAC 2007

CORRECTION DU BAC 2007 ORRTION U B 7 Trmal S mérqu du Nord rcc Sot (P l pla dot u équato st : + y z + = lors, d coordoés ( ; ;, st u vctur ormal d (P omm H st l projté orthogoal d sur (P, alors H t sot coléars Il st H = k H

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Etude de fonctions Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Chap. B2 : fonctions usuelles (fin)

Chap. B2 : fonctions usuelles (fin) MPSI Semane 7, du 4 au 8 Novembre 6 Chap. B : fonctons usuelles (fn) IV Fonctons trgonométrques : ) Proprétés admses des fonctons sn et cos Vor appendce pour une constructon des fonctons sn et cos, c on

Plus en détail

TS Exercices sur la fonction exponentielle (1)

TS Exercices sur la fonction exponentielle (1) TS Ercics sur la fonction ponntill () 4 a. 4 4 b. Simplifir ls prssions suivants : p( ) a. A = p () p () b. B = p () p ( ) c. C p( ) d. D p( ) 4 5 6 (on pourra posr X ) 4 Simplifir ls prssions suivants,

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

Leçons de choses. 1. Alphabet grec

Leçons de choses. 1. Alphabet grec Leçons de choses Vidéo partie. L'alphabet grec Vidéo partie. L A TEX en cinq minutes Vidéo partie. Formules de trigonométrie : sinus, cosinus, tangente Vidéo partie. Formulaire: trigonométrie circulaire

Plus en détail

, x étant strictement positif. 5ln( x ) + 1

, x étant strictement positif. 5ln( x ) + 1 Lycé Dnis-d-Rougmont Eamn d Maturité Nuchâtl t Flurir Sssion 008 Mathématiqus nivau Problèm (poids 3) 5 a) Résoudr l équation différntill y' + y =, étant strictmnt positif 5ln( ) + On considèr la fonction

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I L sujt comport 8 pags numérotés d 2 à 9 Il faut choisir t réalisr sulmnt trois ds quatr xrcics proposés Parti A EXERCICE I Donnr ls réponss à ct xrcic dans l cadr prévu à la pag 3 On considèr la fonction

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

MTS1 A 2014 Etude de fonctions Aleth Chevalley

MTS1 A 2014 Etude de fonctions Aleth Chevalley MTS A Etud d fonctions Alth Chvally. appls.. Plan d étud d un fonction f : E E f ( ) = y... Ensmbl d définition L nsmbl d définition ou domain d définition d un fonction corrspond à l nsmbl ds valurs d

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

Compléments sur les installations triphasées équilibrées ( en raisonnant avec les complexes et pas avec les vecteurs de Fresnel )

Compléments sur les installations triphasées équilibrées ( en raisonnant avec les complexes et pas avec les vecteurs de Fresnel ) Complémnts sr ls nstallatons trphasés éqlbrés ( n rasonnant avc ls complxs t pas avc ls vctrs d Frsnl ) Rappl : A chaq grandr nstantané snsoïdal, on assoc n grandr complx tll q l on at : Grandr nstantané

Plus en détail

( n) 1. Présentation générale ( ) ( ) ( )... ( ) ( ) ( ) ( ) ( ) GI Mathématiques. 1.1 Notion d équation différentielle ) ( )

( n) 1. Présentation générale ( ) ( ) ( )... ( ) ( ) ( ) ( ) ( ) GI Mathématiques. 1.1 Notion d équation différentielle ) ( ) . Présentation générale. Notion d équation différentielle ( ( n ),,,,..., n, ) F = 0. Définitions ORDRE degré maimal de dérivation LINEAIRE Dans chaque terme, (ou une de ses dérivées) intervient une fois,

Plus en détail

1 Fonction valeur absolue

1 Fonction valeur absolue ISEL - Année Mathématiques FONCTIONS USUELLES Fonction valeur absolue Dénition La valeur absolue d'un nombre réel est = ma(, ) = Propriété Soient a et b deu réels, on a: a = a ; a b b a b; a b a b ou a

Plus en détail

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC Corrigé baccalauréat S Amériqu du Nord 010 (raiatabac.blogspot.com) Exrcic 1 : On donn A(1 ; - ; ) t B( - ; -6 ; 5) t C(- ; 0 ; -3) 1.a) Ls vcturs AB ( -3 ; - ; 1) t AC ( -5 ; ; -) n sont clairmnt pas

Plus en détail

CH I) Les nombres : Partie entière Partie décimale Virgule. Attention : Tous les nombres entiers peuvent sécrire sous forme décimale.

CH I) Les nombres : Partie entière Partie décimale Virgule. Attention : Tous les nombres entiers peuvent sécrire sous forme décimale. CH I) Ls nombrs : I) Dénombrmnt - Écrtur ds nombrs : 1) Ls nombrs ntrs (nombrs naturls) : Combn y a-t-l d prsonns autour d vous? Combn avons-nous d dogts? Ls nombrs qu nous vnons décrr sont ds nombrs naturls,

Plus en détail

Réseaux linéaires en régime sinusoïdal forcé

Réseaux linéaires en régime sinusoïdal forcé Résaux lnéars n rég snusoïdal forcé Vdéoprojcton I Rég snusoïdal forcé ) Défnton Nous étudons l coportnt d un systè lnéar n présnc d un xctaton snusoïdal d pulsaton ω (génératur d tnson snusoïdal). Avc

Plus en détail

Exercices d'analyse Complexe - MaPC41

Exercices d'analyse Complexe - MaPC41 Exercces d'analyse Complexe - MaPC4. Le plan complexe Exercce.. Trouver la parte réelle et magnare des nombres complexes suvants : ( ) 3 + ( 3 ( 5 + 9 + ( + ) 5 ( ) 3 Exercce.. Trouver module et argument

Plus en détail

THEOREME DES RESIDUS ET CALCUL D INTEGRALES

THEOREME DES RESIDUS ET CALCUL D INTEGRALES Unvrsté du Mn - Fculté ds Scncs tour ésdus THEOEME DES ESIDUS ET ALUL D INTEGALES I Défnton L coffcnt - du dévloppnt n sér d Lurnt d f n s ppll l résdu d f n On : s fu du S f st holoorph n c résdu st nul

Plus en détail

FONCTION EXPONENTIELLE : EXERCICES

FONCTION EXPONENTIELLE : EXERCICES FONCTION EXPONENTIELLE : EXERCICES A. Calculs algébriqus Exrcic 1 Simplifir ls xprssions suivants : a) 3 4 b) 4 4 c) 5 3 2 4 ) 3 4 d) ) 3 ) 2 5 Exrcic 2 Simplifir ls xprssions suivants : 5 4) 2 5 + 4)

Plus en détail

1. Intégrale : définitions

1. Intégrale : définitions . Intégrale : définitions. Eemple d approche E = P. t E b = a P ( t ). dt P moy = E b - a . Intégrale : définitions.3 Définition mathématique s = [ f( )+f( )+f( )+f( 4 ) ]. S = [ f( )+f( )+f( S )+f( 3

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Planche n o 02. Trigonométrie circulaire réciproque. Trigonométrie hyperbolique. Corrigé

Planche n o 02. Trigonométrie circulaire réciproque. Trigonométrie hyperbolique. Corrigé Planche n o Trigonométrie circulaire réciproque Trigonométrie hyperbolique Corrigé n o ) Arcsin eiste si et seulement si est dans, Donc, sinarcsin) eiste si et seulement si est dans, et pour dans,, sinarcsin

Plus en détail

des nombres complexes

des nombres complexes Esmbl ds ombrs complxs I. Form algébriqu d u ombr complx. Théorèm Il xist u smbl, oté,d ombrs applés ombrs complxs, tl qu : cotit ; st mui d u additio t d u multiplicatio pour lsqulls ls règls d calcul

Plus en détail

Correction DST optique ondulatoire

Correction DST optique ondulatoire PT Champagn 04 Corrction DST optiqu ondulatoir Sptmbr 04 Corrction DST optiqu ondulatoir Parti I. I..a L phénomèn obsrvé st la diffraction. I..b La formul avc d au dénominatur n st pas homogèn à un longuur.

Plus en détail

Nombres complexes. i² = -1

Nombres complexes. i² = -1 Prof : Hadj Salem Habb I ] Forme 1. Défntons Le nombre complexe est tel que algébrque ² = -1 Un nombre complexe s'écrt de façon unque sous la forme a + b ; a IR, b IR C = ensemble des nombres complexes

Plus en détail

Chap. B3 : fonctions usuelles (fin)

Chap. B3 : fonctions usuelles (fin) MPSI Semane 7, du au 4 novembre 7 Chap. B3 : fonctons usuelles (fn) Tout le B sur les manp. pratques de fonctons trgo. est à revor, rajouter seulement le IV 4) et le 5) c-dessous. Le ), ), 3) sont culturels.

Plus en détail

(pour tout x > 0) et ln(1) = 0.

(pour tout x > 0) et ln(1) = 0. Eo7 Fonctions usuelles Vidéo partie. Logarithme et eponentielle Vidéo partie. Fonctions circulaires inverses Vidéo partie 3. Fonctions hperboliques et hperboliques inverses Eercices Fonctions circulaires

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

Les différentes méthodes de calcul intégral

Les différentes méthodes de calcul intégral Les différentes méthodes de calcul intégral Connaissances de primitives Le calcul d une intégrale est immédiat quand on connaît une primitive de la fonction à intégrer. Tableau des primitives usuelles

Plus en détail

Exponentielles. Mr Zribi. Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I

Exponentielles. Mr Zribi.  Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I Eponntills 4 ér Maths Solutions Ercic : Parti I. g st défini pour tout [ ; [ par g. a Pour tout, g t g > équivaut à > > >. car la fonction p st strictmnt croissant sur R. g ' > pour tout > t g'. Il s'nsuit

Plus en détail

FORMULAIRE DE MATHÉMATIQUES

FORMULAIRE DE MATHÉMATIQUES BACCALAURÉAT, SÉRIES STI tots spéltés, FIOB, STL Spéltés pysq d lortor PLPI m d lortor CLPI I. PROBABILITÉS FORMULAIRE DE MATHÉMATIQUES S A t B sot omptl s : P A B P A P B Ds l s géérl : P A B P A P B

Plus en détail

CHAPITRE IV EQUATIONS DIFFERENTIELLES

CHAPITRE IV EQUATIONS DIFFERENTIELLES CHAPITRE IV EQUATIONS DIFFERENTIELLES Objctifs Un équation différntill st un équation dans laqull l inconnu st un fonction f. D plus, ctt équation fait intrvnir la fonction f ainsi qu ss dérivés, d où

Plus en détail

INTÉGRALES GÉNÉRALISÉES

INTÉGRALES GÉNÉRALISÉES Mathématiques 3 (L) Quelques eercices supplémentaires INTÉGRALES GÉNÉRALISÉES. Calcul d intégrales généralisées par primitivation........ Nature d intégrales généralisées................ 3 3. Eercices

Plus en détail

TS Fonction exponentielle (2)

TS Fonction exponentielle (2) TS Fonction ponntill () I. Limits d la fonction ponntill n + t n ) Comparaison d t On considèr la fonction f : défini sur. f st dérivabl sur comm différnc d fonctions dérivabls sur. f ' Sign d + Variation

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 0 - Gérard Lavau - http://lavau.pagesperso-orange.fr/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

CALCUL DE PRIMITIVES

CALCUL DE PRIMITIVES CALCUL DE PRIMITIVES Calculer une primitive des fonctions suivantes en les mettant sous la forme u f (u) a) + 6 b) e + e c) 4 d) e) ( + ) f) e 6 e g) cos 9 sin h) e 4 e i) Calculer une primitive des fonctions

Plus en détail

1. Equation d une droite dans ε Soit. V = β. Les coordonnées d un point M appartenant à la droite s écrivent : y = y 0 + λβ λ R Ces.

1. Equation d une droite dans ε Soit. V = β. Les coordonnées d un point M appartenant à la droite s écrivent : y = y 0 + λβ λ R Ces. SGM Maths TD Exercices Applications IUT de Chambéry L. Flandin Première partie Révisions de Géométrie Espace affine. Définition On appelle espace affine l ensemble ε dont les éléments sont des points.

Plus en détail

LYCEE ELIE CARTAN Bac Blanc 2008, classes Terminales Scientifiques

LYCEE ELIE CARTAN Bac Blanc 2008, classes Terminales Scientifiques LYCEE ELIE CARTAN Bac Blanc 8, classes Termnales Scentfques La calculatrce est autorsée. Sauf ndcaton contrare, tout résultat devra être justfé. Les élèves fasant la spécalté Mathématques ne feront pas

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo Trigonométrie hyperbolique Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

3. a. Soit G le point d affixe 3. Montrer qu il existe deux rotations de centre G, dont on déterminera les angles, telles que les

3. a. Soit G le point d affixe 3. Montrer qu il existe deux rotations de centre G, dont on déterminera les angles, telles que les Amériqu du Sud novmbr 008 EERCICE 5 points Commun à tous ls candidats Dans l plan compl rapporté à un rpèr orthonormé (O ; u, v), on considèr ls points A, B, C d affis rspctivs : a = + i, b = + 3 i, c

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques Ecole Polytechnique, 009-00 EV- Mathématiques Appliquées Fiche de cours 3 : Fonctions usuelles, Développements ités, Équivalents, Séries Numériques Fonctions usuelles. Quelques rappels Théorème. (Fonctions

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithm népérin Christoph ROSSIGNOL Anné scolair 2011/2012 Tabl ds matièrs 1 Définition, prmièrs propriétés 2 1.1 Définition................................................. 2 1.2 Prmièrs

Plus en détail

DÉRIVATION VECTORIELLE COORDONNÉES CYLINDRIQUES ET SPHÉRIQUES

DÉRIVATION VECTORIELLE COORDONNÉES CYLINDRIQUES ET SPHÉRIQUES DÉIVATION VECTOIELLE COODONNÉES CYLINDIQUES ET SPHÉIQUES I DÉIVATION VECTOIELLE I1Définition,, Soit ( 1 3) un bas othonomé ict Soit = ( O,,, 1 3) un éféntil On consiè un vctu qulconqu qui épn u tmps t

Plus en détail

Sujet de révision n 1

Sujet de révision n 1 4 ème année Secton : Scences Sujet de révson n 1 Ma 010 A. LAATAOUI Thèmes abordés : Complexes ; Probabltés ; Géométre dans l espace ; oncton exponentelle et lecture graphque. Exercce n 1 Sot θ un réel

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Calculer 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Calculer 1 [http://mp.cpgepuydelome.fr] édité le juillet 4 Enoncés Calcul de primitives Fonctions rationnelles en ep Fonctions rationnelles Eercice [ ] [correction] Déterminer les primitives des epressions proposées

Plus en détail

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1.

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1. Trgonométre Défnton du snus et cosnus d'un réel quelconque. (révson de seconde) Len avec la défnton du snus et du cosnus d'un angle agu (dans un trangle rectangle) vue au collège. S O J C I Cette généralsaton

Plus en détail

sin ( π + x ) = sin x sin ( π 2 + x ) = cos x

sin ( π + x ) = sin x sin ( π 2 + x ) = cos x CH3 Géométrie : Trigonométrie 3 ème Maths Novembre 009 A. LAATAOUI 1 ) COSINUS ET SINUS D UN REEL Sauf contre indication, l unité utilisée est le radian. Le plan orienté est muni d un repère orthonormé

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

CORRIGE TD n 9 : Polarisation des ondes lumineuses.

CORRIGE TD n 9 : Polarisation des ondes lumineuses. CORRIG TD n 9 : Polarisation des ondes lumineuses. XRCIC 1 : Polariseur et Analyseur 1. Un polariseur P intercepte un faisceau parallèle de lumière naturelle d éclairement. Quel est l éclairement associé

Plus en détail

Développements limités

Développements limités Développements limités Relation de prépondérance Si I est un intervalle réel, l ensemble des points adhérents de I, dans R est l ensemble Ī, réunion des points de I et des points de la frontière de I.

Plus en détail

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3.

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3. Polynési sptmbr 009 EXERCICE points Commun à tous ls candidats On considèr l cub OABCDEFG d'arêt d longuur rprésnté ci-dssous. Il n'st pas dmandé d rndr l graphiqu complété avc la copi. Soint ls points

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 00 - Gérard Lavau - http://perso.wanadoo.fr/lavau/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

VECTEURS ET SCALAIRES

VECTEURS ET SCALAIRES Vecteus et scalaes VECTEURS ET SCLIRES Le peme cous «nalse vectoelle» a été publé pa Wlson et Gbbs, en 90. Ce cous eposat su les tavau de Hamlton, Cauch, Gassman et Mawell. Dès los, les équatons qu décvent

Plus en détail

Fonctions usuelles. lim x 1. lim. x α ln x = 0

Fonctions usuelles. lim x 1. lim. x α ln x = 0 I Fonction logarithme Fonctions usuelles Définition : n appelle fonction logarithme népérien la primitive de la fonction définie sur ]0, + [ qui s annule en. n notera cette fonction ln. Remarque : L eistence

Plus en détail

Calcul de primitives et d intégrales. () Calcul de primitives et d intégrales 1 / 53

Calcul de primitives et d intégrales. () Calcul de primitives et d intégrales 1 / 53 Calcul de primitives et d intégrales () Calcul de primitives et d intégrales 1 / 53 1 Primitives et intégrale d une fonction continue sur un intervalle 2 Première méthode de calcul : reconnaître la dérivée

Plus en détail

2.4 Logarithme Népérien et fonction exponentielle

2.4 Logarithme Népérien et fonction exponentielle 6 2.4 Logarithm Népérin t fonction ponntill Définition 20 (Logarithm Népérin). On appll Logarithm Népérin, noté ln, l uniqu fonction défini sur R + = ]0, + [ qui vaut 0 n = t dont la dérivé sur ]0, + [

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 005 - Gérard Lavau - http://perso.wanadoo.fr/lavau/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

Calcul de primitives ou d'intégrales se ramenant à une fonction rationnelle

Calcul de primitives ou d'intégrales se ramenant à une fonction rationnelle [http://mp.cpgepuydelome.fr] édité le novembre 7 Enoncés Calcul de primitives ou d'intégrales se ramenant à une fonction rationnelle / +cos /4 +sin cos +cos Eercice [ 5 ] [Correction] Déterminer les primitives

Plus en détail

Analyse Corrigé rapide de la feuille d exercices n 1

Analyse Corrigé rapide de la feuille d exercices n 1 L - UE MAT34 Analyse Corrigé rapide de la feuille d exercices n. Df IR IR Df {(x, y)/x + y } Df 3 IR \ {(, )} Df 4 IR + IR + IR IR. A9 B8 C4 D3 E6 F G3 H7 I J5 K5 L 3. courbe de niveaux f i (x, y) K f

Plus en détail

PRIMITIVES EXERCICES CORRIGES

PRIMITIVES EXERCICES CORRIGES Cours t rcics d mathématiqus Ercic n. Dérivé t primitivs ) Calculz la dérivé d la fonction f défini par PRIMITIVES EXERCICES CORRIGES f 9+. ) Déduisz-n du primitivs d la fonction g défini par g ) Détrminr

Plus en détail

Entrée à Sciences Po 2013

Entrée à Sciences Po 2013 Entré à Scincs Po 03 Ercic Vrai-Fau FAUX La suit u n st un suit géométriqu d raison 4 t d prmir trm u 0 = donc on sait qu n N,u n = 4 n < 0 S n st donc la somm d n+ trms négatifs Finalmnt, pour tout ntir

Plus en détail

SUJET DE BACCALAURÉAT (MAROC, Juin 2004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH

SUJET DE BACCALAURÉAT (MAROC, Juin 2004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH SUJET DE BACCALAURÉAT (MAROC, Juin 004) EPREUVE DE MATHEMATIQUES, FILIERE SCIENCES MATH Solution proposé par El Khalil AIMAD-EDDINE, Hicham BASSOU (Evarist) & Saïd BENLAADAM http://wwwmathslandcom Ercic

Plus en détail

Correction Exercices Oscillation mécanique

Correction Exercices Oscillation mécanique Corrction Exrcics Oscillation mécaniqu Exrcic 1 : 1. a ) P + TR + R = ma Projction suivant xx ' : P x + TRx + R x = ma x = ma d x TR = xi, a =, -x= ma dt d x m + x = dt d x + x = Équation différntill qui

Plus en détail

2 Fonctions hyperboliques et hyperboliques inverses

2 Fonctions hyperboliques et hyperboliques inverses Bibliothèque d eercices Énoncés L Feuille n 4 Fonctions circulaires et hyperboliques inverses Fonctions circulaires inverses Eercice Une statue de hauteur s est placée sur un piédestal de hauteur p. À

Plus en détail

Comment démarrer l étude d un circuit?

Comment démarrer l étude d un circuit? Lçon E2 Méthods ommnt démarrr l étud d un crcut? Méthod 1. manèr général : 1 Toujours avor n têt la grandur rchrché t n foncton d qulls autrs grandurs on chrch à l xprmr. 2 Far apparaîtr ls nœuds (t borns

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

Fiche n 1 sur la dérivation et l intégration

Fiche n 1 sur la dérivation et l intégration Fiche n sur la dérivation et l intégration Table des matières. Dérivation... 2.. Dérivées simples... 2.2. Produit et quotient de fonctions... 2.3. Fonctions composées... 2.4. Notations de Leibniz et de

Plus en détail

CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE. Partie I

CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE. Partie I CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE ANNEE 016 EPREUVE DE MATHEMATIQUES Partie I Question 1 : Explication 1 : m = x+y x+x = x et m = x+y y+y = y. Donc, x m y. Donc, B et C sont vrais. Notons

Plus en détail

Calcul de primitives

Calcul de primitives Calcul de primitives Dans ce document, la notation désigne Cette notation désigne une fonction F (x Formules de bases f(x dx désigne une primitive de la fonction f; x a f(t dt (où a est un réel. Voici

Plus en détail

QCM 1 : Nombres complexes

QCM 1 : Nombres complexes Mr II Fard QM 1 : Nombrs complxs QM st à tratr n début d'anné à ttr d révson sur l programm d. Pour chacun ds 1 qustons suvants un sul ds quatr réponss proposés st xact. ucun justfcaton n st dmandé. omplétr

Plus en détail

Intégrale et aire. Exercice 4.1. Par un calcul d aire, donner la valeur des intégrales suivantes : Tableau de primitives

Intégrale et aire. Exercice 4.1. Par un calcul d aire, donner la valeur des intégrales suivantes : Tableau de primitives Chapitre 4 : Calcul intégrale Intégrale et aire Exercice 4.. Par un calcul d aire, donner la valeur des intégrales suivantes : 4 x ; 3 x. Tableau de primitives Exercice 4.. En précisant sur quels intervalles

Plus en détail

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011 Corrction du baccalauréat S (obligatoir Polynési 0 juin 0 Exrcic Commun à tous ls candidats points Méthod : L dssin suggèr d considérr la rotation d cntr A t d angl π Son écritur complx st : z z A = i

Plus en détail

LES FILTRES. Les Filtres 1 Les filtres 2 Définitions 2

LES FILTRES. Les Filtres 1 Les filtres 2 Définitions 2 LES FILTES Ls Filtrs Ls filtrs Définitions ôl d'un filtr Typs d filtrs Filtrs passifs t actifs abarit d un filtr Ordr d un filtr Filtrs du prmir ordr (rappl) Filtr pass haut Filtr pass bas Filtr pass band

Plus en détail

RESEAUX LINEAIRES EN REGIME SINUSOIDAL FORCE (RSF)

RESEAUX LINEAIRES EN REGIME SINUSOIDAL FORCE (RSF) ESEAX LINEAIES EN EGIME SINSOIDAL FOE (SF) ESEAX LINEAIES EN EGIME SINSOIDAL FOE (SF) Plan (lquer sur le ttre pour accéder au paragraphe) ********************** I. Exemple prélmnare... II. La notaton complexe....

Plus en détail

Méthodes pratiques de calcul de primitives

Méthodes pratiques de calcul de primitives Méthodes pratiques de calcul de primitives I - Introduction On donne dans ce qui suit des méthodes de calcul des primitives d une fonction f, dans le cas où elles s obtiennent à l aide de fonctions élémentaires

Plus en détail

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+

Plus en détail

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0 Fonctions usuelles. I Bestiaire du collège-lycée I.1 Valeur absolue. Signe. Définition 1. R R{ La fonction signe est la fontion sg : 1 si x > 0 x 1 si x < 0. Définition 2. R R{ La fonction valeur absolue

Plus en détail

Exercices sur les équations différentielles

Exercices sur les équations différentielles Erccs sur ls équaons dfférnlls ) Dérmnr du réls a b ls qu pour ou rél \ { ; } on a : ) Résoudr l équaon dfférnll y ' y a b Résoudr l équaon dfférnll y ' y sn Indcaon : consdérr l équaon compl y ' y (on

Plus en détail

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points)

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points) 1 èr S1 ontrôl du mardi 7 mars 017 (50 minuts) Prénom t nom :... Not :.. / 0 III. (7 points : 1 ) 4 points ; ) points) On considèr un résau pointé dont la maill élémntair st un triangl équilatéral d côté

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Exercice 1.sur 10 points Commun à tous les candidats

Exercice 1.sur 10 points Commun à tous les candidats Trminal S Bac Blanc d mathématiqus : duré 4 h Mardi 3 mars 205 Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi,la précision ds raisonnmnts

Plus en détail

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases.

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases. Exercce 5 ASSERVISSEMENT DE VITESSE CORRECTION AVEC UN P.I.D. -Détermner K 3 K = 3 t mn K = 5 t mn V 6 V - Détermner les transmttances G, T,et A, avec C(p) =, sachant que le gan en boucle ouverte est égal

Plus en détail

ln 1 f x 1 ln x 1 2x 1 x lorsque x varie EXERCICE 5A.1 Soit la fonction définie sur ]0 ; + [ par : 1. On admet que : et lim f x

ln 1 f x 1 ln x 1 2x 1 x lorsque x varie EXERCICE 5A.1 Soit la fonction définie sur ]0 ; + [ par : 1. On admet que : et lim f x www.mathsnlign.com LOGARITHME NEPERIEN EXERCICES 5A EXERCICE 5A. Soit la fonction défini sur ]0 ; +[ par : ln f. a. Calculr ls limits d f au borns d son nsmbl d définition. b. En déduir qu C, la courb

Plus en détail

DY - METHODES PRATIQUES DE CALCUL DE PRIMITIVES

DY - METHODES PRATIQUES DE CALCUL DE PRIMITIVES DY - METHODES PRATIQUES DE CALCUL DE PRIMITIVES I - Introduction On donne dans ce qui suit des méthodes de calcul des primitives d une fonction f, dans le cas où elles s obtiennent à l aide de fonctions

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

Courbes en coordonnées polaires

Courbes en coordonnées polaires [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 Courbes en coordonnées polaires Exercice 1 [ 00597 ] [correction] Etudier la courbe d équation polaire Exercice 2 [ 00592 ] [correction]

Plus en détail

4 Fonctions usuelles. 4.1 Fonction polynomiale. 4.2 Fonctions logarithme et exponentielle

4 Fonctions usuelles. 4.1 Fonction polynomiale. 4.2 Fonctions logarithme et exponentielle 4 Fonctions usuelles 4. Fonction polynomiale Définition Soient n N, a 0,a,...,a n R et a n R.Alorslafonction P R R x n k=0 est appelée fonction polynôme de degré n. a k x k =..., Définition Soit P R R

Plus en détail