COURBES PLANES PARAMETREES. f est aussi appelé paramétrage de C (ou paramétrisation) de C. , Exemples : et C la droite D( M, u)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "COURBES PLANES PARAMETREES. f est aussi appelé paramétrage de C (ou paramétrisation) de C. , Exemples : et C la droite D( M, u)"

Transcription

1 COURBES PLANES PARAMETREES A DEFINITIONS ET PREMIERES PROPRIETES: Arc paraméré, courbe paramérée, Dans ou ce chapire on noera R ( O i j, un repère orhonormé du plan P soi I f : une foncion vecorielle C k définie sur un inervalle I de R f ( i + y( j ( I, f es appelé arc plan paraméré de classe C k de R / es appelé suppor de l arc paraméré ( I, f ( I, f es aussi appelé paramérage de C (ou paramérisaion de C le couple L ensemble C { M P OM f ( e I} le repère R dans Une courbe paramérée es une réunion d arcs paramérés noaion cinémaique C { M P OM f ( e I} le veceur f ( Soi es noé M e x, y R ( dm ou encore d OM d d u( α, β R / es appelé la rajecoire, Exemples : D ( M, u M E / M M u, R x, y R / x + y la parie C de R définie par ( e C la droie D( M, u, définie par : es un arc paraméré de R { } C es une courbe paramérée de Eude des Courbes planes paramérées : Dans oue la suie on noera C la coube définie x sin x + par e C par y cos y + Périodicié : Si x e y on une période commune T On éudie F sur un inervalle d'ampliude T Syméries Roaions s il exise une bijecion ψ : D D e s il exise une parie D D elle que D D ψ ( D s il exise une ransformaion géomérique T du plan P elle que D M ( ψ ( T( M ( R e Alors on limie l éude à la parie D D puis on complèe par la ransformaion géomérique T du plan P Exemple eude de C Tangene en un poin à une courbe e posiion de la courbe: ( p Définiion : la angene en M à la courbe C es la droie D M, f ( où p es le premier enier f ( p naurel el que ( Si p ( f '( ( M es di régulier, sinon M es di poin saionnaire Exemple : éqauion carésienne de la agnee aux poins saionnaires de C Posiion d'une courbe au voisinage d'un poin dans le plan affine: EIVL LG page / 9 courbes planes paramérées

2 Définiion soi n N * el que f es n ( p C sur I, D( M, f ( es la angene à C en M ( ( p Si q le plus pei enier naurel non nul el que ne soi pas colinéaire à alors (, f q ( p ( M f (, f q ( ( p ( M f (, f q ( ( p ( M f (, f q ( ( p ( q I M M X ( f ( + Y( f ( ( f ( es appelé repère fondamenal en M à la courbe C ( remarque on doi avoir nécessairemen p q n Théorème : si (, alors (, avec < es le repère fondamenal en M à la courbe C es appelé repère fondamenal en M e on peu écrire X ( ~ ( p! p e Y( ~ ( q q corollaire : définiion des quare ypes de poins, poin ordinaire, poin d'inflexion,poins de rebroussemens de ère e nde espèce G de( F' (, F"( M es di birégulier ( Si p e q ( Remarque si M es un poin d inflexion alors G de( f '(, f "( ( ( Exemple: naure des poins saionnaires e deerminaion des poins d inflexion de C? 4 Branches infinies d une courbe plane définie paramériquemen : C possède une branche infinie s'il exise D (fini ou non el que lim x( + ou lim y( + Le ableau suivan résume les différens ypes de branches infinies : lim x( x Si e lim y( ± lim x( ± e lim y( y lim x( + e si lim y( + e si y lim ( ± x( y( lim x( y( lim a R x( lim y( a R x( e si * * lim ( y( ax( b R ± lim ( y( ax( Alors la droie d'équaion x x es asympoe à C la droie d'équaion y y es asympoe à C branche parabolique dans la direcion (Oy branche parabolique dans la direcion (Ox direcion asympoique dans la direcion de la droie ax y la droie d'équaion! es asympoe y ax + b une branche parabolique dans la direcion y ax Exemple :Eude des branches infinies de C 5 Poins muliples de C: s il exise el que e f ( f ( (, D alors M ( es appelé poin muliple EIVL LG page / 9 courbes planes paramérées

3 Exemple : éude des poins muliples de ² f ( 6 Plan d'éude d'une courbe plane définie paramériquemen par: x y y( Déerminaion de l'ensemble de définiion D Déerminaion du domaine d'éude ; Périodicié ;ransformaions géomériques Eude des variaions e des poins saionnaires évenuels Eude des branches infinies : Résumer les résulas dans un ableau de variaion Tracé de la courbe:préciser les poins remarquables (poins saionnaires,poins d'inersecions avec les axes,avec les asympoes Poins muliples de C ( si l énoncé le précise 7 EXEMPLE : Eude de C EXEMPLE : Eude de C (courbes de Lissajous // lissajous -%pi::%pi;xsin(* ;ycos(*; xse("fon",,8 plo(x,y,"x","y","bonne FETE MAMAN ",xgrid(; y BONNE FETE MAMAN x B COURBES PLANES EN COORDONNEES POLAIRES Courbe définie par une équaion polaire: Définiion : R Soi f f ( définie sur D On appelle courbe d'équaion polaire r f ( la courbe (C d'équaions paramériques : x f y f ( ( cos sin EIVL LG page / 9 courbes planes paramérées

4 + π v( u + sin i + cos j ( Noaions : pour ou R si on noe u( cos i sin j e π appelé veceur uniaire d angle polaire + on a par conséquen OM F( u es appelé veceur uniaire d angle polaire e v ( f ( u, ce qui signifie que f ( es l'abscisse du poin M dans le repère ( O, u sur la droie définie par ce repère On appelle: l'origine O le pôle, r le rayon polaire, l' angle polaire équaion polaire d'une droie, équaion polaire d'un cercle passan par le pôle (voir TD droie ne passan pas par le pole équaion polaire : A r cos( ϕ ce r Acos( ϕ droie passan pas par le pole équaion polaire : cercle passan par le pôle équaion polaire : syméries e Roaions: (On noera dans la suie indifféremmen la foncion f par r ou par f soit un réel posiif, α R e k Z on noe C k { M C / [ α + kt; α + ( k + T[ } Si pou ou D Alors Conséquences r ( + T r( C k es l'image de C par la éude pour α, α + T donne roaion de cenre O e d'angle C puis C Ck k Z kt r( + T r( C es l'image de C par la éude pour α, α + T donne roaion de cenre O e d'angle C T + π e on se ramène au cas précéden grâce à ( a - r( r r ( a - r( CAS LES PLUS FREQUENTS : ( + T r( r C es symérique par rappor à la droie D (O, u éude sur a D a ;+ ou sur D ; a alors C es symérique par rappor à la droie D (O, u a + π a éude sur D ;+ ou sur D ; a r (- r( ; r( - r( r ( π - r( ; r( π - r( ; ( π + r( r ( π + r( EXEMPLES: branches infinies r ; f ( an ; f ( + cos lim r Branche infinie avec direcion asympoique : ( ± Branches infinies spirales : r( ± ± lim EXEMPLE: f ( EXEMPLE: f ( an EIVL LG page 4/ 9 courbes planes paramérées

5 R Cercle (ou poin asympoe lim r( ( évenullemen ± Exemple : f ( 4 Tangene en un poin: le seul poin saionnaire possible de C es le pôle Tangene en un poin disinc du pôle: En ou poin alors on a : + M de C la angene es la droie D( M, F ( e si l on pose V ( u, F ( anv f ( f ( ( si f ( alors V π ' Poins à angene horizonale (resp vericale caracérisés par [ π ] π V (resp V π Tangene au pôle : la angene en O à C es la droie D( O, u 5 EXEMPLE : r an EXEMPLE : r + cos C Longueur d'un arc, Abscisse curviligne changemen de paramère admissible : C I, F un arc de classes C k, Φ un Soi ( (, G J es appelé paramérage k Φ e k C -difféomorphismeφ de I sur J (I C admissible de C ( I, F On di alors que (, F G G Φ I e (, G J C k - équivalens Si de plus Φ es sricemen croissane alors ( I, F e ( J, G son dis C k -équivalens e de même orienaion Abscisse curviligne: Théorème e définiions: C I, F un arc de classe C sans poins saionnaires, on appelle abscisse curviligne dans le Soi ( sens de croissans sur C oue applicaion σ : de classe s σ ( I σ ( F ( Pour ou I l'applicaion : σ ( F ( u C vérifian σ es une abscisse curviligne sur C Une abscisse curviligne es un changemen de paramère admissible de C ( J ( I, F σ σ b ( ( ( a, F ( ( r cos, r sin Longueur d'un arc: si F es C alors L σ b σ a F d es appelée longueur de l'arc M [,π ] a M b Calculs de longueurs de courbes: paramérisaion de la courbe du Longueur de la courbe b F( i + y( j + z( k [ a; b] L x' ( y' ( z' ( d équaion carésienne y f (x [ a; b] x coordonnées polaires x ρcos ; y ρsin L + + a b a b σ '(xdx + f ' ( x dx L ρ ( + ρ' ( d a EIVL LG page 5/ 9 courbes planes paramérées

6 TD COURBES PLANES PARAMETREES O, i, j Le plan affine P es rapporé à un repére orhonormé ( EXERCICE Eudier les courbes définies paramériquemen par : OM F( i + y( j a x ( cos + cos e y( sin sin b x( e ( ( + ( y COURBES EN COORDONNEES POLAIRES : Le plan affine P es rapporé à un repére orhonormé ( O, i, j EXERCICE Soi C la courbe d équaion polaire r f ( On noe F( f ( u( ( k Soi p N *, monrer que si pour ou enier k<p F ( Alors pour ou enier k<p ( k f ( En déduire que la angene au pôle es porée par le rayon veceur EXERCICE Soi C définie par son équaion polaire r f (, a un réel Monrer que D r ( a - r( alors C es symérique par rappor à la droie D (O, u a Si pou ou EXERCICE 4 Eudier e représener les courbes d équaions polaires suivanes cos a r cos( (lemniscae de Bernoulli b r π sin EXERCICE 5 : Calculer les longueurs des arcs de courbes suivans : Calculer la longueur de l'arc de courbe ( *+ a R Γ défini par : x +, y + 6 Quelle es la longeur de la cardioïde d'équaion ρ + cos [, π ] EXERCICE 6 : repère de Frêne, courbure, paramère angulaire, développée repère de Fréne : un arc de classe C régulier du plan affine E Soi C ( I, F On noe M ( le poin de C défini par I OM ( F(, [, a] avec EIVL LG page 6/ 9 courbes planes paramérées

7 s une abscisse curviligne sur C dans le sens des croissans d origine a s ( F ( u du Dans oue la suie on noe par s le poin s ( On noe G l applicaion définie sur J par G( s F( ( J, G es alors appelé paramérage de C ( I, F On a : s J G ( s F ( Le veceur T ( s G ( s F ( veceur uniaire (s par l abscisse curviligne a (on di que l abscisse curviligne es un paramère normal de C es appelé veceur uniaire de la angene orienée l unique N direcemen orhogonal à T (s es appelé veceur uniaire normal M ( s; T ( s; N( s es appelé repère de Fréne en M (s à la courbe C oriené ( Paramère angulaire : On noe α ( s ( i, T ( s l angle que fai la angene avec ( O i, Le héorème de relèvemen assure que si F es C sur I alors α es e on a : G ( s T ( s cos( α ( s i + sin( α( s j α es appelé paramère angulaire Courbure : on appelle courbure de C au poin M le réel On a alors C sur I dα γ ( s ds dt dn G ( s γ N, γ (s de ( i, j ( G' ( s; G ( s e de plus ds ds R( s γ ( s es appelé rayon de courbure en M (s si γ ( s le nombre 4 Cenre de courbure e développée γ es appelé cenre de courbure en M (s Le poin C(s défini par M ( s C( s R( s N( s L ensemble des cenres de courbures, lorsque s décri J es appelé développée de C 5 Calculs praiques Dans la praique, la courbe es donnée par un paramérage quelconque I F : F( i + y( j G( s ξ ( s i + η( s j pour calculer ( M ( s; T ( s; N( s exprime oues ces quaniés au poin s( en uilisan la relaion (s Exemple il n es pas besoin de calculer le paramérage par l abscisse curviligne γ ; ; (s R( s γ ( s T ( ; ( s i, T ( s α on s en uilisan le paramère x' ( y"( x"( y' ( γ de ( i, j ( G' ( s; G ( s on a γ ( s( x'²( + y'²( ( EIVL LG page 7/ 9 courbes planes paramérées

8 Déerminer le repère de Fréne, la courbure, le cenre de courbure, la développée de la racrice d équaion * R + x( h( y( ch( Déerminaion de α ( s( : On a I cos( α( s( x' ( s' ( sin( α( s( y' ( s' ( Dans le cas où une déerminaion direce n es pas possible e si '( On a alors Calcul de (s x y' ( anα ( s ( (écriure pouvan conduire à la déerminaion de ( s( x' ( γ en uilisan le paramère angulaire dα( s( γ ( s( s' ( d On a Exemple I α Déerminer le repère de Fréne, le paramère angulaire, la courbure, le cenre de courbure, la développée, de la cycloïde d équaion ] ;π [ r f ( Arc défini par une équaion polaire x( sin y( cos Ici le paramère es compe enu des définiions des angles ( α s ( + V ( ( D aure par on a : Eude de la cardioïde r + cos γ ( s( V e α( s ( on a alors f ²( + f '²( f '( f "( ( f ²( + f '²( Pour s exercer : EXERCICE A Théorème de relèvemen Soi B ( e, e une base orhonormale direce de R, I un inervalle de R e I V : une foncion C sur I, vérifian : V ( e + + y( e I V ( I On suppose qu il exise deux foncions ϕ e ψ elles que : ϕ : e ψ : C sur I, e vérifian : ϕ( ψ ( I V ( cosϕ ( e + sinϕ( e cosψ ( e + sinψ ( e Monrer qu alors il exise k Z el que I ϕ( ψ ( + kπ II On noe f l affixe complexe de la foncion V c es à dire la foncion définie par : C f : f ( + i y( où i² Monrer que R I f ( i f ( EIVL LG page 8/ 9 courbes planes paramérées

9 Soi a I monrer que l applicaion ϕ définie sur I par : I sur I on noe i ϕ( l applicaion définie sur I par I ( e f ( monrer que es consane sur I ϕ : ϕ( V ( cosϕ ( e + sinϕ( e 4 En déduire qu il exise une foncion I EXERCICE B : - éude de x( e e y( EXERCICE C: Eude des courbes d équaions polaires : a sin r b r ln sin + cos C sur I, vérifian : ( i a f ( u du f ( u ϕ es ( l éude des poins doubles n es pas demandée C EIVL LG page 9/ 9 courbes planes paramérées

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

EXERCICES SUR LES COURBES PARAMETREES

EXERCICES SUR LES COURBES PARAMETREES EXERCICES SUR LES COURBES PARAMETREES. Eudier les courbes représenaives des foncions f définies ci-dessous. a) f) = cos, sin ) b) f) = sin, ) sin + cos c) f) = sin, cos ) d) f) = 4cos sin, cos )cos ).

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Eude mérique des courbes Exercices de Jean-Louis ouge erouver aussi cee fiche sur wwwmahs-francefr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale

CONCOURS TA A EPREUVES COMMUNES Mathématiques 1. PARTIE I : Formules de projection orthogonale CONCOURS TA A EPREUVES COMMUNES - 996 Mahémaiques PARTIE I : Formules de projecion orhogonale ) Le poin couran M() de l hélice (H) vérifian OM() = R cos i + R sin j + h k, le projeé orhogonal p(m) de M

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Techniques ahémaiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Exercice 1 1.a Rappel sur les coniques Les coniques inerviennen dans un nombre d applicaions

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

E X E R C I C E S C H A P I T R E = t

E X E R C I C E S C H A P I T R E = t E X E R C I C E S C H A P I T R E 8 Exercice 8.5 ) D = D x D y = R* e ) = + & # x $! = + % " = ) e On passe de M() à M(/) par la symérie axiale d'axe Δ d'équaion y = x. 0 / - + y & # $! = % " + = ) Quand

Plus en détail

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm.

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm. Suje 4 (Bac S) Exercice 1 (Courbes paramérées) Le plan es rapporé à un repère orhonormal (O ; i r, r j ), l unié graphique éan 1 cm. 1) Soi (C) la courbe don une représenaion paramérique es : = = 1 2 x

Plus en détail

Chapitre VIII : Trigonométrie

Chapitre VIII : Trigonométrie hapire V : Trigonomérie Exrai du programme : Dans ce chapire, on muni le plan du repère orhonormé (; ;. Repérage sur le cercle rigonomérique Définiion Le cercle rigonomérique es le cercle de cenre e de

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

Chapitre 6 ARCS PARAMÉTRÉS. Enoncé des exercices

Chapitre 6 ARCS PARAMÉTRÉS. Enoncé des exercices Chapire 6 ARCS PARAMÉTRÉS Enoncé des exercices Les basiques Exercice 6. On considère l asroïde de paramérisaion M) = d éude e racer son suppor Γ. Exercice6. Soil arcparamérém)= double. x) y) Exercice6.

Plus en détail

CINEMATIQUE MATHEMATIQUES VECTORIELLES APPLIQUEES A LA MECANIQUE

CINEMATIQUE MATHEMATIQUES VECTORIELLES APPLIQUEES A LA MECANIQUE hp://sbeccompany.fr CINEMATIQUE MATHEMATIQUES VECTORIELLES APPLIQUEES A LA MECANIQUE I Inroducion 1) Cinémaique LA CINEMATIQUE CONSISTE A ANALYSER DE FAÇON PUREMENT MATHEMATIQUE LE MOUVEMENT DE CORPS EN

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

Courbes planes. On appelle fonction vectorielle d'une variable réelle toute fonction de I dans un espace vectoriel réel E.

Courbes planes. On appelle fonction vectorielle d'une variable réelle toute fonction de I dans un espace vectoriel réel E. Courbes planes Dans ou ce chapire, I es un inervalle e Á ou Á ou enier Généraliés Si l'on éuie le mouvemen 'un poin ans l'espace au cour u emps, à chaque insan, celui occupe une posiion P() Les cooronnées

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

TS Exercices sur la géométrie dans l espace (niveau 1)

TS Exercices sur la géométrie dans l espace (niveau 1) TS Exercices sur la géomérie dans l espace (niveau ) Dans ous les exercices, l espace E es muni d un repère orhonormé O, i, j, k. Aucune figure n es demandée dans ces exercices sauf pour l exercice 5.

Plus en détail

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles TD1 Les veceurs Par 1 1. Trouver A+B, A-B, 3A, -B dans chacun des cas suivans: A=(,-1), B=(-1,1) A+B = (1, 0) A=(-1,3), B=(0,4) A+B = (-1, 7) A= (,-1,5), B=(-1,1,1) A+B = (1, 0, 6) A=(π,3,-1),B=(π,-3,7)

Plus en détail

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1 Universié Claude Bernard Lyon- Licence «Sciences e echnologie» Unié d enseignemen Mah. I Algèbre CONTROLE FINAL 8 Janvier 0-durée h L énoncé compore cinq exercices sur deux pages. Documens, calcularices

Plus en détail

Université Claude Bernard Lyon 1. Corrigé du contrôle continu 2 du 25 octobre 2017

Université Claude Bernard Lyon 1. Corrigé du contrôle continu 2 du 25 octobre 2017 Universié Caude Bernard Lyon 1 M1 Géomérie Corrigé du conrôe coninu du 5 ocobre 017 Les documens son auorisés mais es cacuees e es ééphones porabes son inerdis. I sera enu compe de a quaié de a rédacion

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

VITESSE - ACCELERATION

VITESSE - ACCELERATION CINEMATIQUE VITESSE - ACCELERATIN Mécanique Référence au programme S.T.I Référence au module - Cinémaique. Module 7 : :Cinémaique -1 Mouvemen relaif de deux solides en liaison glissière ou pivo -1. Caracérisaion

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

Rappels sur les suites.

Rappels sur les suites. UFR SFA, Licence 2 e année, MATH326 Rappels sur les suies. Dans oue la suie, K désigne R ou C. 1. Généraliés sur les suies. Définiion. Une suie à valeurs dans K es une applicaion u de N, privé évenuellemen

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

TS1 - Contrôle n 6 de mathématiques

TS1 - Contrôle n 6 de mathématiques TS1 - Conrôle n 6 de mahémaiques Eercice 1 Le plan es rapporé à un repère orhogonal (O ; i ; j ). 1) Eude d'une foncion f On considère la foncion f définie sur l'inervalle ]0 ; + [ par f() = ln ( ) i ;

Plus en détail

Fonctions de Bessel : comportement à l infini

Fonctions de Bessel : comportement à l infini Prépa. Agrég écri d Analyse, avril 23. Foncions de Bessel : comporemen à l infini 1. Éude au moyen de l équaion différenielle Voir Chaerji volume 3, secions 2.6 e 2.7. On suppose que n es un enier e que

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera

Plus en détail

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p.

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p. Lycée Thiers CORRECTION DS - Enoncé ) On développe en uilisan les hypohèses : ( f a ide ) ( f b ide ) = f 2 (a + b) f + ab id E = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) = 2) On reprend le

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

CORRECTION «SEMI-MARATHON»

CORRECTION «SEMI-MARATHON» Lycée Thiers CORRECTION «SEMI-MARATHON» Q- Calculer A = e ln ( IPP : u ( = ; v ( = ln ( u ( = ; v ( = Q- Calculer B = B = Q- Calculer C = π A = + + [ ] e e ln ( = e ( e = e + + + + = [ ( ] ln + + [arcan

Plus en détail

Intégrales fonctions des bornes

Intégrales fonctions des bornes [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Enoncés Inégrales foncions des bornes Eercice [ 987 ] [Correcion] Soi f : R R une foncion coninue. Jusier que les foncions g : R R suivanes son de classe

Plus en détail

Autour des fonctions vectorielles

Autour des fonctions vectorielles NOTES DE COURS Chap GEO01 Auour des foncions vecorielles Cadre de ravail e/ou noaions uilisées Dans ou ce qui sui, I désignera un inervalle non vide e non rédui à un poin de R, e n désignera un enier naurel

Plus en détail

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps MATHÉMATIQUES II Dans ou le problème, ε désigne le plan affine euclidien IR 2 rapporé à son repère orhonormé canonique ( OI ;, J) On noe i le complexe de module 1 e π d argumen -- Si z IC, on noe Mz ()

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x 3 Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D Dans

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi :

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi : Jean-François COSSUTTA. Lycée Marcelin Berhelo Sain Maur 94. LYON 3 PREMIER PROBLÈME PARTIE I : Résulas généraux sur ϕ e J n. Les foncions e sin son coninues sur ], + [. Par produi ϕ es coninue sur ],

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u.

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u. MATHÉMATIQUES II Dans ou le problème, n es un enier naurel supérieur ou égal à 1 On considère un espace euclidien E de dimension n On noe ( xy) le produi scalaire de deux veceurs x e y e xa x la norme

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

FORMATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS. Session 1 er avril 2017 MATHÉMATIQUES. Temps conseillé : 1 heure 30

FORMATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS. Session 1 er avril 2017 MATHÉMATIQUES. Temps conseillé : 1 heure 30 NO : Avril 07 Prénom : Recruemen TP FORATION INGENIEUR EN PARTENARIAT AVEC AFTP-PACA SPECIALITE TRAVAUX PUBLICS Session er avril 07 ATHÉATIQUES Temps conseillé : heure 30 Aucun documen auorisé, calcularices

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Chapitre 4. GEL1000 Circuits FONCTIONS D EXCITATION. Plan du cours. Objectifs. Excitations électriques. Fonctions apériodiques

Chapitre 4. GEL1000 Circuits FONCTIONS D EXCITATION. Plan du cours. Objectifs. Excitations électriques. Fonctions apériodiques GEL000 Circuis Chapire 4 FONCTIONS D EXCITATION Objecifs reconnaîre les exciaions élecriques périodiques; comprendre le comporemen des foncions d exciaion simples comme l échelon, l impulsion e la rampe

Plus en détail

GEL1000 Circuits. Chapitre 4 FONCTIONS D EXCITATION

GEL1000 Circuits. Chapitre 4 FONCTIONS D EXCITATION GEL1000 Circuis Chapire 4 FONCTIONS D EXCITATION Objecifs reconnaîre les exciaions élecriques périodiques; comprendre le comporemen des foncions d exciaion simples comme l échelon, l impulsion e la rampe

Plus en détail

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt.

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt. Parie A ) Prouver que pour ou réel >, ln. ) En déduire que la foncion f :, e elle que f() =, es définie sur [;+ [. ln 3) a) Eudier la foncion f. En pariculier, f es-elle dérivable en zéro? Sa courbe représenaive,

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Devoir surveillé n o 5 (4

Devoir surveillé n o 5 (4 Devoir surveillé n o 5 4 heures) Ce devoir es consiué d'un eercice e de deu problèmes de concours)l'ordre des eercices ne correspond à aucun crière de diculé ou de longueur : vous pouvez les raier dans

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2 Mécanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEMATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en

Plus en détail

Macroéconomie - Croissance

Macroéconomie - Croissance Macroéconomie - Croissance Licence 3 Sepembre 208 Rappels sur les dérivées. Eude d une foncion Une foncion es : croissane lorsque sa dérivée es posiive ; décroissane lorsque sa dérivée es négaive ; consane

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100

donc 1+ t 100 = CMg t 100 = 1,16 d où t 100 Exercice Dans chacune des siuaions suivanes, déerminer la valeur de.. Le chiffre des venes d un magazine a augmené de % puis diminué de %. Globalemen il a augmené de 6%. D après l énoncé, on a :,6 = +%

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

Pondichéry mai Partie A

Pondichéry mai Partie A Exercice 6 poins Les paries A e B peuven êre raiées de façon indépendane. Dans une usine, un four cui des céramiques à la empéraure de 000 C. À la fin de la cuisson, il es éein e il refroidi. On s inéresse

Plus en détail

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301 FSMH TOULOUSE Biomécanique L1 UE11 Suppor de cours Amaranini Waier Duclay Laurens Julien DUCLAY julien.duclay@univ-lse3.fr Pôle Spor - Bureau 31 z (m) Exemple 1 : équaions horaires O ez Chue libre vericale

Plus en détail

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques Lycée du Parc 2-22 - Concours Blanc Épreuve de mahémaiques Samedi 5 Mai 22-8h-2h Si la vie es complee, c es parce qu elle a une parie réelle e une parie imaginaire. Marius Sophus Lie. Le devoir compore

Plus en détail

Sup PCSI2 Quelques exercices corrigés sur les fonctions. 2x xlnx

Sup PCSI2 Quelques exercices corrigés sur les fonctions. 2x xlnx Sup PCSI Quelques eercices corrigés sur les foncions Eercice : énoncé On noe f : lnd Q Jusifiez l eisence de l applicaion f Q Quelle es la classe de coninuié de f? Q Quelle es la classe de coninuié de

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES

ÉQUATIONS DIFFÉRENTIELLES hapire 7 ÉQUTIONS DIFFÉRENTIELLES I. GÉNÉRLITÉS SUR LES ÉQUTIONS DIFFÉRENTIELLES désigne indifféremmen ou. Eemples liminaires Les lois qui régissen, en physique ou chimie, l évoluion de grandeurs G au

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Partie A x t dt. 0 0,5 1 1,5 2 2,5 3 3,5 4 x. D. PINEL, Site Mathemitec :

Partie A x t dt. 0 0,5 1 1,5 2 2,5 3 3,5 4 x. D. PINEL, Site Mathemitec : nilles - Guyane Eercice 6 poins Quesion de cours Prérequis : posiivié e linéarié de l inégrale Soien a e deu réels d un inervalle I de R els que a Démonrer que si f e g son deu foncions coninues sur I

Plus en détail

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0.

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES Exercice 1 Au cours de la raversée d'un milieu ransparen, l'énergie lumineuse es d'une par absorbée par le milieu, d'aure par diffusée (effe Compon). La variaion

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Devoir de Mathématiques 3 : corrigé

Devoir de Mathématiques 3 : corrigé PCSI 4-5 Mahémaiques Lycée Berran de Born Devoir de Mahémaiques 3 : corrigé Exercice. Éude d une foncion en noaion puissance On considère la foncion f définie par f(x) = x x = e x ln(x) La foncion foncion

Plus en détail

Espaces préhilbertiens réels et espaces euclidiens

Espaces préhilbertiens réels et espaces euclidiens Espaces préhilberiens réels e espaces euclidiens 0 Rappels de première année 0. Produi scalaire réel, espace euclidien Définiion 0... Produi scalaire réel Ean donné un Respace vecoriel E, on appelle produi

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

Courbes planes parametrées et polaires

Courbes planes parametrées et polaires CPGE My Youssef, Rabat Õæ k QË@ á Ô g QË@ é

Plus en détail

MATHÉMATIQUES I. Partie I - Calculs préliminaires

MATHÉMATIQUES I. Partie I - Calculs préliminaires MATHÉMATIQUES I Parie I - Calculs préliminaires Dans ou ce problème a e v désignen deux nombres réels, a es sricemen posiif IA - Monrer que la foncion ϕ définie sur IR * par ( sin( x) ) ϕ( x) = adme un

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

Résolution de systèmes linéaires par la méthode du pivot de Gauss

Résolution de systèmes linéaires par la méthode du pivot de Gauss Lycée Pierre de Ferma 7/8 MPSI TD Résoluion de sysèmes linéaires par la méhode du pivo de Gauss Sysèmes linéaires. Conclure à parir d un sysème échelonné e riangularisé Exercice.. Sysèmes linéaires riangularisés

Plus en détail

Feuille d exercices n o 19

Feuille d exercices n o 19 Mahémaiques spéciales Feuille d eercices n o 9 Eercices basiques a. Convergence e calcul d inégrales Eercice 5. ln. sin e d 4. ( e ln e Eercice. e ( cos. e + Eercice ln. + e ln ln ( d Eercice 4. Pour α,

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

D.M : Résolution des équations différentielles Méthode d'euler

D.M : Résolution des équations différentielles Méthode d'euler D.M : Résoluion des équaions différenielles Méhode d'uler I - La méhode d'uler : les bases mahémaiques - définiion du nombre dérivée en un poin Soi y = f(x la foncion considérée (supposée coninue e dérivable

Plus en détail

Différentiabilité. Chapitre 1. Conventions, notations et rappels

Différentiabilité. Chapitre 1. Conventions, notations et rappels Chapire 1 Différeniabilié Le principal obje du calcul différeniel es d évaluer la différence f (x + h) f (x), accroissemen d une applicaion f définie au voisinage d un poin x d un espace normé E, à valeurs

Plus en détail

Équations différentielles

Équations différentielles V. Équaions différenielles 1 Primiive d une foncion Définiion 1. On appelle primiive d une foncion f une soluion de l équaion différenielle y = f. Exercice 1. Déerminer une soluion de l équaion différenielle

Plus en détail

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé Planche n o 8. Inégraion sur un inervalle quelconque. Corrigé Eercice n o Pour, +4+ e donc la foncion f : + +4+ es coninue sur [,+ [. Quand end vers +, + 3 +4+ = ++ +4+ 3 3. Comme la foncion es posiive

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

CCP MP maths 1

CCP MP maths 1 Psi 945 4/5 hp://blog.psi945.fr DM - corrigé CCP MP - mahs. (a) Supposons f posiive : il y a équivalence enre les deu proposiions ; c es une conséquence assez direce de la définiion de l inégrabilié, via

Plus en détail

Corrigé du devoir n 5

Corrigé du devoir n 5 Corrigé du devoir n 5 Il es foremen conseillé de lire l'ensemble des énoncés avan de commencer. n poin es consacré à l'uilisaion correce des noaions (leres minuscules, leres majuscules soulignées, ). Exercice

Plus en détail