CCP PSI 1 un corrigé.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CCP PSI 1 un corrigé."

Transcription

1 CCP PSI n corrigé. I. Qelqes eemples de calcls de longers I.. Si f : [, ], le graphe de f es le segmen d origine (, ) e d eremié (, ) e sa longer es. C es cohéren avec I.. On a ici + sh () d = d = ch() d = I.3.. On a f () = e donc + (f ()) =. Ainsi, / d d = [arcsin()]/ = π 4 ch() d = sh() I.3.. Comme + f() =, la corbe de f es n hiième d cercle nié e sa longer es π 8 = π 4. I.4. On a cee fois + 4 d Une inégraion par parie donne [ ] 4 + = 5 L(f) + = 5 L(f) d d + 4 d + On pe bien sûr reconnaîre la dérivée de argsh e conclre en ces ermes. Je préfère iliser ne forme logarihmiqe. ln( + + ) se dérive en e on a finalemen + o encore 5 + II. Un calcl approché de longer [ ln( + ] + ) ln( + 5) II.. On a f () = e donc + (f ()) = 4 +. Ainsi 4 / 4 + d

2 II.. Le changemen de variable = / (de classe C sr le segmen [/, ]) donne + 4 d = + (f ()) d qi correspond à la longer d graphe de f sr [, ]. II.. Le cors indiqe qe ], [, ( + ) α = + b n n avec b n = n= α(α )... (α n + ) n! II.. En pariclier, dans le cas α = /, on a Monrons par récrrence qe b = e b n+ = b n n n + n N, b n = ( ) n (n)! (n ) n (n!) - Iniialisaion : la formle es immédiaemen vraie si n =. - Hérédié : soi n el qe la formle soi vraie a rangs, dos, n. On a alors b n+ = ( ) n (n)! (n ) (n ) n (n!) (n + ) = ( ) n (n)! n+ (n + )(n!) = ( ) n (n)!(n + )(n + ) (n + )(n + ) n+ (n + )(n!) = ( ) n (n + )! (n + ) n+ ((n + )!) ce qi prove le résla a rang n +. En sbsian 4 à e en divisan par, on a alors ], [, + 4 = + + ( ) n (n)! (n ) n (n!) 4n n= II..3 Les a n son > e a n+ = n ], ] a n n + e donc < a n+ a n. La sie (a n ) es ainsi décroissane. Comme n! πn ( ) n n, e on a 4πn(n/e) n a n (n ) n πn(n/e) n πn 3/ II..4 Por l insan, on a / d + / n= ( ) n a n 4n d

3 On ve inerverir la somme infinie e l inégrale. On pe, par eemple, iliser le héorème de convergence normale sr n segmen. On pose f n : ( ) n a n 4n ; c es le erme général d ne série de foncions conines sr [/, ]. De pls e donc [/, ], f n () a n f n,[/,] a n Or, (a n ) es ne série absolmen convergene (avec l éqivalen rové e les séries de Riemann). Ainsi, (f n ) converge normalemen (e donc niformémen) sr le SEGMENT [/, ]. L inerversion es licie e donne c es à dire + + n= n= ( ) n a n a n ( ) n 4n / 4n d ( ) 4n II..5 En enan compe d comme erme de la série, la calclarice donne avec les ermes por n =..4 L(f) L errer commise en approchan par les cinq premiers ermes es (on pe décoper car les de séries convergen) = ( ) n a + n 4n ( ) n a n (4n ) 4n ( ) n a n 4n + ( ) n a n (4n ) 4n a n 4n e a n éan les ermes généra de sies posiives décroissanes, on pe appliqer (4n ) 4n la règle spéciale (majoraion d rese) por obenir a a a 5 9 = III. Longer d graphe des foncions pissances III.. Comme en I. e I.4, on a III.. Voici qelqes graphes λ = e λ = ln( + 5) 3

4 On pe penser qe (λ n ) converge (en croissan) vers. III.. En écrivan qe n n = n n e en ilisan a b = λ n n n d = d + n n + n n a b a+ b on obien direcemen III.. La foncion f n dans l inégrale définissan µ n es infériere à (le dénominaer es pls grand qe ) e donc µ n. S il y avai égalié on arai ( f n) =. Comme f n es posiive, conine e non nlle, ceci es impossible. Ainsi µ n <. De pls n n d = e donc n N, λ n < III..3 Uilisons le héorème de convergence dominée por édier (µ n ). - f n : +n n +n n es conine sr [, ] e (f n) converge simplemen vers sr [, [ (car [, [, n n qand n + ). - La limie simple es conine sr [, [. - n N, [, [, f n () e le majoran es inégrable sr [, [ (conin sr le segmen). Le héorème s appliqe e donne lim µ n = n + III..4 Il vien alors immédiaemen (λ n = + µ n ) lim λ n = n + d = III.3. En écrivan qe f () = (f () (foncion croissane e donc à dérivée posiive) on a de même L(f) f () = 4 d + (f ()) + f ()

5 Or, f () = f() f() = e donc L(f) S il y avai égalié, on arai l inégrale de = g() qi serai nlle sr [, ] +(f ()) +f () e comme g es posiive e conine, cela signifierai qe g es nlle c es à dire qe f es nlle o encore qe f es consane ce qi n es pas le cas (f() f()). On a donc IV. Un résla inaend L(f) < IV.. sin() es conine sr ], ] e end vers en. Elle es donc prolongeable en ne foncion conine sr le segmen [, ] e f eise (inégrale classiqe). IV.. On opère ne inégraion par parie en primiivan sin en cos e en dérivan en. On obien direcemen sin() d = cos() cos() cos() d On a cos() = O(/ ) a voisinage de +. C es donc (comparaison à Riemann) ne foncion inégrable a voisinage de +. L inégrale d membre de droie adme donc a foriori ne limie qand + (inégrabilié enraîne eisence d inégrale). De pls, cos()/ qand + (car cos es bornée). Finalemen, on a l eisence de IV..3 On a de même + sin() cos() d = lim + d = sin() ( cos() d = cos() cos() ) sin() sin() + d d sin() = O(/ ) a voisinage de +. C es donc (comparaison à Riemann) ne foncion inégrable a voisinage de +. Comme à la qesion précédene, on a l eisence de cos() d = sin() + sin() d IV..4 On a sin () = cos() e donc sin () d = ln() cos() d e cee qanié end vers + qand +. Ainsi, l inégrale généralisée divergene. Comme sin (), ceci revien à dire qe sin () sin sin e donc sin() sin () d es n es pas inégrable sr [, [. Or, n es pas inégrable non pls sr [, + [. E comme cee foncion es posiive, ceci revien à dire qe l inégrale généralisée sin() d diverge. IV.. / es de classe C sr [, ] por >. On pe donc poser le changemen de variable = /. Il indiqe qe f() = ( ) sin 5 d = / sin() d

6 Avec les qesions précédene, f es prolongeable par coninié en en posan f() = sin() d IV.. g es conine sr ], ], ], ] es n inervalle qi conien. Par héorème fondamenal, f : g() d es ne primiive de g sr ], ]. Comme g es de classe C sr ], ], f, e donc f, l es assi. On a v (o imposé par choi de f()) la coninié en. IV..3 Le même calcl qe pls ha donne g() d = / sin() d On a v qe l inégrale de sin() n eise pas sr [, + [. Comme cee foncion es posiive, son inégrale enre e a end vers + qand a +. Ainsi lim + g() d = + IV.3. Por ], ], on a f () = g() e donc + (f ()) = + sin ( ). Ainsi ], ], λ() = + ( ) sin d On en dédi qe e par comparaison ], ], λ() lim λ() = + + g() d Ceci signifie qe la corbe représenaive de la foncion f conine sr le segmen es [, ] es infinie. V. Coninié de la foncion longer V.. L applicaion es posiive. Son homogénéié décole de celle de. e de celle d modle (on a λf = λ. f ). L inégalié rianglaire décole de la même propriéé por.. Enfin, si f = alors f() = f =. f es donc nlle e f es consane. Comme f() =, f es nlle. On a donc assi l aiome de séparaion e. es ne norme sr E. V.. Soi f E. On a [, ], f() = f() + f () d f() + f () d f() + ( ) f f En passan à la borne spériere sr, on en dédi qe f f V..3 Prenons les foncions p n : n de la parie III (elles son dans E ). On a p n = e p n = n. Le qoien p n / p n n éan pas borné, les normes. e. ne son pas éqivalenes sr E. V.. On a immédiaemen f n n qand n +. (f n ) es donc niformémen convergene sr [, ] vers la foncion nlle. 6

7 V.. La définiion donne I n = Le changemen de variable = nπ donne alors On a alors immédiaemen I n nπ I n = nπ nπ + nπ cos (nπ) d nπ cos éan π périodiqe, on a finalemen + nπ cos () d nπ cos () d = n nπ I n n Comme π 4 on pe assi écrire qe π cos() d = n cos() d I n n π V..3 Comme f n f, la coninié de L a sens de. enraînerai L(f n ) L() =. Comme on a L(f n ) qi es de limie infinie qand n + on pe conclre qe L n es pas conine a sens de.. V..4 Soien f, g E. On a L(f) L(g) = ( + (f ) + (g ) ) (f ) (g ) + (f ) + + (g ) f g. f + g f g f + g f g f + g f g ( f + g ) Soi (f n ) ne sie d élémens de E qi converge vers f a sens de.. On a donc f n f. Par seconde forme de l inégalié rianglaires, on en dédi qe f n f. L inégalié L(f n ) L(f) ( f + f n ) f n f monre alors qe L(f n ) L(f). L es conine a sens de.. 7

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

Résolution analytique d équations hyperboliques non linéaires en 1D

Résolution analytique d équations hyperboliques non linéaires en 1D Calcl Scienifiqe Résolion analyiqe d éqaions hyperboliqes non linéaires en D Corrigé de la séance 4 Février 006 Eercice. Solion classiqe La condiion iniiale 0 () = es croissane e C sr R. La méhode des

Plus en détail

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1.

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1. L3 Inégraion 1 212-213 TD 4 : correcion Eercice 1. Foncions presque nulles } On considère la suie d ensembles mesurables A n = Rf( 1. n Par hypohèse, ils son ous de mesure nulle : = f dλ 1 A n n µ(a n.

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

Développements limités

Développements limités BTS DOMOTIQUE Développemens limiés 8- Développemens limiés Table des maières I Foncion eponenielle I. Développemen limié d ordre................................... I. Développemen limié d ordre...................................

Plus en détail

Intégrales paramétrées

Intégrales paramétrées Lycée Faidherbe, Lille PC* 8 9 Feuille d eercices du chapire Inégrales paramérées Cenrale PC 7 ) ln + n Limie de n + ) d. X 6 Soi f coninue e bornée de [; [ vers. Prouver l eisence nf ) de I n = d e calculer

Plus en détail

PARTIE I - Exemple 1

PARTIE I - Exemple 1 PRELIMINAIRES ² On noera qu'il es di dans la roisiµeme parie que N (f ) N (f ), ce qui donne un conr^ole (rµes pariel) des calculs des deux premiµeres paries. ² Dans ou le problµeme je noe Á les foncions

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

INTÉGRALES DÉPENDANT DE

INTÉGRALES DÉPENDANT DE 7 décembre 8 7 décembre 8 INTÉGRALES DÉPENDANT DE PARAMÈTRES Table des maières JPB 7 décembre 8 I Rappels e noaions Noaions 3 Rappels 3. Sur les foncions d une variable................. 3 II Inerversion

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

Ch.5 : LE REGIME SINUSOIDAL.

Ch.5 : LE REGIME SINUSOIDAL. e_ch(le régime sinsoïdal).od Marie Pierro Lycée d Rempar //9 Ch. : LE REGIME SINUSOIDAL.. Définiions... Les valers insananées. Les valers insananées d'ne ension e d'n coran son des foncions sinsoïdales

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x).

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x). Eercices : Brbr Tumpch Relecure : Frnçois Lescure Eo7 Inégrles générlisées e héorie de l mesure Rppel Définiion. Soi f : (,b R une foncion Riemnn-inégrble sur ou segmen [α,β] (,b (on dme les cs où = e/ou

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Intégrales généralisées.

Intégrales généralisées. Chpire Inégrles générlisées. I. Inrodcion. e pr sie e pr sie Nos svons qe >, lim + d = +. Nos svons églemen qe > lim + d =. d = ln d = +, Nos écrirons De même, nos écrirons d = +, e nos dirons qe l'inégrle

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Recueil d exercices d analyse pour une remise à niveau

Recueil d exercices d analyse pour une remise à niveau Recueil d exercices d analyse pour une remise à niveau Suies e Séries numériques Exercice (Cesaro e sinus iéré). Théorème de Cesaro Soi (u n ) n une suie réelle convergene de limie l. Monrer que la suie

Plus en détail

MODULE 8. Performances-seuils. Le condensateur (accumulateur). L élève sera capable

MODULE 8. Performances-seuils. Le condensateur (accumulateur). L élève sera capable ondensaers MODULE 8. Le condensaer (accmlaer). Performances-seils. L élève sera capable 1. de différencier ne pile d n condensaer (accmlaer) dans sa mise en œvre. ondensaers 1. Le condensaer. 1.1. Descripion.

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

Etude de fonctions définies par une intégrale

Etude de fonctions définies par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Eude de foncions définies par une inégrale Eercice [ 53 ] [correcion] Soi f : d + 3 + 3 a) Monrer que f es définie sur R +. b) A l aide du changemen

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 1 (t 2 +x 2 ) n.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 1 (t 2 +x 2 ) n. Eo7 Intégrales dépendant d n paramètre Eercices de Jean-Lois Roget. Retrover assi cette fiche sr www.maths-france.fr * très facile ** facile *** difficlté moyenne **** difficile ***** très difficile I

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 1 (t 2 +x 2 ) n.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. 1 (t 2 +x 2 ) n. Eo7 Intégrales dépendant d n paramètre Eercices de Jean-Lois Roget. Retrover assi cette fiche sr www.maths-france.fr * très facile ** facile *** difficlté moyenne **** difficile ***** très difficile I

Plus en détail

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction.

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction. Universié Claude Bernard Lyon I Licence roisième année : calcul différeniel Année 2004-2005 Quelques correcions. 1 Correcions d exercices sur la feuille numéro 2 : différenielle d une foncion. Correcion

Plus en détail

Le théorème des nombres premiers

Le théorème des nombres premiers Le héorème des nombres premiers A Inroducion On sai depuis Euclide que l'ensemble des nombres premiers es inni. En effe, si p es premier, le plus pei diviseur premier de + p! dépasse p. La répariion des

Plus en détail

Calcul de primitives et d'intégrales : f C(R +, R) f F(R +, R) f T(R +, R) f S(R +, R) f M n (C)

Calcul de primitives et d'intégrales : f C(R +, R) f F(R +, R) f T(R +, R) f S(R +, R) f M n (C) Clcul de primiives e d'inégrles : f CR, R f FR, R f TR, R f SR, R f M n C Clcul de primiives e d'inégrles Primiives de frcions rionnelles : On clculer une primiive d'une frcion rionnelle simples sur R.

Plus en détail

I Préliminaires, définition de la transformation L

I Préliminaires, définition de la transformation L SESSION Concours commun Cenrle MATHÉMATIQUES. FILIERE PSI I Préliminires, définiion de l rnsformion L I.A - Soi R. On si que si l foncion fe λ es inégrble sur R + lors l inégrle converge. Donc E E. fe

Plus en détail

INTÉGRALES GÉNÉRALISÉES

INTÉGRALES GÉNÉRALISÉES Mathématiques 3 (L) Quelques eercices supplémentaires INTÉGRALES GÉNÉRALISÉES. Calcul d intégrales généralisées par primitivation........ Nature d intégrales généralisées................ 3 3. Eercices

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2011/2012

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2011/2012 Mser Méiers de l Enseignemen, Mhémiques - ULCO, L Mi-Voi, / ANALYSE Fiche de Mhémiques 8 - Inégrles générlisées. Dns ce chpie, on rie deu problèmes disincs, mis qui se posen souven simulnémen : celui des

Plus en détail

Fiche de révision Terminale ES

Fiche de révision Terminale ES Fiche de révision Terminale ES Jlien Reichert Légende (por le fichier en colers ) : en roge, les formles et théorèmes à savoir par cœr ; en vert, les méthodes q il vat mie maîtriser ; en ble, les définitions

Plus en détail

INTEGRATION SUR UN INTERVALLE QUELCONQUE 1

INTEGRATION SUR UN INTERVALLE QUELCONQUE 1 -- 3 J.F.C. IG p. INTEGRATION SUR UN INTERVALLE QUELCONQUE P menionne des résuls priculièremen uiles e souven oubliés dns l priques des inégrles sur un inervlle quelconque... menionne des erreurs à ne

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac Chapire : Produi de convoluion Disribuion e peigne de Dirac UNVERSTE DE TULN UT DE TULN DEPARTEMENT GE Cours de Mahémaiques Chapire : Produi de convoluion Disribuion e peigne de Dirac Enseignane : Sylvia

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

Epreuve E3A Maths 2 PSI- corrigé Préliminaires 1. u = 2 cos(θ/2)e iθ/2. On distingue trois cas : Si θ = π, alors u = 0 et u n a pas d argument.

Epreuve E3A Maths 2 PSI- corrigé Préliminaires 1. u = 2 cos(θ/2)e iθ/2. On distingue trois cas : Si θ = π, alors u = 0 et u n a pas d argument. Epreuve E3A Maths 2 PSI- corrigé Préliminaires. u = 2 cos(θ/2)e iθ/2. On distingue trois cas : Si θ = π, alors u = et u n a pas d argument. si θ < π, u = 2 cos(θ/2) et arg(u) θ/2 (2π) ; si θ < π, u = 2

Plus en détail

Filtrage, lissage et stabilisation

Filtrage, lissage et stabilisation PATIE 11 FONCTIONS 49 Filrage, lissage e sabilisaion Nos savons obenir ne ension nidirecionnelle Mais por ceraines applicaions, ne ension conine parfaie es nécessaire AVANT E ÉMAE Nécessié d ne ension

Plus en détail

Intégrales impropres. 1. Définitions et premières propriétés Points incertains

Intégrales impropres. 1. Définitions et premières propriétés Points incertains Inégrles impropres Vidéo prie. Définiions e premières propriéés Vidéo prie. Foncions posiives Vidéo prie 3. Foncions oscillnes Vidéo prie 4. Inégrles impropres sur un inervlle borné Vidéo prie 5. Inégrion

Plus en détail

Université en Ligne Mathématiques Annette Decomps Université Pierre et Marie Curie. Intégrales impropres

Université en Ligne Mathématiques Annette Decomps Université Pierre et Marie Curie. Intégrales impropres Universié en Ligne Mhémiques Annee Decomps Universié Pierre e Mrie Curie Inégrles impropres. Définiions e héorèmes généru.. Générliés.2. Eemples.3. Définiions.4. Crière de Cuchy pour les inégrles impropres.5.

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

Introduction à la mécanique des fluides III 1 Equations générales et bilans

Introduction à la mécanique des fluides III 1 Equations générales et bilans Inrodcion à la mécaniqe des lides III 1 Eqaions générales e bilans Philippe.Boillard@lb.ac.be re par R. Filomeno Coelho ersion 11 aril 2012 Descripions cinémaiqes de l écolemen Eler s. Lagrange noion de

Plus en détail

Intégrales généralisées ou impropres

Intégrales généralisées ou impropres ECS, Eercices chapire 7 Ocobre Inégrales généralisées ou impropres Convergence e calculs Voici oue une série d eercices avec des inégrales généralisées.. Il fau repérer les poins qui posen problème avec

Plus en détail

Le problème de Cauchy. Résultats fondamentaux.

Le problème de Cauchy. Résultats fondamentaux. Le problème de Cauchy. Résulas fondamenaux. 1. Noion de soluion maximale. Problème de Cauchy. 1.1 Forme normale d une équaion différenielle y = f(x,y). On éudie ici les équaions différenielles (ou sysèmes

Plus en détail

Fondements mathématiques des probabilités Théorie de la mesure Correction des exercices

Fondements mathématiques des probabilités Théorie de la mesure Correction des exercices Fondemens mahémaiques des probabiliés héorie de la mesure Correcion des exercices N. Baradel 7 février 16 1 D 1 1.1 Exercice 1 : Payoffs e sraégies Dessins au ableau. 1. Exercice : Prix de call e de pu

Plus en détail

Exercices - Transformation de Fourier : corrigé. Fonctions intégrables

Exercices - Transformation de Fourier : corrigé. Fonctions intégrables Foncions inégrables Exercice 1 - Foncion riangle - Troisième année - Sans déailler les calculs, e en faisan noammen une inégraion par paries, on a : De même, on rouve 1 1 (1 + x)e 2iπξx dx = i 2πξ + 1

Plus en détail

FONCTIONS. 1) Limites. 1-1 méthodes pour lever une indétermination. au voisinage d un infini. x 2 + x 2

FONCTIONS. 1) Limites. 1-1 méthodes pour lever une indétermination. au voisinage d un infini. x 2 + x 2 Mathématiqes BTS CIRA FONCTIONS ) Limites - méthodes por lever ne indétermination a voisinage d n infini x + Exemple f(x) = x Qelle est la limite en +? + 3x + On factorise par les monômes dominants f(x)

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 EXERCICE 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 EXERCICE 1 SESSION CONCOURS COMMUN POLYTECHNIQUE (ENSI FILIERE MP MTHEMTIQUES. Pour n, on pose n = Pr suie, n+ n n EXERCICE n. L suie ( n n e pour n, n =. D près l règle de d lember, R =. n R =. n+ n = n (n +.. Soi

Plus en détail

Cours de Mathématiques. Chapitre 2 : Transformation de Fourier

Cours de Mathématiques. Chapitre 2 : Transformation de Fourier Chapire : Transormaion de ourier UNIVERSITE DE TULN IUT DE TULN DEPARTEMENT GEII Cours de Mahémaiques Chapire : Transormaion de ourier Enseignane : Sylvia Le Beux sylvia.lebeux@univ-ln.r Bureau A04-04

Plus en détail

Méthodes Mathématiques pour. Suite de la boite à outils en 5 séances de cours + 5 séances de TD

Méthodes Mathématiques pour. Suite de la boite à outils en 5 séances de cours + 5 séances de TD Méhodes Mahémaiques pour l Ingénieur uie de la boie à ouils en 5 séances de cours + 5 séances de TD ommaire Veceurs e valeurs propres des marices Applicaions au ssèmes d équaions différenielles Inégrales

Plus en détail

2 Intégrales impropres

2 Intégrales impropres COURS L, -. SUITES, SÉRIES, INTÉGRALES IMPROPRES Inégrles impropres. Générliés Soi R[, b] l ensemble des foncions inégrbles (u sens de Riemnn) sur l inervl compc (=segmen) [, b]. Pr définiion, ces foncions

Plus en détail

Les principes des tests d hypothèse

Les principes des tests d hypothèse Remarqe La valer de α doit être choisie a priori, jamais en fonction des données observées. 6 2 Le risqe de dexième espèce Le rejet de l hypothèse H 0 se fait a bénéfice d ne atre hypothèse, dite hypothèse

Plus en détail

QCM Une seule des réponses proposées est correcte. Recopiez là sur votre copie. Attention! Toute réponse erronée sera pénalisée

QCM Une seule des réponses proposées est correcte. Recopiez là sur votre copie. Attention! Toute réponse erronée sera pénalisée S DS 7/04/ Exercice : sr 4 points QCM Une sele des réponses proposées est correcte Recopiez là sr votre copie Attention! Tote réponse erronée sera pénalisée ( )a por terme général n Alors Q La site Q La

Plus en détail

Chapitre 2 Autocorrélation des erreurs

Chapitre 2 Autocorrélation des erreurs Chapire Aocorrélaion des errers Licence Economérie Economérie II 007-008 Marin Fornier Fornier@gae.cnrs.fr L3 Economérie - Economérie II. Présenaion d problème L3 Economérie - Economérie II. Présenaion

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

TD 13 : Intégrales dépendant d un paramètre

TD 13 : Intégrales dépendant d un paramètre TD 3 : Inégrals dépndan d un paramèr Éuds d foncions Exrcic Enraînmn Oral Pis mins, PC, 5. On défini f x = a Dérminr l domain d définiion d f. b Éudir la régularié d f. c Qull s la limi d f x lorsqu x

Plus en détail

LA FONCTION EXPONENTIELLE

LA FONCTION EXPONENTIELLE LA FONCTION EXPONENTIELLE Nos allons décovrir ne fonction TRES sympathiqe : la fonction eponentielle! Cette fonction se note e o ep(), mais cette deième notation est moins corante. Dans les cas on dit

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Exercices : Série 1 Corrigés

Exercices : Série 1 Corrigés Exercices : Série 1 Corrigés 1 Durée nécessaire pour doubler le PIB par habian Déniions : y 0 : PIB par ravailleur au débu y T : PIB par ravailleur après T années g : aux de croissance [%] r : aux de croissance

Plus en détail

1 Généralités sur les tests d hypothèse

1 Généralités sur les tests d hypothèse UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année niversitaire 2014 2015 L2 Économie Cors de B. Desgrapes Méthodes Statistiqes Séance 05: Introdction ax tests d hypothèses Table des matières

Plus en détail

GEOMETRIE ELEMENTAIRE PLANE : CORRIGES

GEOMETRIE ELEMENTAIRE PLANE : CORRIGES GEOMETRIE ELEMENTIRE PLNE : CORRIGES Exercice GEP : (N Enoncé Soient d et d dex droites d éqations respectives ax + by + c = et ax ' by ' c' ( a b ( ', ', + + = avec ( ab, (, a qelle condition ces dex

Plus en détail

INTEGRALES GENERALISEES Voie scientifique

INTEGRALES GENERALISEES Voie scientifique INTEGRALES GENERALISEES Voie sienifique A. DEFINITIONS ) Fonion lolemen inégrle : (noion hors progrmme) Une fonion f, définie sur un inervlle I, es lolemen inégrle sur I si f es inégrle sur ou segmen inlus

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

et est finie, on dit que l intégrale généralisée converge et on note f(t)dt =lim F (x). x b f(t)dt lorsque f est définie continue sur ]a, b].

et est finie, on dit que l intégrale généralisée converge et on note f(t)dt =lim F (x). x b f(t)dt lorsque f est définie continue sur ]a, b]. Chpire 7 Inégrles générlisées 7. Inroduion Pour ou inervlle fermé orné I =[, ] ve e réels, e pour oue fonion f oninue ou oninue pr moreux sur I, il es possile de définir l inégrle de Riemnn f()d omme limie

Plus en détail

III Somme de deux séries entières, produit par un scalaire 5

III Somme de deux séries entières, produit par un scalaire 5 Séries entières I Généralités I.A Définition........................................... I.B Lemme d Abel........................................ 2 I.C Rayon de convergence d une série entière..........................

Plus en détail

2 Nature (convergence ou divergence) d une intégrale impropre

2 Nature (convergence ou divergence) d une intégrale impropre Lycée Dominique Villrs ECE INTEGRALES IMPROPRES ou GENERALISEES COURS Jusqu à présen l noion d inégrle d une foncion f se ie u cs d une foncion coninue sur un inervlle fermé, ppelé segmen, [,b] vec e b

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Cours de LICENCE. 1 Introduction

Cours de LICENCE. 1 Introduction Cours de LICENCE Inégrles générlisées Inroduion Pour l inégrle de Riemnn, on s es limié à onsidérer des fonions qui son définies sur un segmen [, b] de R (ve e b finis) e qui son bornées sur [, b]. Définiion

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS CHAPITRE 9 DÉVELOPPEMENTS LIMITÉS Dans ce chapitre, I désignera systématiquement un intervalle de R non réduit à un point. 1 Développement limité d une fonction au voisinage d un point Définition 9.1 Soient

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES PC Dae de créaion 006 Cours, Exercices, Aueur (s) de la ressource pédagogique : FACK Hélène [FACK Hélène], [04], INSA de Lyon, ous drois réservés. Sommaire EQUATIONS DIFFERENTIELLES

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Nommer un angle. Donner la nature d'un angle. w H CHAPITRE M1 ANGLES

Nommer un angle. Donner la nature d'un angle. w H CHAPITRE M1 ANGLES Nommer n angle onner la nare d'n angle 1 ecopie e complèe le ablea ci-dessos. 4 armi les angles nméroés ci-dessos, qels son les angles aigs, obs e drois? z ngle er orange ble Nom omme ôés... e... 2 eprodis

Plus en détail