Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2"

Transcription

1 Exo7 Nombres complexes Les nombres complexes. Défnton Opératons Parte réelle et magnare Calculs Conjugué, module Racnes carrées, équaton du second degré 5. Racnes carrées d un nombre complexe Équaton du second degré Théorème fondamental de l algèbre Argument et trgonométre 7 3. Argument Formule de Movre, notaton exponentelle Racnes n-ème Applcatons à la trgonométre Nombres complexes et géométre 0 4. Équaton complexe d une drote Équaton complexe d un cercle Équaton a b = k Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes et géométre Préambule L équaton x+5 = a ses coeffcents dans N mas pourtant sa soluton x = 3 n est pas un enter naturel. Il faut c consdérer l ensemble plus grand Z des enters relatfs. x+5= N Z x= 3 Q x = R x = C De même l équaton x = 3 a ses coeffcents dans Z mas sa soluton x = 3 est dans l ensemble plus grand des ratonnels Q. Contnuons ans, l équaton x = à coeffcents dans Q, a ses solutons x = +/ et x = / dans l ensemble des réels R. Ensute l équaton x = à ses coeffcents dans R et ses solutons x = + et x = dans l ensemble des nombres complexes C. Ce processus est-l sans fn? Non! Les nombres complexes sont en quelque sorte le bout de la chaîne car nous avons le théorème de d Alembert-Gauss suvant : «Pour n mporte quelle équaton polynomale a n x n +a n x n + +a x +a x+a 0 = 0 où les coeffcents a sont des complexes (ou ben des réels), alors les solutons x,..., x n sont dans l ensemble des nombres complexes». Outre la résoluton d équatons, les nombres complexes s applquent à la trgonométre, à la géométre (comme nous le verrons dans ce chaptre) mas auss à l électronque, à la mécanque quantque, etc.

2 Les nombres complexes. Défnton Défnton. Un nombre complexe est un couple (a, b) R que l on notera a + b R b a + b 0 a R Cela revent à dentfer avec le vecteur (,0) de R, et avec le vecteur (0,). On note C l ensemble des nombres complexes. S b = 0, alors = a est stué sur l axe des abscsses, que l on dentfe à R. Dans ce cas on dra que est réel, et R apparaît comme un sous-ensemble de C, appelé axe réel. S b 0, est dt magnare et s b 0 et a = 0, est dt magnare pur.. Opératons S = a + b et = a + b sont deux nombres complexes, alors on défnt les opératons suvantes : addton : (a + b) + (a + b ) = (a + a ) + (b + b ) R + 0 R multplcaton : (a + b) (a + b ) = (aa bb ) + (ab + ba ). C est la multplcaton usuelle avec la conventon suvante : =.3 Parte réelle et magnare Sot = a + b un nombre complexe, sa parte réelle est le réel a et on la note Re() ; sa parte magnare est le réel b et on la note Im(). R Im() 0 Re() R Par dentfcaton de C à R, l écrture = Re() + Im() est unque : Re() = Re( ) = et Im() = Im( )

3 En partculer un nombre complexe est réel s et seulement s sa parte magnare est nulle. Un nombre complexe est nul s et et seulement s sa parte réelle et sa parte magnare sont nuls..4 Calculs Quelques défntons et calculs sur les nombres complexes. λ 0 L opposé de = a + b est = ( a) + ( b) = a b. La multplcaton par un scalare λ R : λ = (λa) + (λb). L nverse : s 0, l exste un unque C tel que = (où = + 0). Pour la preuve et le calcul on écrt = a + b pus on cherche = a + b tel que =. Autrement dt (a + b)(a + b ) =. En développant et dentfant les partes réelles et magnares on obtent les équatons { aa bb = (L ) ab + ba = 0 (L ) En écrvant al +bl (on multple la lgne (L ) par a, la lgne (L ) par b et on addtonne) et bl + al on en dédut { a ( a + b ) { = a a b ( = a a + b ) donc a +b = b b = b L nverse de est donc = = a a + b + b a + b = a b a + b. La dvson : est le nombre complexe. Proprété d ntégrté : s = 0 alors = 0 ou = 0. a +b Pussances : =, n = (n fos, n N). Par conventon 0 = et n = ( Proposton. Pour tout C dfférent de n = n+. ) n = n. La preuve est smple : notons S = n, alors en développant S ( ) presque tous les termes se télescopent et l on trouve S ( ) = n+. Remarque. Il n y pas d ordre naturel sur C, l ne faut donc jamas écrre 0 ou..5 Conjugué, module Le conjugué de = a + b est = a b, autrement dt Re( ) = Re() et Im( ) = Im(). Le pont est le symétrque du pont par rapport à l axe réel. Le module de = a + b est le réel postf = a + b. Comme = (a + b)(a b) = a + b alors le module vaut auss =. 3

4 = a + b 0 b 0 a Quelques formules : + = +, =, = = R =, =, = = 0 = 0 L négalté trangulare : + + Exemple. Dans un parallélogramme, la somme des carrés des dagonales égale la somme des carrés des côtés. S les longueurs des côtés sont notées L et l et les longueurs des dagonales sont D et d alors l s agt de montrer l égalté D + d = l + L. l d D L l + + L 0 Démonstraton. Cela devent smple s l on consdère que notre parallélogramme a pour sommets 0,, et le derner sommet est donc +. La longueur du grand côté est c, celle du pett côté est. La longueur de la grande dagonale est +. Enfn l faut se convancre que la longueur de la pette dagonale est. D + d = + + = ( + ) ( + ) + ( ) ( ) = = + = + = l + L Mn-exercces. Calculer +.. Écrre sous la forme a + b les nombres complexes ( + ), ( + ) 3, ( + ) 4, ( + ) En dédure + ( + ) + ( + ) + + ( + ) Sot C tel que + =, montrer que R. 5. Montrer que s Re Re et Im Im alors, mas que la récproque est fausse. 6. Montrer que / = / (pour 0). 4

5 Racnes carrées, équaton du second degré. Racnes carrées d un nombre complexe Pour C, une racne carrée est un nombre complexe ω tel que ω =. Par exemple s x R +, on connaît deux racnes carrées : x, x. Autre exemple : les racnes carrées de sont et. Proposton. Sot un nombre complexe, alors admet deux racnes carrées, ω et ω. Attenton! Contrarement au cas réel, l n y a pas de façon prvlégée de chosr une racne plutôt que l autre, donc pas de foncton racne. On ne dra donc jamas «sot ω la racne de». S 0 ces deux racnes carrées sont dstnctes. S = 0 alors ω = 0 est une racne double. Pour = a + b nous allons calculer ω et ω en foncton de a et b. Démonstraton. Nous écrvons ω = x + y, nous cherchons x, y tels que ω =. ω = (x + y) = a + b { x y = a xy = b en dentfant partes réelles et partes magnares. Pette astuce c : nous rajoutons l équaton ω = (qu se dédut ben sûr de ω = ) qu s écrt auss x + y = a + b. Nous obtenons des systèmes équvalents aux précédents : x y = a x = a + b + a xy = b x + y = y a + b = x = ± a + b + a a + b a y = ± a xy = b + b a xy = b Dscutons suvant le sgne du réel b. S b 0, x et y sont de même sgne ou nuls (car xy = b 0) donc ω = ± ( ) a + b + a + a + b a, et s b 0 ω = ± ( ) a + b + a a + b a. En partculer s b = 0 le résultat dépend du sgne de a, s a 0, a = a et par conséquent ω = ± a, tands que s a < 0, a = a et donc ω = ± a = ± a. Il n est pas nécessare d apprendre ces formules mas l est ndspensable de savor refare les calculs. Exemple. Les racnes carrées de sont + En effet : ( + ) et ( + ). ω = (x + y) = { x y = 0 xy = Rajoutons la condtons ω = pour obtenr le système équvalent au précédent : x y = 0 x = x = ± xy = y = y = ± x + y = xy = xy = Les réels x et y sont donc de même sgne, nous trouvons ben deux solutons : x + y = + ou x + y = 5

6 . Équaton du second degré Proposton 3. L équaton du second degré a + b + c = 0, où a, b, c C et a 0, possède deux solutons, C éventuellement confondues. Sot = b 4ac le dscrmnant et δ C une racne carrée de. Alors les solutons sont = b + δ a et = b δ a. Et s = 0 alors la soluton = = = b/a est unque (elle est dte double). S on s autorsat à écrre δ = pour le nombre complexe, on obtendrat la même formule que celle que vous connasse lorsque a, b, c sont réels. Exemple = 0, = 3, δ = 3, les solutons sont = ± = 0, =, δ = ± ( + ), les solutons sont = ( + ) = ± 4 ( + ). On retrouve auss le résultat ben connu pour le cas des équatons à coeffcents réels : Corollare. S les coeffcents a, b, c sont réels alors R et les solutons sont de tros types : s = 0, la racne double est réelle et vaut b a, s > 0, on a deux solutons réelles b ±, a s < 0, on a deux solutons complexes, mas non réelles, b ±. a Démonstraton. On écrt la factorsaton ( a + b + c = a + b a + c ) (( = a + b ) b a a 4a + c ) a (( = a + b ) ) (( a 4a = a + b ) ) δ a 4a (( = a + b ) δ )(( + b ) + δ ) a a a a ( = a b + δ )( b δ ) = a( )( ) a a Donc le bnôme s annule s et seulement s = ou =..3 Théorème fondamental de l algèbre Théorème (d Alembert Gauss). Sot P() = a n n + a n n + + a + a 0 un polynôme à coeffcents complexes et de degré n. Alors l équaton P() = 0 admet exactement n solutons complexes comptées avec leur multplcté. En d autres termes l exste des nombres complexes,..., n (dont certans sont éventuellement confondus) tels que P() = a n ( )( ) ( n ). Nous admettons ce théorème. 6

7 Mn-exercces. Calculer les racnes carrées de, Résoudre les équatons : + = 0, + ( 0 0) = Résoudre l équaton + ( ), pus l équaton Z 4 + ( )Z. 4. Montrer que s P() = + b + c possède pour racnes, C alors + = b et = c. 5. Trouver les pares de nombres dont la somme vaut et le produt. 6. Sot P() = a n n + a n n + + a 0 avec a R pour tout. Montrer que s est racne de P alors auss. 3 Argument et trgonométre 3. Argument S = x + y est de module, alors x + y = =. Par conséquent le pont (x, y) est sur le cercle unté du plan, et son abscsse x est notée cosθ, son ordonnée y est snθ, où θ est (une mesure de) l angle entre l axe réel et. Plus généralement, s 0, / est de module, et cela amène à : Défnton. Pour tout C = C {0}, un nombre θ R tel que = (cosθ + snθ) est appelé un argument de et noté θ = arg(). R arg() 0 R Cet argument est défn modulo π. On peut mposer à cet argument d être unque s on rajoute la condton θ ] π,+π]. Remarque. θ θ (mod π) k Z, θ = θ + kπ { cosθ = cosθ snθ = snθ Proposton 4. L argument satsfat les proprétés suvantes : arg ( ) arg() + arg ( ) (mod π) arg( n ) narg() (mod π) arg(/) arg() (mod π) arg( ) arg (mod π) Démonstraton. = (cosθ + snθ) ( cosθ + snθ ) = ( cosθ cosθ snθ snθ + ( cosθ snθ + snθ cosθ )) = ( cos ( θ + θ ) + sn ( θ + θ )) donc arg ( ) arg()+arg ( ) (mod π). On en dédut les deux autres proprétés, dont la deuxème par récurrence. 7

8 3. Formule de Movre, notaton exponentelle La formule de Movre est : (cosθ + snθ) n = cos(nθ) + sn(nθ) Démonstraton. Par récurrence, on montre que (cosθ + snθ) n = (cosθ + snθ) n (cosθ + snθ) = (cos((n )θ) + sn((n )θ)) (cosθ + snθ) = (cos((n )θ)cosθ sn((n )θ)snθ) +(cos((n )θ)snθ sn((n )θ)cosθ) = cos nθ + sn nθ Nous défnssons la notaton exponentelle par e θ = cosθ + snθ et donc tout nombre complexe s écrt = ρe θ où ρ = est le module et θ = arg() est un argument. Avec la notaton exponentelle, on peut écrre pour = ρe θ et = ρ e θ = ρρ e θ e θ = ρρ e (θ+θ ) n = ( ρe θ) n = ρ n ( e θ) n = ρ n e nθ / = / ( ρe θ) = ρ e θ = ρe θ La formule de Movre se rédut à l égalté : ( e θ) n = e nθ. Et nous avons auss : ρe θ = ρ e θ (avec ρ,ρ > 0) s et seulement s ρ = ρ et θ θ (mod π). 3.3 Racnes n-ème Défnton 3. Pour C et n N, une racne n-ème est un nombre ω C tel que ω n =. Proposton 5. Il y a n racnes n-èmes ω 0,ω,...,ω n de = ρe θ, ce sont : ω k = ρ /n e θ+kπ n, k = 0,,..., n Démonstraton. Écrvons = ρe θ et cherchons ω sous la forme ω = re t tel que = ω n. Nous obtenons donc ρe θ = ω n = ( re t) n = r n e nt. Prenons tout d abord le module : ρ = ρe θ = r n e nt = r n et donc r = ρ /n (l s agt c de nombres réels). Pour les arguments nous avons e nt = e θ et donc nt θ (mod π) (n ouble surtout pas le modulo π!). Ans on résout nt = θ + kπ (pour k Z) et donc t = θ n + kπ n. Les solutons de l équaton ω n = sont donc les ω k = ρ /n e θ+kπ n. Mas en fat l n y a que n solutons dstnctes car ω n = ω 0, ω n+ = ω,... Ans les n solutons sont ω 0,ω,...,ω n. 8

9 Par exemple pour =, on obtent les n racnes n-èmes de l unté e kπ/n, k = 0,..., n qu forment un groupe multplcatf. j = e π/3 e π/3 0 = e 0 = e π 0 j = e 4π/3 e π/3 Racne 3-ème de l unté ( =, n = 3) Racne 3-ème de ( =, n = 3) Les racnes 5-ème de l unté ( =, n = 5) forment un pentagone réguler : e π/5 e 4π/5 0 e 6π/5 e 8π/5 3.4 Applcatons à la trgonométre Voc les formules d Euler, pour θ R : cosθ = eθ + e θ, snθ = eθ e θ Ces formules s obtennent faclement en utlsant la défnton de la notaton exponentelle. Nous les applquons dans la sute à deux problèmes : le développement et la lnéarsaton. Développement. On exprme sn nθ ou cos nθ en foncton des pussances de cosθ et snθ. Méthode : on utlse la formule de Movre pour écrre cos(nθ)+sn(nθ) = (cosθ + snθ) n que l on développe avec la formule du bnôme de Newton. Exemple 4. cos3θ + sn3θ = (cosθ + snθ) 3 = cos 3 θ + 3cos θ snθ 3cosθ sn θ sn 3 θ = ( cos 3 θ 3cosθ sn θ ) + ( 3cos θ snθ sn 3 θ ) En dentfant les partes réelles et magnares, on dédut que cos3θ = cos 3 θ 3cosθ sn θ et sn3θ = 3cos θ snθ sn 3 θ. 9

10 Lnéarsaton. On exprme cos n θ ou sn n θ en foncton des cos kθ et sn kθ pour k allant de 0 à n. ( ) Méthode : avec la formule d Euler on écrt sn n θ = e θ e n. θ On développe à l ade du bnôme de Newton pus on regroupe les termes par pares conjuguées. Exemple 5. Mn-exercces ( e sn 3 θ e θ )3 θ = = ((e θ ) 3 3(e θ ) e θ + 3e θ (e θ ) (e θ ) 3) 8 = (e 3θ 3e θ + 3e θ e 3θ) 8 = ( e 3θ e 3θ 3 eθ e θ ) 4 = sn3θ + 3snθ 4 4. Mettre les nombres suvants sont la forme module-argument (avec la notaton exponentelle) :,,,, 3, +, 3, 3,, ( 3 ) 0xx où 0xx est l année en cours. 3. Calculer les racnes 5-ème de. 3. Calculer les racnes carrées de 3 + de deux façons dfférentes. En dédure les valeurs de cos π et sn π. 4. Donner sans calcul la valeur de ω 0 + ω + + ω n, où les ω sont les racnes n-ème de. 5. Développer cos(4θ) ; lnéarser cos 4 θ ; calculer une prmtve de θ cos 4 θ. 4 Nombres complexes et géométre On assoce bjectvement à tout pont M du plan affne R de coordonnées (x, y), le nombre complexe = x + y appelé son affxe. 4. Équaton complexe d une drote Sot ax + by = c l équaton réelle d une drote D : a, b, c sont des nombres réels (a et b n étant pas tous les deux nuls) d nconnues (x, y) R. Écrvons = x + y C, alors x = +, y =, donc D a auss pour équaton a( + ) = b( ) = c ou encore (a b) + (a + b) = c. Posons ω = a + b C et k = c R alors l équaton complexe d une drote est : ω + ω = k où ω C et k R. 0

11 D C ω r Équaton complexe d un cercle Sot C (Ω, r) le cercle de centre Ω et de rayon r. C est l ensemble des ponts M tel que dst(ω, M) = r. S l on note ω l affxe de Ω et l affxe de M. Nous obtenons : dst(ω, M) = r ω = r ω = r ( ω)( ω) = r et en développant nous trouvons que l équaton complexe du cercle centré en un pont d affxe ω et de rayon r est : ω ω = r ω où ω C et r R. 4.3 Équaton a b = k Proposton 6. Sot A,B deux ponts du plan et k R +. L ensemble des ponts M tel que M A MB = k est une drote qu est la médatrce de [AB], s k =, un cercle, snon. Exemple 6. Prenons A le pont d affxe +,B le pont d affxe. Voc les fgures pour pluseurs valeurs de k. Par exemple pour k = le pont M dessné vérfe ben M A = MB. M B A k = 3 k = 3 k = k = k = 4 3 k = k = 3 4 Démonstraton. S les affxes de A, B, M sont respectvement a, b,, cela revent à résoudre l équaton a b = k. a b = k a = k b ( a)( a) = k ( b)( b) ( k ) (ā k b) (a k b) + a k b = 0

12 Donc s k =, on pose ω = a k b et l équaton obtenue ω + ω = a k b est ben celle d une drote. Et ben sûr l ensemble des ponts qu vérfent M A = MB est la médatrce de [AB]. S k on pose ω = a k b alors l équaton obtenue est ω ω = a +k b. C est l équaton d un cercle de centre ω k k et de rayon r satsfasant r ω = a +k b, sot r = a k b + a +k b. k ( k ) k Ces calculs se refont au cas par cas, l n est pas nécessare d apprendre les formules. Mn-exercces. Calculer l équaton complexe de la drote passant par et.. Calculer l équaton complexe du cercle de centre + passant par. 3. Calculer l équaton complexe des solutons de =, pus dessner les solutons. 4. Même queston avec =.

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Chap. B2 : fonctions usuelles (fin)

Chap. B2 : fonctions usuelles (fin) MPSI Semane 7, du 4 au 8 Novembre 6 Chap. B : fonctons usuelles (fn) IV Fonctons trgonométrques : ) Proprétés admses des fonctons sn et cos Vor appendce pour une constructon des fonctons sn et cos, c on

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent CHAPITRE V Formes dfférentelles sur les varétés I. Espace tangent Sot M une varété dfférentable de dmenson n et U = (U, ϕ ) I un atlas de M. On note par ϕ j := ϕ ϕ 1 j le dfféomorphsme entre les ouverts

Plus en détail

Sujet de révision n 1

Sujet de révision n 1 4 ème année Secton : Scences Sujet de révson n 1 Ma 010 A. LAATAOUI Thèmes abordés : Complexes ; Probabltés ; Géométre dans l espace ; oncton exponentelle et lecture graphque. Exercce n 1 Sot θ un réel

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Équations et racines

Équations et racines CHAPITRE III Équatons et racnes III.1. Quadratques et cubques Équatons quadratques. On dspose de formules pour la résoluton des équatons quadratques (c est à dre du second degré). En fat, la résoluton

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes

Synthèse de cours PanaMaths (Terminale S) Les nombres complexes Snthèse de cours PanaMaths (Termnale S) L ensemble des nombres complees Défntons n pose tel que = 1 { } L ensemble des nombres complees, noté, est l ensemble : z /(, ) = + Le réel est appelé «parte réelle

Plus en détail

et h l homothétie de centre Ω et de rapport.

et h l homothétie de centre Ω et de rapport. Termnale S Nombres Exercces Dvers,QCM, France 00 Qcm, Polynése rempl 005 QCM, N Calédone nov 007 4 QCM d après des sujets de concours GEIPI 5 Basque, ntlles 007 4 6 Basque, ntlles 006 5 7 nd degré et barycentre,

Plus en détail

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points Termnale S Nombres Complexes Exercces Dvers,QCM, France 00-5 ponts QCM, se 009, 4 ponts QCM, ntlles 009, 5 ponts 4 4 QCM, Polynése rempl 005 - ponts 5 QCM, N Calédone nov 007-4 ponts 4 5 6 QCM d après

Plus en détail

. On considère les points A, B, C et D, d affixes respectives a, b, c et d :

. On considère les points A, B, C et D, d affixes respectives a, b, c et d : Nombres complexes Exercces corrgés s vous ave des remarques contacte mo EXERCICE Cet exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons,

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Valeur absolue et fonction valeur absolue Cours

Valeur absolue et fonction valeur absolue Cours Valeur absolue foncton valeur absolue Cours CHAPITRE 1 : Dstance entre deu réels 1) Eemples prélmnares 2) Défnton 3) Proprétés CHAPITRE 2 : Valeur absolue d un réel 1) Défnton 2) Proprétés CHAPITRE 3 :

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

Corrigé de l épreuve d Optique / BTSOL 2008

Corrigé de l épreuve d Optique / BTSOL 2008 Corrgé de l épreuve d Optque / BTSOL 2008 J.Hormère (4 ma 2008) Important Ce corrgé n a pas de valeur offcelle et n est donné qu à ttre nformatf par Acuté, sous la responsablté de son auteur. Optque géométrque

Plus en détail

Fractions rationnelles

Fractions rationnelles Unversté Claude Bernard Lyon 1 L1 de Mathématques : Math. II Algèbre (parcours prépa.) Année 2013 2014 Fractons ratonnelles I On fxe un corps K. On connaît l anneau des polynômes K[X], dont l arthmétque

Plus en détail

Chap. C1 : structure et arithmétique dans Z (fin)

Chap. C1 : structure et arithmétique dans Z (fin) Chap. C1 : structure et arthmétque dans Z (fn) The aftermath of Gauss... or the math after Gauss (P. Rbenbom, My Number My frends). V Nombres premers 1) Proprétés élémentares a) Défnton : () Termnologe

Plus en détail

Guylaine Faubert. Enseignante en mathématique et informatique au secondaire Le petit relais scolaire. (gfaubert)

Guylaine Faubert. Enseignante en mathématique et informatique au secondaire Le petit relais scolaire. (gfaubert) Guylane Faubert Ensegnante en mathématque et nformatque au secondare - - A ADDITION - 6 - ARBRE DE FACTEURS - - ARRONDIR UN NOMBRE - 6 - C CALCULER LE POURCENTAGE - 6 - COMMUTATIVITÉ - 6 -, - 7 - CONVERSION

Plus en détail

TD6 : groupe linéaire, homographies, simplicité

TD6 : groupe linéaire, homographies, simplicité École Normale Supéreure 1ère année Année 2015-2016 Algèbre 1 TD6 : groupe lnéare, homographes, smplcté Exercces : à préparer à la mason avant le TD, seront corrgés en début de TD. Exercces : seront tratés

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M '

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M ' Exposé 27 : homothétes et translatons ; transformaton vectorelle assocée. Invarants élémentares : effets sur les dstances, les drectons, l'algnement... Applcatons à l'acton sur les confguratons usuelles

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i Nombres complexes Exercces corrgés Qcm et exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons, s elle est vrae (V) où fausse (F) Une

Plus en détail

Racines carrées d un nombre complexe

Racines carrées d un nombre complexe Rcnes crrées d un nombre complexe I Exemple Détermnons les rcnes crrées de 3 Les rcnes sont et 4 ' x x ou x On lors : (mpossble cr x ) ou x 4 On cherche les nombres complexes z tels que z 3 (E) On se grde

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

Factorisation. Résolution de

Factorisation. Résolution de Factorsaton LU Pour smpl er la présentaton de l'algorthme, on ne va pas tenr compte d'éventuelles permutatons, n de l'ntalsaton des lu() de Sclab c. help lu. Note la commande permutatons, Factorsaton LU

Plus en détail

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i NOMBRES COMPLEXES 1 Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i z = 1 i z = 1 + i z 4 = 1 + i 1 i Calculer les nombres complexes suivants : w 1 = (1 + i) 1 w = ( 1 + i

Plus en détail

PLAN L OPTIMISATION MULTICRITÈRE

PLAN L OPTIMISATION MULTICRITÈRE PLAN COURS 5 OPTIMISATION MULTICRITÈRE Master IAD DMDC PATRICE PERNY LIP6 UnverstéPars6 1 Défntons 2 Relatons de domnance, effcacté 3 Fonctons scalarsantes 4 Exploraton de la frontère effcace 2/28 L OPTIMISATION

Plus en détail

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4 Polynômes bs Marc SAGE 8 décembre 25 Table des matères Sur la nullté des polynômes à n ndétermnées 2 2 Une foncton localement polynomale est un polynôme 2 3 Contnuté des racnes 3 4 Une foncton polynomale

Plus en détail

Les transformations élémentaires

Les transformations élémentaires Les transformatons élémentares ransformatons Utlsatons : Déplacement d'un objet dans une scène Déplacement d'un observateur par rapport a une scène éplcaton d'un motf ou d'un objet Déformaton d'un objet

Plus en détail

Note de Géométrie Différentielle - Application de la Méthode du Repère Mobile à l ellipsoïde de Référence- Par Abdelmajid BEN HADJ SALEM

Note de Géométrie Différentielle - Application de la Méthode du Repère Mobile à l ellipsoïde de Référence- Par Abdelmajid BEN HADJ SALEM REPUBLIQUE TUNISIENNE MINISTERE DE L EQUIPEMENT Offce de la Topographe et du Cadastre Note de Géométre Dfférentelle - Applcaton de la Méthode du Repère Moble à l ellpsoïde de Référence- Par Abdelmajd BEN

Plus en détail

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal».

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal». «Toute théore n est bonne qu à condton de s en servr pour passer outre». ndré Gde n «Journal». Résumé L usage des los de Krchhoff permet de toujours trouver les tensons et courants dans un réseau électrque

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

RESEAUX LINEAIRES EN REGIME SINUSOIDAL FORCE (RSF)

RESEAUX LINEAIRES EN REGIME SINUSOIDAL FORCE (RSF) ESEAX LINEAIES EN EGIME SINSOIDAL FOE (SF) ESEAX LINEAIES EN EGIME SINSOIDAL FOE (SF) Plan (lquer sur le ttre pour accéder au paragraphe) ********************** I. Exemple prélmnare... II. La notaton complexe....

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

L ANOVA (complements)

L ANOVA (complements) L ANOVA (complements) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA 1. L applcaton

Plus en détail

Texte Urnes et particules

Texte Urnes et particules Unverstés Rennes I Épreuve de modélsaton - Agrégaton Externe de Mathématques 2009. Page n 1. Texte Urnes et partcules À la fn du 19 ème sècle et au début du suvant, la tempête fat rage autour de la théore

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1.

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1. Trgonométre Défnton du snus et cosnus d'un réel quelconque. (révson de seconde) Len avec la défnton du snus et du cosnus d'un angle agu (dans un trangle rectangle) vue au collège. S O J C I Cette généralsaton

Plus en détail

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles Clôture transtve (accessblté) Problème G = (S, A) graphe (orenté) Calculer H = (S, B) où B est la clôture réflexve et transtve de A. Clôture transtve des graphes et tous les plus courts chemns Note : (s,t)

Plus en détail

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x)

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x) ASI 3 Métodes nuérques pour l ngéneur Interpolaton f Approaton de fonctons Sot une foncton f nconnue eplcteent connue seuleent en certans ponts, n ou évaluable par un calcul coûteu. rncpe : représenter

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

arxiv:math/ v1 [math.ra] 9 Aug 2002

arxiv:math/ v1 [math.ra] 9 Aug 2002 arxv:math/874v [mathra] 9 Aug Matrces autosmlares Roland Bacher November 8, 3 Résumé: Cette note ntrodut une classe de matrces dont les détermnants sont facles à calculer L exemple le plus frappant est

Plus en détail

Chapitre 4 Les nombres complexes : 1ère Partie

Chapitre 4 Les nombres complexes : 1ère Partie Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

Le fabuleux destin des équations différentielles linéaires :

Le fabuleux destin des équations différentielles linéaires : Le fabuleux destn des équatons dfférentelles lnéares : au-delà du premer ordre - Page 1 sur 14 A propos de ce qu sut Une équaton dfférentelle est une égalté lant une foncton et une, vore pluseurs de ses

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

Cours d analyse L1S1P. Analyse L1S1 P

Cours d analyse L1S1P. Analyse L1S1 P Cours d analyse L1S1P 017 Objectifs : 1 Apprendre à calculer avec des formules : domaines de définition, dérivées primitives développements limités Se désinhiber face auxdites formules. À la fin de ce

Plus en détail

Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force

Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force e B et C 6 Traval et pussance d une orce 56 Mécanque : dynamque Les eets des orces et les modcatons mécanques des systèmes sont souvent décrts à l ade du concept de l énerge mécanque. Or, les transmssons

Plus en détail

Exercices spécialité géométrie

Exercices spécialité géométrie Termnale S Démonstratons -a : Toute smltude de rapport k (>0) est la composée d une homothéte de rapport k et d une sométre -b : Les sométres du plan sont les transformatons θ θ z' = e z+ b ou z' = e z

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

Corps des complexes. 1 Calculs dans C Le corps C Module, conjugaison Interprétation géométrique... 2

Corps des complexes. 1 Calculs dans C Le corps C Module, conjugaison Interprétation géométrique... 2 Maths PCSI Cours Table des matières Corps des complexes 1 Calculs dans C 1.1 Le corps C............................................... 1. Module, conjugaison......................................... 1.3

Plus en détail

Produit Scalaire. u = AB. La norme du vecteur. u un vecteur du plan, A et B deux points du plan tels que. u = 1, on dit que le vecteur est unitaire

Produit Scalaire. u = AB. La norme du vecteur. u un vecteur du plan, A et B deux points du plan tels que. u = 1, on dit que le vecteur est unitaire Prodt Scalare I éfntons d prodt scalare : a norme d'n ecter : défnton : Soent n ecter d plan, et dex ponts d plan tels qe =. La norme d ecter est la longer d segment []. n la note. S = 1, on dt qe le ecter

Plus en détail

Probabilités et Statistique

Probabilités et Statistique robabltés et Statstque rogramme Calcul des probabltés: Espaces probablsés Varables aléatores dscrètes et contnues Los usuelles dscrètes et contnues Statstque Applquée: Convergences stochastques Approxmatons

Plus en détail

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune!

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune! Bac Blanc TS 6 Phsque Chme sujet : Non spécalste PRENDRE UNE AUTRE FEUILLE Exercce 3 : Objectf Lune! Dans la BD d Hergé ( 953 ), Tntn et ses compagnons s embarquent à bord d une fusée pour rejondre la

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

Circuits linéaires du premier ordre

Circuits linéaires du premier ordre Électrcté - haptre 2 rcuts lnéares du premer ordre Introducton... 2 I Étude d un dpôle sére...3 1 omportements lmtes d un condensateur...3 2 harge d un condensateur : réponse d un dpôle à un échelon de

Plus en détail

1 Réponse d un circuit RC série à un échelon de tension

1 Réponse d un circuit RC série à un échelon de tension Lycée Naval, Sup. Sgnaux Physques.. Crcut lnéare du premer ordre Crcut lnéare du premer ordre 1 éponse d un crcut C sére à un échelon de tenson On s ntéresse à la réponse d une assocaton sére {conducteur

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0.

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0. PTSI2 2016/2017 Maths Lycée La Martinière-Monplaisir Lyon Ch 4. Complexes. 1 L ensemble C des nombres complexes 1.a Introduction Pour résoudre une équation de la forme ax 2 + bx + c = 0, avec a, b, c réels

Plus en détail

N - ANNEAUX EUCLIDIENS

N - ANNEAUX EUCLIDIENS N - ANNEAUX EUCLIDIENS Dans ce qu sut A est un anneau untare, mun de deux opératons notées addtvement et multplcatvement. Le neutre de l addton est noté 0, celu de la multplcaton est noté e. On pose A

Plus en détail

TD ARQS. Modèle de pile. Capteur de déformation R R R R R R R R R R 1 J J 2 R R R R

TD ARQS. Modèle de pile. Capteur de déformation R R R R R R R R R R 1 J J 2 R R R R TD RQS Modèle de ple n générateur présente une dfférence de potentel de 22V quand l est traversé par une ntensté du courant de 2. La dfférence de potentel monte à 30V lorsque l ntensté du courant descend

Plus en détail

Groupes, sous-groupes

Groupes, sous-groupes Chaptre 1 Groupes sous-groupes Il faut sans doute attrbuer à Cayley en 1854 la défnton abstrate d un groupe telle que nous la connassons aujourd hu. Auparavant de nombreux groupes partculers avaent déjà

Plus en détail

Chap. 7 : Le dipôle RL Exercices

Chap. 7 : Le dipôle RL Exercices Termnale S Physque Chaptre 7 : e dpôle Page 1 sur 8 xercce n 3 p170 1. a. unté d nductance est le henry de symbole H. b. e nom de cette unté provent du physcen amércan Joseph Henry : http://fr.wkpeda.org/wk/joseph_henry

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail