Exercices de révision

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercices de révision"

Transcription

1 Université de Cen Licence de Biologie Semestre 0 04 Mthémtiques TD Groupe 4 Exercices de révision Corrigé Nombres complexes Exercice. On pose A = + i et B = + i. Clculer A B, A + B, A B, B, A + B. Clculer le quotient C = B sous forme lgébrique. A Écrire C sous forme trigonométrique et sous forme exponentielle. 4 Clculer C 04 sous forme géométrique, puis sous forme lgébrique. Solution: A B = + i + i = + i i =. A + B = + i + + i = i + + i =. A B = + i i = i + i i = 6 + i + i i = 6 + i = + i. B = + = 0. A + B = + i + + i = + i = + i + i = + 4i + 4i = + 4i 4 = + 4i. C = B A = B A + i i = = A + i 6 i i i = On clcule d bord le module: C = + =. D près l représenttion géométrique, on i + i i + 6 i + = = i. rgc = π 4 mod π. Ou pr une utre méthode, ReC rgc = rccos C = rccos = π 4 mod π. Le signe étnt cr sinrgc = ImC C = < 0.

2 Donc, posnt ϕ = rgc, l forme trigonométrique de C est C = C cosϕ + i. sinϕ = cos π4 + i. sin π4 et l forme exponentielle est 4 On utilise l forme exponentielle: C = C e iϕ = e i π 4. C 04 = e i π 4 04 = 04 e i π 4 04 = 007 e i π 007 = 007 0π i e = 007 cos 0π + i. sin 0π. Comme 0π π = + 0π = π 7 π et les fonctions sinus et cosinus ont pour période π, on cos 0π = cos π = 0, sin 0π = sin π =. On rppelle les formules cos x = cosx et sin x = sinx. D où l forme lgébrique C 04 = 007 cos 0π + i. sin 0π = i. = 007 i. Exercice. Déterminer un rgument de chcun des nombres complexes suivnts: z = + i, z = i, z = + i, z 4 = i, z = + i, z 6 = i, z 7 = + i, z 8 = i. Solution: Rppelons l méthode générle pour déterminer un rgument d un nombre complexe. Pour certines expressions simples, on pourr trouver un rgument à l ide de l représenttion géométrique. Pr exemple, rg + i = π 4 mod π ; rg i = π 4 mod π ; rg + i = π 4 mod π ; rg i = π 4 mod π. Dns le cs générl, si z = + bi est l forme lgébrique, le module ρ = Z est donné pr ρ = z = + b

3 et tout rgument ϕ = rgz vérifie cr cosϕ = ρ = et sinϕ = b + b ρ = b + b + i.b = z = ρcosϕ + i. sinϕ = ρ cosϕ + i.ρ sinϕ. L fonction rccos ne prend que des vleurs dns [0 ; π] et cos ϕ = cosϕ. L reltion ϕ = rccos = rccos mod π ρ + b n est vlble que si l imge Mz du nombre z dns le pln se trouve u-dessus de l xe Ox. Sinon, ϕ = rccos = rccos mod π ρ + b Le signe de l ordonné du point Mz est celui de sinϕ. Donc, le point Mz est u-dessus de l xe Ox si et seulement si On en conclut: ϕ = rccos ϕ = rccos sinϕ = +b +b Pour les nombres z,..., z 8, on b + b 0. mod π si b +b 0 mod π si b +b < 0 z = z 6 = z 7 = z 8 = et rgz = rg + i = rccos mod π rgz 6 = rg i = rccos mod π rgz 7 = rg + i = rccos mod π rgz 8 = rg i = rccos mod π cr > 0 cr < 0 cr > 0 cr < 0 Exercice. On pose A = e i π et B = e i π 6. Écrire sous forme lgébriques les nombres A et B, en utilisnt les vleurs remrqubles du formulire.

4 Clculer sous forme lgébrique les quotients A/B et B/A. Simplifier l expression A B 4 en donnnt le résultt sous forme lgébrique. Solution: On d où cos π = cos π π sin π = sin π π A = e i π B = e i π 6 = cos π = = sin π = π = cos + i. sinπ = + i. π = cos 6 + i. sinπ 6 = + i. Première méthode: A B = A B + i. i. i. + i. B = + i. = + Seconde méthode: A B = ei B A = ei = + i + i i B A = A/B = i = i π e i π 6 π 6 e i π = + i = i i = i. = i. = e i π π 6 = e i π = cos π + i. sinπ = 0 + i. = i. i. = e i π 6 π = e i π π = cos + i. sin π = 0 + i. = i. En utilisnt les formes exponentielles des deux nombres A, B, on obtient A B 4 = e i π e i π 6 4 = e i π e i π 6 4 = e i 0π e i π = e i 0π + π = e i.4π = cos4π + i sin4π = cos 0 + i. sin 0 = + i.0 =. Exercice 4. Écrire sous forme exponentielle les nombres + i et i. Exercice b, Feuille de TD n 4. Simplifier l expression Z = + i9 i 7 Solution: + i = e i π 4, i = e i π 4. 4

5 Z = + i9 i = e i π e i π 4 = e i 9π 4 e i 7π 4 = 9 7 e i 9π 4 i 7π 4 = e i 9π 4 + 7π 4 = e i.4π = cos4π + i. sin4π = cos 0 + i. sin 0 = + i.0 =. Exercice. Résoudre dns C les équtions suivntes, en donnnt les solutions sous forme géométrique z 6 = i z = i Solution: Rppels voir ussi l formulire: Si C s écrit = ρ.e iθ sous forme exponentielle, lors l éqution z n = dmet exctement n solutions, données pr z 0 = ρ /n e i θ n = n ρ e i θ n ; z = n ρ e i θ n e i π n = n ρ e i θ n + π n ; z = n ρ e i θ n e i π n = n ρ e i θ n + π n ; = z n = n ρ e i θ n e i π n n = n ρ e i θ n + π n n ; c-à-d., pour chque k = 0,,..., n, z k = ρ /n e i θ n e i π n k = n ρ e i θ n + π n k. On i = et rgi = π. Donc i =.ei π sous forme exponentielle. L éqution z 6 = i 6 solutions dns C: On z 0 = 6 e i π/ 6 = e i π ; z = 6 e i π/ 6 e i π 6 = e i π + π 6 = e i π ; z = 6 e i π/ 6 e i π 6 = e i π + 4π 6 = e i 9π = e i π 4 ; z = 6 e i π/ 6 e i π 6 = e i π +π = e i π ; z 4 = 6 e i π/ 6 e i π 6 4 = e i π + 8π 6 = e i 7π ; z = 6 e i π/ 6 e i π 6 = e i π + 0π 6 = e i π = e i 7π i = = = = 8 6 = =, rg8 8 8 i = rg i = π 4 mod π.

6 D où l forme exponentielle de i: i = e i π 4. L éqution z = i solutions dns C: z 0 = e i π/4 =.e i π 0 ; z = e i π/4 e i π =.e i π 0 + π =.e i 7π 0 ; z = e i π/4 e i π =.e i π 0 + 4π =.e i π 0 =.e i π 4 ; z = e i π/4 e i π =.e i π 0 + 6π =.e i π 0 ; z 4 = e i π/4 e i π 4 =.e i π 0 + 8π =.e i π 0. Fonctions puissnces et logrithmes Exercice 6. Refire l exercice du prtiel n prtiel du 4 octobre 0. Solution: Voir le corrigé du prtiel disponible sur moodle. Études fonctionnelles Exercice 7. Refire l exercice du prtiel n prtiel du 4 octobre 0. Solution: Voir le corrigé du prtiel disponible sur moodle. Exercice 8. On considère l fonction f de R + dns R définie pr fx = 4x + x. Clculer l dérivée de f. Étblir le tbleu de vrition de f. Donner l llure du grphe de f. Solution: On peut écrire Donc, fx = 4x + = 4x + x x/. f x = 4x + x / = 4 +.x = 4 x = 4.x /. D près, f x = 0 x / = 8 x = 64 x = 64 = 4 6

7 L vleur de f en x = /4 est f = = + /4 / =. De plus, on f x > 0 4.x / > 0 x/ > 8 x > 4, schnt que l fonction x x / est croissnte. Comme x tend vers 0 en + et vers + en 0 +, fx pour limite + en + comme x et en 0 + là 4x 0. On en déduit le tbleu de vrition: L llure du grphe: x f x fx Géométrie dns l espce Exercice 9. Refire l exercice du prtiel n prtiel du novembre 0. Solution: Voir le corrigé du prtiel disponible sur moodle. 7

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN L fonction logrithme népérien Cours CHAPITRE : LA FONCTION LOGARITHME NEPERIEN. Définition de l fonction logrithme népérien L fonction logrithme népérien, notée ln, est définie sur ],+ [, prend l vleur

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

TS 2, Correction Bac Blanc n o 2

TS 2, Correction Bac Blanc n o 2 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

1. Fonctions fortement piquées. La fonction delta de Dirac. (x) ρ n. n = 8. Figure 1

1. Fonctions fortement piquées. La fonction delta de Dirac. (x) ρ n. n = 8. Figure 1 31 3. Fonction de Dirc 1. Fonctions fortement piquées. fonction delt de Dirc 1.1. Exemple en électrosttique ρ n (x n = 8 n = 4 n = 2 n = 1-1/2 O 1/2 x Figure 1 Considérons, sur une droite, une suite de

Plus en détail

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E.

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E. http://mths-sciences.r LES FONCTIONS NUMÉRIQUES USUELLES I) Générlités ) Déinition Soit I un intervlle de, une onction est une reltion qui ssocie à tout élément x de I, un nombre réel (x) u plus. : I x

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

La clarté des raisonnements et la qualité de la rédaction interviendront dans l appréciation des copies.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l appréciation des copies. ACADEMIE DE GRENOBLE Bcclurét Professionnel Systèmes Électroniques Numériques (S.E.N.) Durée : h C.C.F. de Mthémtiques Coefficient : Dte : novemre 007 Thèmes : Régultion du contrste lumineu d un téléviseur

Plus en détail

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez

Cours d harmonisation en mathématiques. Bérangère Delourme-Jose Gomez Cours d hrmonistion en mthémtiques Bérngère Delourme-Jose Gomez septembre 206 2 Tble des mtières Trigonométrie et nombres complexes 7. Trigonométrie élémentire...............................................

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1 ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

ROC: Restitution Organisée des Connaissances

ROC: Restitution Organisée des Connaissances ROC: Restitution Orgnisée des Connissnces Terminle S Septembre 2005 Tble des mtières 1 Anlyse 2 1.1 Limites et ordre........................... 2 1.2 Bijection............................... 3 1.3 Fonction

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

COURS DE MATHÉMATIQUES. Modules M 1201 & M 1302 SEMESTRE 1. Année universitaire

COURS DE MATHÉMATIQUES. Modules M 1201 & M 1302 SEMESTRE 1. Année universitaire Année universitire 2016-2017 COURS DE MATHÉMATIQUES Modules M 1201 & M 1302 SEMESTRE 1 Auteur : Florent ARNAL Adresse électronique : florent.rnl@u-bordeux.fr Tble des mtières 1 INTEGRATION ET EQUATIONS

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉUDES DE FONCIONS NUMÉRIQUES Site MthsICE de Adm roré Lycée echnique Bmko I Pln d étude d une fonction numérique : Pour étudier une fonction numérique nous dopterons le pln suivnt : Déterminer l ensemble

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S - Opértions sur les inéglités Kit de survie - Bc S Inéglités - Etude de signe Règles usuelles : Pour tout : x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k < : x < y kx >

Plus en détail

Cours de Terminale S Analyse. Éric ROUGIER

Cours de Terminale S Analyse. Éric ROUGIER Cours de Terminle S Anlyse Éric ROUGIER 13 vril 2015 2 Tble des mtières 1 Suites et récurrence 5 I - Le risonnement pr récurrence...................................... 6 1. Principe de récurrence.......................................

Plus en détail

L ensemble? contient les rationnels, mais aussi les nombres comme 2,? appelés irrationnels. f) lien entre les ensembles de nombres

L ensemble? contient les rationnels, mais aussi les nombres comme 2,? appelés irrationnels. f) lien entre les ensembles de nombres Chpitre I : Les nombres I. Les différents ensembles de nombres ) les entiers nturels :? = {0 ; 1 ; ; 3 ; } b) les entiers reltifs :? Ce sont les entiers nturels et leurs opposés :? = { ; -3 ; - ; -1 ;

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3

Licence de Mathématiques Fondamentales Calcul Scientifique feuille de TD 3 Licence de Mthémtiques Fondmentles Clcul Scientifique feuille de TD 3 Intégrtion numérique Soit f : [, b] R une fonction continue On cherche à clculer numériquement l intégrle f(x) dx Pour cel, on subdivise

Plus en détail

Chapitre IV Equation d Euler-Lagrange

Chapitre IV Equation d Euler-Lagrange 26 hpitre IV Eqution d Euler-Lgrnge On s intéresse dns cette prtie ux problèmes de l forme suivnte : Sur l ensemble des fonctions y 1 ([,b]) (muni de l norme 1 ) telles que y() = A et y(b) = B, trouver

Plus en détail

Analyse 2. Notes de cours

Analyse 2. Notes de cours Anlyse Notes de cours André Giroux Déprtement de Mthémtiques et Sttistique Université de Montrél Avril 4 Tble des mtières INTRODUCTION 4. Exercices............................ 6 INTÉGRATION DES FONCTIONS

Plus en détail

LE CALCUL ALGEBRIQUE

LE CALCUL ALGEBRIQUE I. Clculs vec des frctions : ce fcteur : ) Rppels : LE CALCUL ALGEBRIQUE b = b = b = b Exemple : 3 x = x 3 = 3x ( b ) c = ( bc ) = bc Exemple : ( 3x ) 5 = 3 ( 5x ) = 15x 1 = 1 = b) Signe moins dns une

Plus en détail

LIMITE ET CONTINUITÉ DE FONCTIONS

LIMITE ET CONTINUITÉ DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot LIMITE ET CONTINUITÉ DE FONCTIONS Soit R. Dns tout ce chpitre, on dir qu une fonction f de domine de définition D f est définie u voisinge de s il existe un réel

Plus en détail

Chapitre 6 : Logarithme

Chapitre 6 : Logarithme Chpitre 6 : Logrithme Introduction Pour représenter grphiquement des nombres qui vrient sur plusieurs ordres de grndeur (pr exemple de à 000), on ne peut ps utiliser l échelle hbituelle où les grdutions

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63 Tble des mtières 1. ALGORITHMES...15 A) LES PRINCIPAUX ALGORITHMES À SAVOIR CONSTRUIRE ET MANIPULER...15 1. Comment écrire un lgorithme qui clcule un terme u n d'une suite numérique définie pr récurrence?...15

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Nombres complexes Forme polaire Algèbre linéaire I MATH 1057 F

Nombres complexes Forme polaire Algèbre linéaire I MATH 1057 F Nombres complexes Forme polaire Algèbre linéaire I MATH 1057 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 3 avril 2011 Forme polaire Le nombre complexe

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

3 Méthodes du 1 er degré

3 Méthodes du 1 er degré 3 Méthodes du 1 er degré 3.1 Activité Un groupement de commerçnts plnifie ses dépenses promotionnelles u jour le jour, sur une période d un n. Il sit qu u début de l nnée, une dépense de 180 pr semine

Plus en détail

DM1. Nombres complexes, homographies. u w = u w.

DM1. Nombres complexes, homographies. u w = u w. Université Pul Sbtier, Année 205-206 Licence LPS DM Nombres complexes, homogrphies. Dns ce problème, on considère le pln ffine euclidien P muni d un repère orthonormé (0, i, j). On identifier P vec l ensemble

Plus en détail

Cours en salle d'informatique muni d'un vidéo-projecteur ou d'un tableau interactif

Cours en salle d'informatique muni d'un vidéo-projecteur ou d'un tableau interactif CTIVITÉ TICE : DÉRIVATIOND ACTIVITÉ Niveu : Bc Professionnel Type d'utilistion : Cours en slle d'informtique muni d'un vidéo-projecteur ou d'un tbleu interctif Mtériel : 1 ordinteur pr binôme et/ou un

Plus en détail

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle.

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle. Université de Svoie 0-03 L MASS-SFT-SV Polycopié pour le cours de MATHb Anlyse élémentire. Chpitre Étude prtique des fonctions d une vrible réelle. I Générlités Un peu de vocbulire On doit toujours présenter

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Rappels sur le calcul Littéral

Rappels sur le calcul Littéral Première prtie Rppels sur le clcul Littérl I Clculer vec les frctions, les puissnces, les rdicux I.1 les frctions I.1.1 générlités Bon, il est temps que je rppelle quelques règles de bse concernnt le clcul

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

8. Primitives d'une fonction et intégrales

8. Primitives d'une fonction et intégrales 8. Primitives d'une fonction et intégrles I- Usge du tleu des dérivées Compléter les tleu et en précisnt le numéro des lignes utilisées. Tleu N f () f ' () -... Fonction f f () + érivée f ' f ' ()......

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications. LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur

Plus en détail

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3.

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3. BCPST. Année 00-0 Lycée Pierre de Fermat Toulouse Fiche n o Nombres complexes Exercice. On considère les nombres complexes a = + i et b = 3 i. a Déterminer la forme trigonométrique de a, b, et de ab. b

Plus en détail

(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2

(b). Calculons les dérivées partielles de f. Nous obtenons f x (x, y) = 2x(1 + x2 + y 2 ) 4x(x 2 + y 2 ) (1 + x 2 + y 2 ) 3 4x 2 CORRECTION DU MODÈLE D EXAMEN 2 Exercice 1 (). L fonction f est un quotient de deux fonctions polynomiles et le dénominteur ne s nnulle ps sur R 2, donc f est de clsse C et en prticulier de clsse C 2.

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE

APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE Définition. Soit I R un intervlle ouvert et soit f : I R une fonction. () Si f est continue, on dit que f est de clsse C 0. (2) Si f est

Plus en détail

Comparaison des fonctions au voisinage d un point

Comparaison des fonctions au voisinage d un point DOCUMENT 29 Comprison des fonctions u voisinge d un point Pour tout 0 R on pose : V 0 = {] 0 η, 0 + η[ η > 0} si 0 R; V 0 = {], + [ R} si 0 = + et V 0 = {], [ R} si 0 =. Un élément de V 0 est ppelé un

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille Les Mthémtiques : du collège u lycée Rentrée 2014 Au LYCEE Pierre Corneille 1 Clculer Développer Fctoriser Résoudre pour réussir u lycée. Nom de l élève :. 2 LIVRET DE REVISION 3 e / 2 nde - INTRODUCTION

Plus en détail

Intégration et primitives

Intégration et primitives TS 202-203 Intégrtion et primitives Intégrle d une fonction continue et positive. Notion d ire sous une coure Etnt donné une fonction f continue et positive sur un intervlle [; ] vec, on note C s représenttion

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Z - Les nombres Entiers rappels, révisions et compléments

Z - Les nombres Entiers rappels, révisions et compléments éléments de cours à découper et à coller dns le chier. Les exercices sont soit dns le document, soit dns ton livre d exercices Actimthàl infini2. Les ciseux t invitent à couper l feuille à cet endroit

Plus en détail

Nombres complexes. Trigonométrie. Lycée Jean Perrin Classe de TSI 1 Exercices série 1

Nombres complexes. Trigonométrie. Lycée Jean Perrin Classe de TSI 1 Exercices série 1 Lycée Jean Perrin Classe de TSI 1 Exercices série 1 Nombres complexes I Trigonométrie Exercice 1. 1. Déterminer les valeurs exactes de cos π, sin π et tan π (on pourra utiliser les 12 12 12 valeurs connues

Plus en détail

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES HAPITRE DÉTERMINANTS ET INVERSION DE MATRIES Introduction Dns l lgèbre mtricielle, les déterminnts occupent une plce d importnce tnt en théorie qu en prtique est que l vleur numérique du déterminnt d une

Plus en détail

CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE

CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE Prof. H. NAJIB Optique Physique Version : sept. 006 CHAPITRE II INTERFERENCES A DEUX ONDES LUMINEUSES PAR DIVISION DU FRONT D ONDE II.1- Définition On dit que deux ondes (ou plusieurs) interfèrent lorsque

Plus en détail

Angles orientés et coordonnées polaires

Angles orientés et coordonnées polaires 1 Angles orientés et coordonnées polaires Table des matières 1 Angles orientés 1.1 Définition................................. 1. Mesure d un angle orienté........................ 1. Propriétés.................................

Plus en détail

Aide-mémoire de trigonométrie

Aide-mémoire de trigonométrie Aide-mémoire de trigonométrie. Vleurs prticulières x 0 (rd) 0 sin x 0 cos x tn x 0 /6 (rd) 0 /4 (rd) cotn x 45 / (rd) 60 / (rd) 90 0 0. Formules des ngles ssociés Formules des ngles égux cos ( k + x) =

Plus en détail

Calcul différentiel et intégral 2 (M-1.1)

Calcul différentiel et intégral 2 (M-1.1) Clcul différentiel et intégrl (M-.) Cdre : dns l suite on considère une fonction numérique f définie sur un intervlle I et un réel I I. Dérivée d'une fonction Définition du nomre dérivé : l fonction f

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Suites et séries de fonctions MP

Suites et séries de fonctions MP Suites et séries de fonctions MP 17 jnvier 2013 Tble des mtières 1 Convergence simple et convergence uniforme 2 1.1 L convergence simple.............................. 2 1.2 L convergence uniforme.............................

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement.

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement. Rcines crrées. 1. Générlités : ) Déinition : b) Nottion. c) Exemples.. Propriétés. ) Produits de rcines crrées. b) Quotient de rcines crrées. c) Lien vec les puissnces. d) Modiiction d écritures vec des

Plus en détail

Département de mathématiques Cégep de Saint-Laurent Algèbre linéaire et géométrie vectorielle 201-NYC Automne 2014 Yannick Delbecque. alors v = 0.

Département de mathématiques Cégep de Saint-Laurent Algèbre linéaire et géométrie vectorielle 201-NYC Automne 2014 Yannick Delbecque. alors v = 0. Déprtement e mthémtiques Cégep e Sint-Lurent Algère linéire et géométrie vectorielle 201-NYC Automne 2014 Ynnick Delecque Propriétés es vecteurs et géométrie ffine Résumé es propriétés Axiomes espce vectoriel

Plus en détail

Harmonisation des Connaissances en Mathématiques

Harmonisation des Connaissances en Mathématiques Hrmonistion des Connissnces en Mthémtiques UE de 3me nnée de l Licence Physique et Ingénieries, prcours IUP GSI et re nnée de Mster PTR Polycopié du cours 25 Frnçois Dums 2 Module d Hrmonistion des Connissnces

Plus en détail

Comparaison entre ancien et nouveau programmes de Terminale S

Comparaison entre ancien et nouveau programmes de Terminale S Comprison entre ncien et nouveu progrmmes de Terminle S Ancien progrmme 2002 Nouveu progrmme 2012 Progrmme 1 ère S 2011 et Commentires Anlyse Anlyse Anlyse Suites et récurrence Risonnement pr récurrence

Plus en détail

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond Mthémtiques Anlyse de Fourier D près des notes rédigées pr B. Helffer et T. Rmond Année 2007 2 Tble des mtières I Suites, Intégrles et Séries 1 1 Suites de nombres réels ou complexes 1 1.1 Générlités.........................................

Plus en détail

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉQUATIONS INÉQUATIONS SYSTÈMES Site MthsTICE de Adm Troré Lycée Technique Bmko I Équtions du second degré : Résolution pr l méthode du discriminnt : Pour résoudre l éqution du second degré b c = ( d inconnu,

Plus en détail

Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est

Plus en détail

Continuité des fonctions numériques d une variable réelle

Continuité des fonctions numériques d une variable réelle Mths PCSI Cours Continuité des fonctions numériques d une vrible réelle Tble des mtières Générlités 2. Du vocbulire............................................ 2.2 Monotonie...............................................

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N.

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N. Groupe seconde chnce Feuille d exercice n 7 Exercice 1 On considère Un segment [AC] de longueur 16 cm, et le point B situé sur [AC] à 6 cm de C. P est un point du cercle de dimètre [AB] tel que AP = 8

Plus en détail

Chapitre 1 Suites de fonctions

Chapitre 1 Suites de fonctions Université de Bourgogne Déprtement de Mthémtiques Licence de Mthémtiques Résumé du cours Compléments d Anlyse Chpitre Suites de fonctions. Suites de nombres, suites de fonctions Dns tout ce chpitre, l

Plus en détail

Nombres complexes - Partie 2

Nombres complexes - Partie 2 Chapitre F Nombres complexes - Partie 2 Contenus Capacités attendues Commentaires Forme trigonométrique : module et argument, interprétation géométrique dans un repère orthonormé direct ; notation exponentielle.

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Argument d un nombre complexe

Argument d un nombre complexe Argument d un nombre complexe Dans ce chapître, nous allons introduire les éléments indispensables à la résolution de notre grand problème : montrer la clôture algébrique de C, c està-dire le fait que

Plus en détail

Outils Mathématiques 3

Outils Mathématiques 3 Université de Rennes1 Année 2010/2011 Outils Mthémtiques 3 Chpitre 4: Intégrtion curviligne résumé 1 Courbes prmétrées Définition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont

Plus en détail