COMPARAISON DE FONCTIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "COMPARAISON DE FONCTIONS"

Transcription

1 Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme : ] ε; + ε[ vec ε > 0 si R, ]A; + [ si = +, ] ; A[ si =, Exemple 1.1 x 1 x 2 est définie u voisinge de 0 puisqu elle est définie sur ] 1, 1[. x x 2 + x 3 est positive u voisinge de 0 puisqu elle l est sur ] 1, 1[. x ln x est positive u voisinge de + puisqu elle l est sur ]1, + [. 2 Négligeilité 2.1 Définition Définition 2.1 Soient f et g deux fonctions définies dns un voisinge V de (éventuellement privé de si f ou g n est ps définie en ). On dit que f est négligele devnt g s il existe une fonction ε : V R telle que f(x) = g(x)ε(x) pour tout x V, lim x ε(x) = 0. On note lors f = o(g) ou encore f(x) = o(g(x)) x Négligeilité en prtique En prtique, l définition précédente est difficile à mnipuler. Qund g ne s nnule ps u voisinge de, f(x) f(x) = o(g(x)) équivut à lim x x g(x) = 0. Exemple 2.1 x 4 = o(x 2 ). x 2 = o(x 4 ). 1

2 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Attention! f = o(0) signifie que f est nulle u voisinge de, ce qui est très rrement le cs dns les exercices et les prolèmes. Dns 99% des cs, si vous outissez à une telle expression lors d un clcul, c est que vous vous êtes trompés. Nottion 2.1 L reltion de négligeilité f g = o(h) s écrit églement f = g + o(h). 2.2 Exemples fondmentux Proposition 2.1 Au voisinge de + Soit (α, β) R 2. Alors α < β x α = o(x β ). Soit (, ) ( 2. R+) Alors < x = o( x ). Soit (α, β) ( R+). Alors (ln x) α = o(x β ). Soit (α, β) ( R+). Alors x α = o(e βx ). Proposition 2.2 Au voisinge de 0 Soit α, β R. Alors α > β x α = o(x β ). Soit α, β R vec β > 0. Alors ln x α = o Å 1 x β ã. Proposition 2.3 Au voisinge de Å ã 1 Soit α, β R +. Alors e αx = o x x β. Soit, R +. Alors > x = x o( x ). 2.3 Opértions sur les petits o Proposition 2.4 Opértions sur les petits o Trnsitivité o(g) et g = Multipliction pr un réel non nul o(h), lors f = o(h). o(g) et λ 0, lors f = o(λg). Cominison linéire de fonctions négligeles devnt une même fonction Si f 1 = o(g) et f 2 = o(g), lors pour tout (λ 1, λ 2 ) R 2, λ 1 f 1 + λ 2 f 2 = Produit Si f 1 = o(g 1 ) et f 2 = o(g 2 ), lors f 1 f 2 = o(g 1 g 2 ). o(gh). Composition à droite o(g), lors fh = o(g) et lim ϕ = lors f ϕ = o(g ϕ). o(g). 2

3 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Remrque. On en déduit isément les résultts suivnts : g + o(h) et λ 0, lors f = g + o(λh). Si f 1 = g 1 + o(h) et f 2 = g 1 + o(h), lors pour tout (λ 1, λ 2 ) R 2, λ 1 f 1 + λ 2 f 2 = λ 1 g 1 + λ 2 g 2 + o(h). gk + o(hk). g + o(h), lors fk = Attention! Opértions interdites On n dditionne ps des reltions de négligeilité memre à memre : f 1 = o(g 1 ) et f 2 = o(g 2 ) f 1 + f 2 = o(g 1 + g 2 ) Pr exemple, x 1 = o(x 2 ) et 1 = o(1 x 2 ) mis x o(1). On ne compose ps à guche : f = o(g) ϕ f = o(ϕ g) Pr exemple, x = o(x 2 ) mis, si on compose à guche pr x 1 x, 1 x Å ã 1 o x 2. Chngement de vrile En prtique, l composition à droite s interprète comme un chngement de vriles. Si f(u) = o(g(u)) et u u = ϕ(x), lors f(ϕ(x)) = o(g(ϕ(x))). x x Exemple 2.2 Pour comprer x e 1 x et 1 x en 0+, on pose u = 1 x. On u + et u = o (e u ) donc 1 + u + x = o Ä ä e 1 x. + 3 Équivlence 3.1 Définition Définition 3.1 Soient f et g deux fonctions définies dns un voisinge V de (éventuellement privé de si f ou g n est ps définie en ). On dit que f est équivlente à g s il existe une fonction η : V R telle que f(x) = g(x)η(x) pour tout x V, lim x η(x) = 1. On note lors f g ou encore f(x) g(x) x Équivlence en prtique En prtique, l définition précédente est difficile à mnipuler. Qund g ne s nnule ps u voisinge de, f(x) f(x) g(x) équivut à lim x x g(x) = 1. 3

4 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Exemple 3.1 x 2 + 5x x + 1 x 2 x 2. 1 x 2. Attention! f 0 signifie que f est nulle u voisinge de, ce qui est très rrement le cs dns les exercices et les prolèmes. Dns 99% des cs, si vous outissez à une telle expression lors d un clcul, c est que vous vous êtes trompés. Proposition 3.1 Équivlence et négligeilité f g f = g + o(g) f = o(g) g + f g Exemple 3.2 e x + x 2 + ln x e x cr x 2 = o(e x ) et ln x = o(e x ). f Attention! Les propositions lim f g = 0 ne sont ps du tout équivlentes. On ne peut même g = 1 et lim ps dire que l une implique l utre. En termes de petits o, l première proposition se trduit pr f g = o(g) et l seconde pr f g = o(1). Proposition 3.2 Signe et équivlence Si f g, lors f et g sont de même signe u voisinge de. 3.2 Exemples fondmentux Proposition 3.3 Logrithme, exponentielle, puissnce Un polynôme est équivlent en 0 à son monôme non nul de plus s degré. Un polynôme est équivlent en ± à son monôme non nul de plus hut degré. ln(1 + x) x i.e. ln(1 + x) = x + o(x) e x 1 x i.e. e x = 1 + x + o(x) (1 + x) α 1 αx i.e. (1 + x) α = 1 + αx + o(x) Proposition 3.4 Fonctions circulires sin x x i.e. sin x = x + o(x) x 2 1 cos x 2 tn x i.e. cos x = 1 x2 2 + o(x2 ) x i.e. tn x = x + o(x) 4

5 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Proposition 3.5 Fonctions circulires réciproques rcsin x x i.e. rcsin x = x + o(x) π π 2 rccos x rctn x x i.e. rccos x = x i.e. rctn x = 2 x + o(x) x + o(x) Proposition 3.6 Fonctions hyperoliques sh x x i.e. sh x = x + o(x) x 2 ch x 1 2 th x i.e. ch x = 1 + x2 2 + o(x2 ) x i.e. th x = x + o(x) Attention! Ne jmis mélnger petits o et équivlents. Pr exemple, on n écrir ps (1+x) α 1+αx+o(x). On peut pr contre écrire (1+x) α 1+αx mis cel revient en fit à écrire (1+x) α 1 puisque 1+αx 1. Remrque. Pour α = 1 et α = 1, on otient : x = 1 x + o(x) 1 + x = 1 + x 2 + o(x) 3.3 Opértions sur les équivlents Proposition 3.7 Opértions sur les équivlents Réflexivité f f. Symétrie Si f g, lors g f. Trnsitivité Si f g et g h, lors f h. Équivlence et petits o Si f 1 = o(g 1 ) et si f 1 f 2 et g 1 g 2, lors f 2 = o(g 2 ). Produit Si f 1 f 2 et g 1 g 2, lors f 1 g 1 f 2 g 2. Inverse Si f g et si f ne s nnule ps u voisinge de, lors 1 f Puissnce Si f g et si f > 0 u voisinge de 0, lors f α g α pour tout α R. Composition à droite Si f g et lim ϕ = lors f ϕ g ϕ. 1 g. 5

6 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Attention! Opértions interdites On n dditionne ps les équivlents : Pr exemple, x + 1 x et x + 3 On ne compose ps à guche : Pr exemple, x f 1 g 1 et f 2 g 2 f 1 + f 2 g 1 + g 2 x + 1 mis 4 1. f g ϕ f ϕ g x + ln x mis, si on compose à guche pr x e x, e x xe x. Déterminer un équivlent d une somme Même si l on n ps le droit d dditionner des équivlents, on peut tout de même déterminer un équivlent d une somme. L idée est de psser pr des reltions de négligeilité pour revenir ensuite à un équivlent. Exemple 3.3 On souhite déterminer un équivlent de x sin x + tn x en 0. On sit que sin x x et tn x x. Ces x + o(x). On peut lors dditionner deux reltions peuvent églement s écrire sin x = x + o(x) et tn x = ces deux reltions de négligeilité. On otient sin x + tn x = 2x + o(x) ce qui équivut à sin x + tn x 2x. Chngement de vrile En prtique, l composition à droite s interprète comme un chngement de vriles. Si f(u) u = ϕ(x), lors f(ϕ(x)) g(ϕ(x)). x x u g(u) et Exemple 3.4 Pour déterminer un équivlent de x sin x 2 en 0, on pose u = x 2. Alors u sin x 2 x 2. 0 et sin u u 0 u donc Remrque. L pluprt des équivlents usuels sont donnés en 0. On essier donc presque toujours de se rmener en 0 pr chngement de vrile. Exemple 3.5 Pour déterminer un équivlent de x tn ( donc tn x π ) 4 x π π 4. 4 x ( x π ) en π 4 4, on pose u = x π 4. Alors u π x 4 0 et tn u u u 0 6

7 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Exemple 3.6 Pour déterminer un équivlent de x e 1 x 1 e 1 x 1 x. 1 en +, on pose u = 1. Alors u 0 et e u 1 u donc x u 0 4 Lien vec les limites 4.1 Limites et petits o Proposition 4.1 Lien vec les limites Soit f une fonction définie u voisinge de (éventuellement non définie en ). Alors lim f = l f = l + o(1) Remrque. En prticulier, lim f = 0 f = o(1). Exemple 4.1 On souhite déterminer l limite éventuelle de x e2x e x x e x = 1 + x + o(x). Ainsi e 2x e x = x + o(x) donc e2x e x x en 0. On sit que e 2x = 1 + 2x + o(x) et que e 2x e x = 1 + o(1). On en déduit que lim = 1. x 4.2 Limites et équivlents Proposition 4.2 Limites et équivlents Soient f et g deux fonctions définies u voisinge de (éventuellement non définies en ). Si f g, lors soit f et g ont toutes deux une limite en et lim f = lim g, soit f et g n ont ps de limite en. Soit l un réel non nul. Alors lim f = l si et seulement si f l. Exemple 4.2 On souhite déterminer l limite éventuelle de x ln(1 + x3 )(e x2 1) sin 3 x(1 cos x) ln(1 + x 3 ) x 3 (vi le chngement de vrile u = x 3 ) ; e x2 1 x 2 (vi le chngement de vrile u = x 2 ) ; sin 3 x x 3 ; x 2 1 cos x 2. On en déduit que ln(1 + x3 )(e x2 1) sin 3 x(1 cos x) 2 et donc lim ln(1 + x 3 )(e x 2 sin 3 x(1 cos x) en 0. On sit que 1) = 2. 7

8 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Attention! On peut voir lim f = lim g sns voir f g. Pr exemple, lim ex = lim x = + mis ex x, lim x2 = lim x = 0 mis x 2 x. Remrque. L utilistion des équivlents permet de déterminer élégmment des limites de frctions rtionnelles en l infini ou en 0. Exemple 4.3 Or et lim lim x 2x 3 5x x 2 2x 4 2x 3 3x 2 = 2 3 x 2 2x 3 5x x = + donc lim 3 3x 2 = +. De même 2x 4 2x 3 5x x 2 2x 4 2 2x 3 5x x = donc lim 3 x 3x 2 2x 4 =. 2 x 3 x Exemple 4.4 donc lim 2x 5 + x 4 x 3 2x 6 x 5 + x 4 3x 3 = x 5 + x 4 x 3 2x 6 x 5 + x 4 3x 3 x 3 3x 3 = Domintion 5.1 Définition Définition 5.1 Soient f et g deux fonctions définies dns un voisinge V de (éventuellement privé de si f ou g n est ps définie en ). On dit que f est dominée pr g s il existe une constnte K telle que f(x) K g(x) pour tout x V. On note lors f = O (g) ou encore f(x) = O (g(x)) x Domintion en prtique En prtique, l définition précédente est difficile à mnipuler. Qund g ne s nnule ps u voisinge de, f(x) = o(g(x)) équivut à f x g ornée u voisinge de. 8

9 Lurent Grcin MPSI Lycée Jen-Bptiste Corot Attention! f = O (0) signifie que f est nulle u voisinge de, ce qui est très rrement le cs dns les exercices et les prolèmes. Dns 99% des cs, si vous outissez à une telle expression lors d un clcul, c est que vous vous êtes trompés. Remrque. En prticulier dire que f = O (1) signifie que f est ornée u voisinge de. 5.2 Opértions sur les grnds O Proposition 5.1 Opértions sur les grnds O Multipliction pr un réel non nul O (g) et λ 0, lors f = O (λg). Cominison linéire de fonctions négligeles devnt une même fonction Si f 1 = Trnsitivité O (g) et f 2 = O (g) et g = O (g), lors pour tous λ 1, λ 2 R, λ 1 f 1 + λ 2 f 2 = O (h), lors f = O (h). Produit Si f 1 = O (g 1 ) et f 2 = O (g 2 ), lors f 1 f 2 = O (g 1 g 2 ). O (gh). Composition à droite O (g), lors fh = O (g) et lim ϕ = lors f ϕ = Équivlence et grnds O Si f 1 = O (g 1 ) et si f 1 Petits o et grnds O O (g) et g = o(g) et g = O (g ϕ). f 2 et g 1 g 2, lors f 2 = O (g 2 ). o(h), lors f = o(h). o(h). O (h), lors f = O (g). Attention! Opértions interdites On n dditionne ps des reltions de domintion memre à memre : f 1 = O (g 1 ) et f 2 = O (g 2 ) f 1 + f 2 = O (g 1 + g 2 ) On ne compose ps à guche : f = O (g) ϕ f = O (ϕ g) 5.3 Reltion entre domintion, négligeilité et équivlence Proposition 5.2 L négligeilité et l équivlence impliquent l domintion. o(g) ou f g, lors f = O (g) Attention! L réciproque est fusse. 9

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur Chpitre 21 Clcul de primitives 21.1 Clcul prtique de primitives On note f(x une primitive de l fonction f sur l intervlle I. Cette nottion désigne une fonction, à ne ps confondre vec une intégrle définie

Plus en détail

Comparaison des fonctions au voisinage d un point

Comparaison des fonctions au voisinage d un point DOCUMENT 29 Comprison des fonctions u voisinge d un point Pour tout 0 R on pose : V 0 = {] 0 η, 0 + η[ η > 0} si 0 R; V 0 = {], + [ R} si 0 = + et V 0 = {], [ R} si 0 =. Un élément de V 0 est ppelé un

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Comparaison de fonctions, développements limités

Comparaison de fonctions, développements limités I Comprison de fonctions Définitions Comprison de fonctions, développements limités Négligeble Définition Soient f et g deu fonctions définies sur un même ensemble D et à vleurs dns R. Soit R tel que f

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Cours Intégrales Primitives 1 / 7 A Chevalley

Cours Intégrales Primitives 1 / 7 A Chevalley A 17 Primitives Intégrles Aleth Chevlley 1. Intégrle d une fonction continue 1.1. Définition Soit C l coure représenttive de f dns un repère orthonorml. L intégrle de à de l fonction f est l ire du domine

Plus en détail

CALCULS DE PRIMITIVES ET D INTÉGRALES

CALCULS DE PRIMITIVES ET D INTÉGRALES Christoph Brtult Mthémtiqus n MPSI CALCULS DE PRIMITIVES ET D INTÉGRALES C chpitr vis à rnforcr votr prtiqu du clcul intégrl u moyn d révisions ciblés t grâc à du nouvutés, l intégrtion pr prtis t l chngmnt

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

LIMITE ET CONTINUITÉ DE FONCTIONS

LIMITE ET CONTINUITÉ DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot LIMITE ET CONTINUITÉ DE FONCTIONS Soit R. Dns tout ce chpitre, on dir qu une fonction f de domine de définition D f est définie u voisinge de s il existe un réel

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Quantification et échantillonnage

Quantification et échantillonnage numérique à l et échntillonnge Signl physique (onde lumineuse, onde sonore) : vrition d une grndeur physique (éclirement, pression) en temps et/ou espce Sénce 4 et échntillonnge Contrintes de l représenttion

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques COURS DE MATHÉMATIQUES SEMESTRE Jen-Mrie De Conto Université Joseph Fourier IUT Déprtement Mesures Phsiques Me contcter: sns hésiter À l IUT Au lbortoire: Lbortoire de Phsique Subtomique et de Cosmologie

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Fiche de cours 5 - Calcul intégral.

Fiche de cours 5 - Calcul intégral. Licence de Sciences et Technologies EM - Anlyse Primitives et intégrles Fiche de cours 5 - Clcul intégrl. Définition : soit deu fonctions f, F, définies sur un intervlle I non réduit à un point. L fonction

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Le Calcul de Primitives

Le Calcul de Primitives Le Clcul de Primitives MPSI Prytnée Ntionl Militire Pscl Delhye 25 octobre 27 ϕ(x) f(u) du = f(ϕ(t) )ϕ (t) }{{}}{{} u du Résultts préliminires Définition : Primitives Soit deux fonctions f et F définies

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE 1.Logrithme Définition: On ppelle fonction logrithme népérien l primitive de l fonction 1/ définie sur l intervlle ]0 ;+ [ qui s nnule en 1. ln 1 dt t Cette fonction est définie,

Plus en détail

Analyse Asymptotique 1 : - Les Relations de comparaison

Analyse Asymptotique 1 : - Les Relations de comparaison Anlyse Asymptotique : - Les Reltions de comprison MPSI Prytnée Ntionl Militire Pscl Delhye 0 mi 07 Jmes Stirling (69-770), Ecossis à l origine de l formule : n! ( n) n πn e Reltions de comprison : cs des

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile.

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

PC* Espaces préhilbertiens réels

PC* Espaces préhilbertiens réels I. Espace préhilbertien réel................................... 3 I.1 Produit scalaire dans un espace vectoriel réel................... 3 I.2 Inégalités de Cauchy-Schwarz et de Minkowski..................

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) +

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) + Eo7 Intégrtion Eercices de Jen-Louis Rouget. Retrouver ussi cette fiche sur www.mths-frnce.fr * très fcile ** fcile *** difficulté moyenne **** difficile ***** très difficile I : Incontournble Eercice

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

INTÉGRATION. Table des matières

INTÉGRATION. Table des matières INTÉGRATION Tble des mtières. Primitives et intégrles indéfinis. Régles d intégrtion 3 3. Intégrtion de fonctions rtionnelles 5 3.. Première étpe : contrôle du degré 6 3.. Deuxième étpe : fctoristion de

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne

Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne UCBL L PCSI UE Techniques Mthémtiques de Bse Alessndr Frbetti Institut Cmille Jordn, Déprtement de Mthémtiques http://mth.univ-lyon.fr/ frbetti// Progrmme du cours Prtie I : Algèbre linéire et géométrie

Plus en détail

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2

Chapitre 7: Bandes d énergie. On ne fera pas le modèle de Kronig-Penney: p. 165-7,171-2 Chpitre 7: Bndes d énergie On ne fer ps le modèle de Kronig-Penney: p. 165-7,171- ppel Gz d électrons libres: Modèle le plus simple pour un métl Électrons libres dns une boîte de LLL On résout l éqution

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Chapitre 4 Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Equations différentielles Ce chapitre est une première étude des équations différentielles, il vous sera d abord utile en physique et en

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3 Alexandre VIDAL Dernière modification : 11 janvier 2011 Table des matières I Généralités et rappels sur les fonctions 1 I.1 Définition....................................

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < +

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < + Chapitre 6 Les espaces L p 6.1 Définitions et premières propriétés 6.1.1 Les espaces L p, avec 1 p < + Soient (E, T,m) un espace mesuré, 1 p < + et f M = M(E, T) (c est-à-dire f : E R, mesurable). On remarque

Plus en détail

Mathématiques, Semestre S1

Mathématiques, Semestre S1 Polytech Pris-Sud PeiP1 2011/2012 Notes de cours Mthémtiques, Semestre S1 Filippo SANTAMBROGIO 2 Tble des mtières 1 Les fonctions dns R et leurs limites 7 1.1 Fonctions réelles d une vrible réelle.........................

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail