CH.3 PROBLÈME DE FLOTS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CH.3 PROBLÈME DE FLOTS"

Transcription

1 H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch Le réeaux de ranpor Réeau de ranpor : graphe oriené avec pour chaque arc une capacié. La capacié c(u, v) e un enier poiif ou nul. Il y a aui une ource e un pui. ucun arc n'arrive à la ource e aucun arc ne quie le pui. Un flo e une foncion enière poiive ou nulle f définie ur le arc aifaian : onraine de capacié : f(u, v) c(u, v) ; Symérie : f(u, v) = f(v, u) ; onervaion du flo : pour ou omme aure que e, la omme de flo ur le arc enran e la omme de flo ur le arc oran on égale ("Loi de Kirchhoff"). Exemple : circui élecrique ou hydraulique, réeaux de communicaion, modéliaion de ranpor Opi-comb ch 3 2

2 Réeau de ranpor avec le capacié /16 0/10 1/ 12/12 /9 7/7 1/20 8/13 /1 / Un flo ur le réeau de ranpor Opi-comb ch 3 3 Quand deux arc en en invere relien deux omme, on peu oujour annuler la foncion flo ur l'un de deux. Propriéé : la omme de flo ur le arc oran de la ource e la omme de flo ur le arc arrivan au pui on égale ; cee valeur e la valeur du flo f ; i on épare le omme en deux ou-enemble E conenan e F = E conenan, alor la omme de valeur du flo ur le arc de E ver F moin la omme de valeur du flo ur le arc de F ver E vau aui f. Une elle éparaion en deux ou enemble de omme e appelée une coupe e cee différence de omme de flo e appelée flo ne raveran la coupe. Opi-comb ch 3

3 La deuxième propriéé e donc que le flo ne raveran une coupe ne dépend pa de la coupe. émonraion de propriéé : Pour la deuxième, on par de E 0 = { }. Pui on ajoue le omme un à un juqu'à obenir E. La propriéé de conervaion du flo pour chaque omme ajoué perme de vérifier que le flo ne e invarian. La première propriéé en découle, avec E = { }, pui avec E = { }. Si E/F e une coupe du réeau, la capacié de la coupe e la omme de capacié de arc allan de E ver F. La propriéé de l'invariance du flo ne monre que f e inférieur à la capacié de n'impore quelle coupe. Opi-comb ch Le flo maximum e la coupe minimum Il exie oujour un flo poible qui e le flo nul. Problème : commen rouver un flo qui a la valeur maximum? elui de l'exemple e-il maximum? Recherche d'un chemin amélioran. éerminer le réeau réiduel : pour chaque arc (u, v), f(u, v) c(u, v), on peu augmener le flo de c(u, v) f(u, v), e on peu le diminuer de f(u, v), donc faire paer un flo f(u, v) ur l'arc (v, u). Si ce arc exie déjà avec une capacié c(v, u), celle-ci 'ajoue à f(v, u). Le graphe oriené avec ce capacié e le réeau réiduel. On cherche un chemin de à dan le réeau réiduel. Il correpond à une poibilié d'amélioraion du flo en modifian de la valeur du minimum de capacié réiduelle ur le chemin. Opi-comb ch 3 6

4 /16 0/10 1/ 12/12 /9 7/7 1/20 8/13 /1 / Le flo Le réeau réiduel correpondan Opi-comb ch Un chemin amélioran 3 1 /16 0/10 1/ 12/12 0/9 7/7 19/20 12/13 /1 / Le flo aprè amélioraion Opi-comb ch 3 8

5 Le nouveau réeau réiduel an ce réeau, il n'y a pa de chemin de à, donc pa de chemin amélioran. Opi-comb ch 3 9 Théorème (flo maximum e coupe minimum) Si f e un flo dan un réeau de ranpor, le roi condiion uivane on équivalene : 1. f e un flo maximum ; 2. Le réeau réiduel de f ne conien aucun chemin amélioran ; 3. Il exie une coupe E/F don la capacié vau f. Remarque : La condiion 3. implique que f e la valeur minimum de capacié de coupe du réeau, puiqu'on ai déjà que f e inférieur à la capacié de n'impore quelle coupe. 'où le nom du héorème. Opi-comb ch 3 10

6 émonraion : Si on rouve un chemin amélioran, on peu augmener f. e flo n'éai donc pa maximum S'il n'y a pa de chemin amélioran, oi E la compoane foremen connexe de dan le graphe réiduel. Le complémenaire F = E conien. Tou le arc enre E e F dan le graphe réiduel von de F ver E. onc pour ou arc a du réeau iniial de E ver F la valeur du flo e égale à la capacié e elle e nulle pour ou arc de F ver E. onc f e égal à la capacié de la coupe E/F Si un flo a comme valeur la capacié d'une coupe, il e néceairemen maximum, puique ou le flo on inférieur à la capacié de n'impore quelle coupe. e héorème juifie la recherche d'un chemin amélioran pour obenir un flo maximal. Opi-comb ch L'algorihme de Ford e Fulkeron On par d'un flo quelconque (évenuellemen nul) ; On fabrique le réeau réiduel ; On cherche un chemin amélioran ; On ière juqu'à ce qu'on ne rouve plu de el chemin. La complexié de l'algorihme dépend de l'implémenaion. La recherche d'un chemin amélioran peu êre faie en O(a) ; l'acualiaion du graphe réiduel aui ; ce qui donne donc O(a f max ). Lorque la valeur de f max e peie, cee complexié e bonne. La meilleure raégie pour la recherche d'un chemin amélioran e de faire une exploraion du graphe réiduel en largeur. L'algorihme prend alor le nom d'algorihme d'edmond-karp. Opi-comb ch 3 12

7 Suppoon que le réeau compore n omme e a arc. Une analye approfondie de différence enre le diver réeaux réiduel perme de monrer que le nombre d'iéraion dan l'algorihme d'edmond-karp e en O(n a). haque iéraion donne un chemin amélioran en O(a), d'où une complexié en O(n a 2 ). 'aure méhode (préflo) permeen de rouver le flo maximum en O(n 3 ). Variane e applicaion : Parfoi, il y a pluieur ource e pluieur pui. On peu dan ce ca rajouer une "uper-ource" e un "uper-pui" relié repecivemen aux ource e aux pui par de arc de capacié infinie. Opi-comb ch djoncion d'une uper-ource e d'un uper-pui an une variane, chaque arc a une capacié maximale e une capacié minimale. L'algorihme de Ford-Fulkeron foncionne à condiion de parir d'un flo réaliable (il n'en exie pa oujour...) Si la capacié d'un arc e un nombre réel poiif ou nul, eule la recherche de chemin amélioran en lareur aure la convergence en un emp fini. Le héorème de la coupe perme d'idenifier le arc auré don l'augmenaion de capacié permerai d'améliorer le flo maximum. e on le arc criique. Opi-comb ch 3 1

8 3. Quelque applicaion Lorque la capacié d'un arc e égale à 1, un flo de ver e un enemble de chemin de ver n'ayan aucun arc en commun. La valeur d'un flo maximum e alor le nombre de el chemin de ver. Suppoon que cee valeur oi k. ela ignifie donc que la uppreion de moin de k arc dan le réeau ne déconnece pa e. ee valeur peu êre calculée en O(a k). Un graphe e k-connexe par arc lorque, quel que oien k arc du graphe, leur uppreion ne déconnece aucun couple de omme. ee propriéé e uile pour meurer la olérance d'un réeau aux coupure de ligne. Lorque le omme e ne on pa la ource e le pui, on peu uilier l'auce précédene (uper-ource e uper-pui). Opi-comb ch 3 1 Le degré de connexié par arc d'un graphe e donc le minimum de valeur de flo allan de n'impore quel omme à n'impore quel aure. Il emble que la complexié oi donc O(n 2 a k). En fai, il uffi d'ordonner le omme arbirairemen : x 1, x 2,..., x n, e de faire ce calcul pour le paire de omme conécuif e pour (x n, x 1 ). omme on a moin de couple de omme, le minimum de valeur de flo pourrai augmener. Mai un couple (u, v) e un couple (x i, x j ). Si la uppreion de k arc déconnece u e v, elle déconnece néceairemen l'un de couple (x i, x i +1 ), (x i + 1, x i + 2 ),..., (x j 1, x j ). Le degré de connexié d'un graphe peu donc êre calculé en O(n a k). Opi-comb ch 3 16

9 Une aure applicaion du ca de capacié égale à 1 e la recherche d'un couplage maximum dan un graphe bipari. Graphe bipari : on conidère deux enemble de omme e on uppoe que le arêe relien de omme de l'un à de omme de l'aure. On peu voir le premier comme de peronne, le econd comme de âche e le arêe comme de capacié d'affecaion de peronne aux âche. E F E-il poible d'affecer oue le peronne à oue le âche? Sinon, quel e le nombre maximum d'affecaion pouvan êre réaliée? Un placemen mal commencé peu abouir à un blocage : -1, -2, - (forcé), -3, impoible pour E. Opi-comb ch 3 17 La recherche d'un couplage dan un graphe bipari peu êre effecuée au moyen d'un algorihme de flo. On oriene oue le arêe de peronne ver le âche, on leur donne la capacié 1, pui on ajoue une ource e un pui relié repecivemen aux peronne e aux âche par de arc de capacié 1. La complexié e donc O(n a), puique le flo vau au plu n. 1 E 2 3 Flo maximum de ver rouvé par Ford-Fulkeron. Toue le peronne e oue le âche on affecée. F 6 Opi-comb ch 3 18

10 Parfoi, un réeau évolue dan le emp : phae ranioire, modificaion de capacié avec le emp. Si le emp e dicre e que le parcour d'un arc prend une unié de emp, on peu repréener le réeau à chaque valeur du emp dicre en connecan le omme d'un niveau au uivan. ela perme de réoudre de problème logiique (éleage de roue en ca de bouchon prévu,...) Si on cherche à effecuer un plan de circulaion dan un graphe à n omme e a arc pendan un emp, on e ramène à un problème de flo dan un graphe ayan n ( + 1) omme e a arc. L'algorihme d'edmond-karp perme de réalier le plan de circulaion en un emp O(n a 2 ). Opi-comb ch 3 19

CH.7 PROBLÈME DE FLOTS

CH.7 PROBLÈME DE FLOTS H.7 PROLÈME E FLOTS 7.1 Le réeaux de ranpor 7.2 Le flo maximum e la coupe minimum 7.3 L'algorihme de Ford e Fulkeron IM ch 7 1 7.1 Le réeaux de ranpor Réeau de ranpor : graphe oriené avec pour chaque arc

Plus en détail

1 Questions sur le DM (3pts)

1 Questions sur le DM (3pts) Algo 21 Mar 2011 Licence ST-A / S5 Info Françoi Lemaire DS Algo 1 Queion ur le DM (3p) Polycopié de cour auorié Suje à rendre Indiquez vore numéro ur le uje Voici une oluion du DM, où ceraine ligne on

Plus en détail

Introduction au problème du flot maximum

Introduction au problème du flot maximum Inroducion au problème du flo maximum Renaud Sirdey (renaud.irdey@cea.fr) ommiaria à l énergie aomique, Saclay our d opimiaion combinaoire (RO03), UT Objecif de ce cour > Inroduire le noion de réeau de

Plus en détail

Sur la complexité du routage OSPF

Sur la complexité du routage OSPF Sur la complexié du rouage OSPF Frédéric Giroire, Séphane Pérenne, Iam Tahiri To cie hi verion: Frédéric Giroire, Séphane Pérenne, Iam Tahiri. Sur la complexié du rouage OSPF. Nie, Nicola and Roueau, Franck

Plus en détail

Cours 2: Flots et couplages

Cours 2: Flots et couplages Cour : Flo e couplage Flo e coupe Algorhme de calcul du flo maxmal Modélaon par flo Couplage e graphe de augmenaon Marage able - Réeau de ranpor e flo Donnée: Un graphe orené G = (X, A), une valuaon c

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

5. Calcul des Aciers Transversaux

5. Calcul des Aciers Transversaux 5. Calcul de Acier Tranveraux 5.1 Ea de conraine dan une poure en flexion imple Rappel de RdM : Eudion une poure en flexion imple, oumie à une charge uniformémen réparie. Pour un poin donné de la poure,

Plus en détail

EXERCICE 1 Un automobiliste effectue un trajet en roulant à 90 km/h. Voici son tableau de marche : 3 2 2

EXERCICE 1 Un automobiliste effectue un trajet en roulant à 90 km/h. Voici son tableau de marche : 3 2 2 EXERCICE 1 Un auomobilie effecue un raje en roulan à 90 km/. Voici on ableau de marce : 3 2 2 Diance parcourue (km) 90 180 270 360 450 Durée écoulée () 1 2 3 4 5 90 a. Ce ableau décri-il une iuaion de

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014

Prénom et nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Prénom e nom : Devoir-Maison, à rendre le mardi 28 avril 2014 Exercice n 1 Un ouvrier dispose de plaques de méal de 110 cm de longueur e de 88 cm de largeur. Il a reçu la consigne suivane : «Découpe dans

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés

~ = Les redresseurs se divisent en deux grands groupes : On classe les divers redresseurs en trois catégories : Les redresseurs semicommandés Le redressemen c'es la ransformaion de l'énergie élecrique alernaive du réseau en énergie coninue. Symbole : ~ = Les redresseurs se divisen en deux grands groupes : les redresseurs demi onde, à une alernance

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

LE PROBLEME DU FLOT MAXIMAL

LE PROBLEME DU FLOT MAXIMAL LE PROBLEME DU FLOT MAXIMAL I Exemple d introduction Deux châteaux d'eau alimentent 3 villes à travers un réseau de canalisations au sein duquel se trouvent également des stations de pompage. Les châteaux

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Le jardin des verbes. Pré-requis :

Le jardin des verbes. Pré-requis : Le jardin de verbe Pré-requi : L enfan doi compri le principe de bae de la conjugaion de verbe (lien pronom erminaion : maion de verbe), inégré l ordre convionnel de pronom (je u il nou vou - il). On peu

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I :

Considérons un dipôle AB d un circuit parcouru par un courant d intensité I : Filière SM Module Physique lémen : lecricié Cours Prof..Tadili 2 ème Parie Chapire 2 ude des dipôles nergie élecrique e puissance. appel Considérons un dipôle d un circui parcouru par un couran d inensié

Plus en détail

ELE-542 Systèmes ordinés en temps réels. Cours # 11 Configurer l OS et tampon circulaire

ELE-542 Systèmes ordinés en temps réels. Cours # 11 Configurer l OS et tampon circulaire ELE-542 Sysèmes ordinés en emps réels ours # 11 onfigurer l OS e ampon circulaire Jean-Marc Beaulieu e Bruno De Kelper Sie inerne: hp://www.ele.esml.ca/academique/ele542/ Sysèmes ordinés en emps réel ours

Plus en détail

df( t) P( t T t dt) ft ( ) lim

df( t) P( t T t dt) ft ( ) lim I APPROCHE DE LA FIABILITE PAR LES PROBABILITES : Définiion selon la NF X 6 5 : la fiabilié es la caracérisique d un disposiif exprimée par la probabilié que ce disposiif accomplisse une foncion requise

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max G. Pinson - Physique Appliquée Signaux périodiques A3-P / A3 - Mesurage des signaux périodiques ère parie : caracérisiques générales d'un signal périodique () 3 + 4 sin 5 max pp DC (ms) min () Signal arian

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche e Oscilloscope objecif de ce TP es d apprendre à uiliser, ie. à régler, deux des appareils les plus courammen uilisés : le e l oscilloscope. Pour cela vous serez amené(e) à uiliser e à associer de nouveaux

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures SESSION PSIP3 EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE Durée : 4 heures NB : Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

au p s au La PNL et les addictions Psychotherapy, addictive behaviour, treatment model M. Facon

au p s au La PNL et les addictions Psychotherapy, addictive behaviour, treatment model M. Facon p p Pychoherapy, addicive behaviour, reamen model M. Facon La PNL e le addicion Michel Facon* La Programmaion Neuro Linguiique (PNL) a pri naiance dan le décor de la Californie de année 1970 our de deux

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Mathématiques discrètes Chapitre 2 : Théorie des ensembles

Mathématiques discrètes Chapitre 2 : Théorie des ensembles U.P.S. I.U.T., Déparemen d Informaique nnée 9- Mahémaiques discrèes Chapire : Théorie des ensembles. Définiions Définiion On appelle ensemble oue collecion d objes caracérisés par une propriéé commune.

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

Changement de fréquence, effet Doppler

Changement de fréquence, effet Doppler N 804 BULLETIN DE L'UNION DES PHYSICIENS 869 Changement de fréquence, effet Doppler par Yve BAIMA, André JORANDON, Sylvie MORLEN et Marc VINCENT Lycée La Martinière Monplaiir - 69372 Lyon Cedex 08 RÉSUMÉ

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système.

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système. STI2D SIN V. Commande du plafonnier d'un véhicule. CO8.sin. Rechercher e choisir une soluion logicielle ou maérielle au regard de la définiion d'un sysème. BP / Clavier Sans conac IR / ILS A conac FC Capeur

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

REPRESENTATION DES SLCI:...

REPRESENTATION DES SLCI:... Modéliaion de LCI PRNTATION LCI : YTM LINAIR : YTM CONTINU : 3 YTM INVARIANT : 3 4 YTM NON LINAIR: 3 RPRNTATION D LCI: 4 3 NTR TYP 4 4 TRANFORMATION D LAPLAC: 5 4 TRANFORM D LAPLAC : A QUOI ÇA RT? 5 4

Plus en détail

Exercice : Calcul des délais dans une réseau

Exercice : Calcul des délais dans une réseau Exercice : Calcul de délai dan une réeau L objectif principal de cet exercice et de comprendre le calcul du délai de bout en bout d un meage (délai de tranfert) dan un réeau en terme de : - délai de tranmiion

Plus en détail

Carte d'acquisition Dossier ressource

Carte d'acquisition Dossier ressource Care d'acquisiion BTS Sysèmes Phooniques TP AMOS Care USB 6009 BTS SP1 Page 1 sur 9 Care d'acquisiion BTS Sysèmes Phooniques 1. Présenaion 1.1 inroducion Une care d'acquisiion es un accessoire uilisé dans

Plus en détail

Optique. LEYBOLD Fiches d expériences de physique P5.6.2.1. 0706-Gan/Hag. Vitesse de la lumière Mesure avec des impulsions lumineuses courtes

Optique. LEYBOLD Fiches d expériences de physique P5.6.2.1. 0706-Gan/Hag. Vitesse de la lumière Mesure avec des impulsions lumineuses courtes Optique Vitee de la lumière Meure avec de impulion lumineue courte LEYBOLD Fiche d expérience de phyique Détermination de la vitee de la lumière dan l air à partir de la ditance parcourue et du temp de

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

GENERATEURS DE HAUTE TENSION

GENERATEURS DE HAUTE TENSION ours de A. Tilmaine HAPITRE VII GENERATEURS DE HAUTE TENSION Les généraeurs de haue ension son uilisés dans : a) les laboraoires de recherche scienifique ; b) les laboraoires d essai, pour eser les équipemens

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

CONDITONNEMENT DU SIGNAL

CONDITONNEMENT DU SIGNAL I) Présenaion "La diode" CONITONNMNT U IGNAL La diode es un composan élecronique semi conduceur qui se compore comme un inerrupeur fermé quand elle es polarisée en direc e comme un inerrupeur ouver polarisée

Plus en détail

Contributions à l'analyse pour la recherche d'ondes gravitationnelles

Contributions à l'analyse pour la recherche d'ondes gravitationnelles Vincen Germain 5 ocobre 205 Conribuions à l'analyse pour la recherche d'ondes graviaionnelles Bilan ère année de hèse Plan Quelles sources asrophysiques cherche--on? L insrumen & les difficulés renconrés

Plus en détail

) 2) Les prix unitaires de chaque matériau sont représentés pour le premier semestre par la matrice P 1 :

) 2) Les prix unitaires de chaque matériau sont représentés pour le premier semestre par la matrice P 1 : Exercice 1 Opéraions sur les marices Pour la réalisaion de ses chaniers, une enreprise de gros-œuvre du bâimen achèe, auprès de deux fournisseurs A e B, le béon (en m 3, les briques (en nombre de palees

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

RELATIONS FONCTIONNELLES. I Généralités

RELATIONS FONCTIONNELLES. I Généralités Universié d'angers : LSEN relaions foncionnelles p. Parie A : Proporionnalié RELATIONS FONCTIONNELLES I Généraliés / Définiion : Soien deux suies de nombres réels : (x ;x ;x ;x 4 ) e (y ;y ;y ;y 4 ). Ces

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

TP Échantillonnage Conversion analogique numérique

TP Échantillonnage Conversion analogique numérique TP Échantillonnage Converion analogique numérique I. Intérêt de la converion analogique numérique II. Introduction à l échantillonnage II.1. Principe II.2. Filtre anti repliement II.3. Mouvement apparent

Plus en détail

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine.

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine. Analyse par inervalles pour la localisaion e la carographie simulanées; Applicaion à la roboique sous-marine Fabrice LE BARS Analyse par inervalles pour la localisaion e la carographie simulanées; Thèse

Plus en détail

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0 TS avril 04 Devoir de physique-chimie n 5 LES EXERCICES SNT INDEPENDANTS CALCULATRICE AUTRISEE Eercice : Quand Sébasien Loeb renconre Isaac Newon /5,0 "( ) Sébasien Loeb e son copiloe Daniel Elena on brillammen

Plus en détail

L oscilloscope numérique

L oscilloscope numérique L oscilloscope numérique Ce documen résume le principe de foncionnemen d un oscilloscope numérique e déaille les réglages possibles du modèle uilisé en séance de ravaux praiques. 1 Principe de foncionnemen

Plus en détail

4. "SEPO" - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE

4. SEPO - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE D/ Baobab: Cours de gesion des projes page 46 4. "" - UN MÉTHD UR L'AUT- ÉVALUATIN T UR L RJT-ILT 4.1 Inroducion (angl.:w) es un ouil pour l'auoévaluaion e pour les projes-piloe. Il a éé élaboré lors de

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

LES CAPTEURS. Energie. Acquérir et coder une information. Capteur

LES CAPTEURS. Energie. Acquérir et coder une information. Capteur CPG / ciences Indusrielles pour l Ingénieur C83 Les capeurs L CAPTUR Le domaine indusriel a besoin de conrôler de rès nombreux paramères physiques (longueur, force, poids, pression, déplacemen, posiion,

Plus en détail

République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique

République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique République Algérienne Démocraique e Populaire Minière de l Eneignemen Supérieur e de la Recherche Scienifique Univerié M hamed BOUGARA - BOUMERDES Faculé de Science Déparemen de Mahémaique MEMOIRE DE MAGISER

Plus en détail

Calculs autour des moteurs et de leurs charges

Calculs autour des moteurs et de leurs charges Calcul autour de moteur et de leur charge Guy Gauthier ing., Ph.D. Juillet 2011 Source: Drury Bill, The Control Technique Drive and Control Handbook, The Intitution of Electrical Engineer, London, United

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Conversion Analogique Numérique

Conversion Analogique Numérique Sysèmes Numériques CAN Classe : TSTI2D S.I.N Conversion Analogique Numérique Pourquoi converir? De nos jours, nous uilisons énormémen d'appareils numériques pour la facilié de sockage e de raiemen. Les

Plus en détail

Les déclencheurs électroniques STRE23SE se montent indifféremment sur les compacts NS 400 et NS 630 de type N, H ou L.

Les déclencheurs électroniques STRE23SE se montent indifféremment sur les compacts NS 400 et NS 630 de type N, H ou L. 14/1/6 Quesion : Commen régler correcemen le déclencheur élecronique STRE23SE? Réponse : Les déclencheurs élecroniques STRE23SE se monen indifféremmen sur les compacs NS 4 e NS 63 de ype N, H ou L. Le

Plus en détail

PHYSIQUE. Partie préliminaire

PHYSIQUE. Partie préliminaire PHYSIQUE Les différenes paries de ce problème son dans une large mesure indépendanes Seules les argumenaions précises e concises seron prises en compe en réponse aux quesions qualiaives Parie préliminaire

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

CONTRAT D ASSURANCE. Deux-roues

CONTRAT D ASSURANCE. Deux-roues CONTRAT D ASSURANCE Deux-roue Chère, Cher Sociéaire, Vou avez en main le conra Deux-roue conçu pour vou par la Macif, premier aureur en France de deux-roue. Je ouhaie que ce conra oi un vériable rai d

Plus en détail

BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Industrielle

BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Industrielle BACCALAUREAT D ENSEIGNEMENT GENERAL Session 2001 Série S Technologie Indusrielle ETUDE D UN SYSTEME PLURITECHNIQUE Coefficien : 6 Durée de l épreuve : 4 heures PROPOSITION DE BAREME Analyse du sysème Quesion

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Le défi. reseau-cdls-cls.ca

Le défi. reseau-cdls-cls.ca an 1 nce La cieo techn de en moue pratiq Le défi Concevoir un appareil qui doit enclencher une cacade d évènement. Le dernier évènement era le lancer d un projectile le plu prè poible d une cible. 15 0

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

Platine d expérimentation MicroMAG : à la découverte de la machine synchrone autopilotée

Platine d expérimentation MicroMAG : à la découverte de la machine synchrone autopilotée Platine d expérimentation MicroMAG : à la découverte de la machine ynchrone autopilotée. NOGAREDE, D. HARRIEY, Y. LEFEVRE, F. PIGACHE ertrand.nogarede@laplace.univ-tle.fr INPT/ENEEIHT, 2 rue Camichel,

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

Calcul de flot par graphe d écart. Optimisation et recherche opérationnelle Partie 2 : Eléments de théorie des graphes.

Calcul de flot par graphe d écart. Optimisation et recherche opérationnelle Partie 2 : Eléments de théorie des graphes. Ecole Nationale Supérieure en Génie des Systèmes Industriels Optimisation et recherche opérationnelle Partie : Eléments de théorie des graphes Didier Maquin On considère le graphe suivant pour lequel chaque

Plus en détail

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes Chapitre 7 Problèmes de flots. 7.1 Exemple. Un réseau electrique est formé de lignes reliant des noeuds (transformateurs, centre de redistributions,...), chaque ligne a une capacité de transport maximale.

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail