Cours de Mathématiques 2

Dimension: px
Commencer à balayer dès la page:

Download "Cours de Mathématiques 2"

Transcription

1 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P F SCHOELCHER CEDEX Fx : e-mil : version du 21 vril

2 es-m themtiques.net Tble des mtières Préfce 3 Préfce à l deuxième édition 4 1 Clcul intégrl Intégrle de Riemnn Subdivisions et sommes de Drboux Fonctions Riemnn intégrbles, intégrle de Riemnn Sommes de Riemnn Propriétés de l intégrle de Riemnn Intégrle de Riemnn et primitives Primitive d une fonction continue Prtique du Clcul intégrl Intégrle indéfinie Primitives des fonctions usuelles Intégrtion pr prties Formule de Tylor vec reste intégrl Chngement de vrible d intégrtion Formule de l moyenne générlisée Intégrtion de frctions rtionnelles : décomposition en éléments simples Division euclidienne Polynômes irreductibles Pôles et éléments simples Clcul des coefficients d une décomposition en éléments simples Appliction u clcul de primitives Primitives des fonctions rtionnelles de sin x et cos x Autres frctions rtionnelles

3 es-m themtiques.net Préfce Ces notes de cours sont issues de l enseignement du module de Mthémtiques 2 (U.E. MIP2) du DEUG MIAS, u Déprtement Scientifique Interfcultire de l Université Antilles Guyne (cmpus de Schoelcher), u printemps L première prtie «Anlyse 2» de ce cours trite des sujets 1. Clcul intégrl, 2. Fonctions équivlentes et développements limités, 3. Equtions différentielles du 1 er et 2 nd ordre, 4. Fonctions à vleur dns R 2 et courbes prmétrées. Cette prtie est l suite du cours de Mthémtiques 1 du premier semestre, qui tritit des sujets 0. Eléments de logique élémentire, 1. Clcul dns R, 2. Suites réelles (convergence, limite,...), 3. Clcul dns C et fonctions circulires, 4. Fonctions numériques de l vrible réelle, 5. Fonctions usuelles et fonctions réciproques. Dns le présent cours, on fer éventuellement ppel à des notions fisnt prtie de ces sujets, qui devrient donc être mîtrisés. Le chpitre sur le clcul intégrl est de loin le plus volumineux. Il commence pr une introduction à l intégrle de Riemnn. Cette notion ne figure ps explicitement u progrmme, on peut donc psser directement à l notion de primitive et insi définir l intégrle indéfinie et définie. (Dns ce cs, le théorème fondmentl du clcul infinitésiml devient trivil, et seules les fonctions continues sont intégrbles.) Le chpitre termine sur l décomposition en éléments simples, qui en constitue presque l moitié. Dns cette prtie plutôt lgébrique, on dmet quelques résultts concernnt l décomposition de polynômes. Etnt limité dns le temps (ce cours devrit être enseigné en un totl de 16 heures), on peut dmettre quelques utres démonstrtions un peu techniques (intégrbilité de fonctions continues, théorème de Tylor-Young). Les chpitres sont presque indépendnts, mis on utilise l intégrtion pour les équtions différentielles, et les développements limités pour l nlyse des points singuliers des courbes prmétrées. Notons ussi que nous fisons le lien vec l lgèbre linéire (notion de sous-espce vectoriel, ppliction linéire, noyu) lors de l intégrtion et dns le cdre des équtions différentielles linéires. En cette nnée 2001, le cours mgistrl commencé vec le 2 e chpitre, pour pouvoir donner plus rpidement des exercices clcultoires ux étudints (pr rpport u chpitre sur l intégrtion, qui comprend une prtie théorique vnt de donner les techniques pour des clculs ppliqués. 3

4 es-m themtiques.net En ce qui concerne les équtions différentielles, on se limite à celles du 1er ordre qui sont à vribles séprées ou lors linéires, et celles du 2nd ordre qui sont linéires, à coefficients constnts. Schoelcher, mi 2001 Préfce à l deuxième édition L structure globle du cours n ps chngé, mis quelques modifictions concernnt l mise en pge et l présenttion ont été fites. Les fonctions négligebles et équivlentes constituent mintennt des souschpitres indépendntes précédnt celui des D.L. Quelques notions concernnt l intégrle de Riemnn sont présentés un peu différemment, et une figure été joutée. Les pssges trop sommires dns les D.L. ont été complétés. Quelques erreurs ont été éliminées et une figure joutée dns le dernier chpitre. Schoelcher, vril

5 es-m themtiques.net 1 Clcul intégrl Ce chpitre donne une introduction à l intégrle de Riemnn, et de quelques propriétés fondmentles qui sont conséquence des définitions. Ensuite, on étblit le lien entre cette intégrle et les primitives, pour enfin se dédier à l prtique du clcul intégrl vec quelques recettes. Une grnde prtie du cours est conscrée ux méthodes de l décomposition en éléments, pour l intégrtion des frctions rtionelles. 1.1 Intégrle de Riemnn Le progrmme ne précise ps si l définition de l intégrle de Riemnn doit figurer dns le cours. Certins collègues commencent ce cours directement vec l définition de l primitive d une fonction, et b f(x) dx := F (b) F () Ainsi, le théorème fondmentl de l nlyse, qui étblit le lien entre l intégrtion et l dérivtion, devient trivil. A mon vis, ce cours est qund même l occsion ou jmis de définir l intégrle de Riemnn. Même si on psse sur les détils, on peut donner les trois définitions de ce premier chpitre et évoquer l interpréttion géométrique qui est très liée à l définition des sommes de Drboux Subdivisions et sommes de Drboux Définition 1 Une subdivision d ordre n d un intervlle [, b] est une prtie finie X = {x 0, x 1,..., x n } [, b] telle que = x 0 < x 1 < < x n 1 < x n = b. On noter S,b l ensemble des subdivisions de [, b]. Exemple (subdivision équidistnte) Lorsque x i = + i h vec h = b n, on prle de l subdivision équidistnte d ordre n de [, b] ; on l note prfois [, b] n. Le nombre h est le ps (uniforme) de cette subdivision. 5

6 es-m themtiques.net Définition 2 L somme de Drboux inférieure resp. supérieure de f : [, b] R reltivement à une subdivision X = {x 0,..., x n } sont définies pr s(f, X) := n h i inf f(i i ) resp. S(f, X) := i=1 n h i sup f(i i ), où h i = x i x i 1 est l longueur du i e sous-intervlle I i = [x i 1, x i ]. i=1 Les sommes de Drboux sont des réels bien définis ssi l fonction f est bornée, c est-à-dire M R : f([, b]) [ M, M]. Suf mention du contrire, dns tout ce qui suit, les fonctions considérées seront toujours bornées sur l intervlle en question, sns que celà soit nécessirement dit explicitement. Remrque Etudier l interpréttion géométrique des sommes de Drboux comme ire des rectngles de bse [x i 1, x i ], encdrnt l épigrphe de f de endessous resp. u-dessus. '() $%! & "! # *,+.-0/214365"798:8:; 7 "C "!&D ;; D ;KJ B% D G?9H ; D %L A L? H <"; ; B AM< NO 7 PD ;#Q < JF? JF;4< R YZF[]\ Exercice Montrer qu en joutnt un point x (entre x i 1 et x i ) à X, l somme 6

7 es-m themtiques.net de Drboux inférieure (resp. supérieure) croît (resp. décroît). En déduire qu on X, Y S,b : X Y = s(f, X) s(f, Y ) et S(f, X) S(f, Y ). Utiliser le résultt précédent et l subdivision Z = X Y pour montrer que X, Y S,b : s(f, X) S(f, Y ). Solution. s(f, X) s(f, Z) S(f, Z) S(f, Y ). Remrque Lorsque X Y pour X, Y S,b, on dit que Y est plus fine que X. (C est une reltion d ordre prtiel sur S,b.) Fonctions Riemnn intégrbles, intégrle de Riemnn Définition 3 L fonction f est Riemnn intégrble sur [, b] ssi les deux nombres s b (f) := sup s(f, X), S(f) b := inf S(f, X). X S,b X S,b coïncident ; ce nombre est lors ppellé l intégrle de Riemnn de f sur [, b] (ou de à b), et noté b f(x) dx. L ensemble des fonctions Riemnn intégrbles sur [, b] est noté R 0, b. Remrque L existence de s b (f) et S b (f) est évidente : il suffit de constter que les ensembles {s(f, X); X S,b } et {S(f, X); X S,b } sont non-vides (prendre {, b} S,b ) et mjorés resp. minorés d près l exercice précédent. On peut ussi montrer que s b (f) et S b (f) sont tteints lorsque le ps de l subdivision, X = mx x i x i 1 tend vers zéro. L tille de ce ps induit l structure d une bse de filtre sur S,b, permettnt de considérer l limite de s(f, X) et S(f, X) en X. Remrque Revenir sur l interpréttion géométrique de s b (f) et S b (f), en considérnt l limite de subdivisions de plus en plus fines. Remrque L vrible d intégrtion x dns b f(x) dx est une vrible muette, c est-à-dire elle peut être remplcée pr n importe quelle utre vrible (qui n intervient ps déjà illeurs dns l même formule). Donnons encore une propsition d ordre plutôt technique, vnt d énoncer une 7

8 es-m themtiques.net condition d intégrbilité suffisnte dns tous les cs que nous llons rencontrer. Proposition 4 (Critère d intégrbilité de Riemnn.) Une fonction f est Riemnn intégrble sur [, b] ssi pour tout ε > 0 il existe une subdivision X S,b telle que S(f, X) s(f, X) < ε. Démonstrtion : Pr déf. de s b (f) et S b (f), ε > 0, X, X S,b : S(f, X ) S b (f) < ε/2 et s b (f) s(f, X ) < ε/2. Avec X = X X, il vient que S(f, X) s(f, X) < S(f, X ) s(f, X ) < ε + S b (f) s b (f). Donc si f R 0, b S b (f) = s b (f), on l subdivision souhitée. Réciproquement, si une telle subdivision existe pour tout ε > 0, lors S b et s b coïncident évidemment. Théorème 5 Toute fonction monotone ou continue sur un intervlle [, b] est Riemnn intégrble. Démonstrtion : Si f est monotone, le sup et inf est tteint u bord de chque sous-intervlle I i. On donc S(f, X) s(f, X) = h i f(x i ) f(x i 1 ) X f(x i ) f(x i 1 ) = X f(b) f(). Il suffit donc de choisir le ps de l subdivision ssez petit, X < ε/ f(b) f(), pour que ceci soit inférieur à un ε donné, d où l intégrbilité d près le critère de Riemnn. Pour une fonction continue, l démonstrtion est dmise dns le cdre de ce cours. A titre indictif : f(x i ) f(x i 1 ) est à remplcer pr f(ξ sup i ) f(ξi inf ), où ξ sup i, ξi inf sont les points de l intervlle fermé et borné I i en lesquels l fonction continue f tteint son mximum et minimum. On utilise mintennt le fit qu une fonction continue sur [, b] R y est uniformément continue, c est-à-dire pour ε > 0 donné il existe η > 0 (indépendnt du point x) tel que x y < η = f(x) f(y) < ε. Donc, pour X < η, on S(f, X) s(f, X) < η n ε. Ceci devient ussi petit que voulu, cr on peut prendre des subdivisions équidistntes pour lesquelles n = (b )/ X (b )/η, il suffit donc de prendre ε ssez petit. Pour montrer qu une fonction continue est uniformément continue sur un intervlle borné [, b], on peut utiliser que l ensemble des boules ouvertes B η (x) telles que y B η (x) = f(y) B ε (f(x)), est un recouvrement ouvert de [, b], dont on peut extrire un recouvrement fini d près le théorème de Heine Borel. Le minimum de ces η correspond u η de l uniforme continuité (u pire pour 2ε u lieu de ε). (Pour une démonstrtion du théorème de Heine Borel, voir illeurs...) 8

9 es-m themtiques.net Corollire 6 De même, une fonction (bornée!) continue suf en un nombre fini de points, ou monotone sur chque sous-intervlle d une prtition finie de [, b], est Riemnn intégrble. (On peut en effet utiliser l dditivité des sommes de Drboux, s(f, X Y ) = s(f, X) + s(f, Y ) pour X S,c, Y S c,b qui entrîne celle de s b (f) et de même pour S b (f).) Remrque (fonction de Dirichlet) L fonction de Dirichlet, { 1 x Q χ Q (x) = 0 x Q n est ps Riemnn intégrble, cr on X S,b : s(f, X) = 0, S(f, X) = b. En effet, sur chque I = [x i 1, x i ] il existe un point irrtionnel, donc inf I f = 0, mis ussi un point rtionnel, d où sup I f = 1. Ainsi s(f, X) = 0 et S(f, X) est somme des longeurs des sous-intervlles et donc égle à b. Remrque Le ps uniforme des subdivisions équidistntes simplifie beucoup l expression des sommes de Drboux (exercice!). On peut montrer que pour f R 0, b, on b f(x) dx = lim n s(f, [, b] n) = lim n S(f, [, b] n) L réciproque est vrie si f est continue Sommes de Riemnn Les sommes de Drboux ne sont ps très utiles pour le clcul effectif d une intégrle, pr exemple à l ide d un ordinteur, cr il est en générl ssez difficile de trouver les inf et sup sur les sous-intervlles. On considère plutôt s n (f) = n (x i x i 1 ) f(x i 1 ) ou S n (f) = i=1 Plus générlement : n (x i x i 1 ) f(x i ). i=1 9

10 es-m themtiques.net Définition 7 Si ξ = (ξ 1,..., ξ n ) vérifie i {1,..., n}, ξ i ppelle (X, ξ) une subdivision pointée et [x i 1, x i ], on S(f, X, ξ) = n (x i x i 1 ) f(ξ i ) i=1 l somme de Riemnn ssociée à l subdivision pointée (X, ξ). Si on pose de plus x i = x i x i 1, on S(f, X, ξ) = n f(ξ i ) x i, i=1 c est de là que vient l nottion f(x) dx. Théorème 8 Si f R 0, b, lors les sommes de Riemnn S(f, X, ξ) tendent vers f(x) dx, independmment du choix des ξ i, lorsque l subdivision devient de plus en plus fine. Démonstrtion : Pr définition, il est évident que s(f, X) S(f, X, ξ) S(f, X). Soit f R 0, b et X tel que S(f, X) s(f, X) < ε. Alors on ussi S(f, X, ξ) s b < ε, quel que soit le choix des ξ i, et fortiori pour tout X X. D où le résultt. Si f est continue, f tteint son minimum et mximum sur chque [x i1, x i ] en un certin ξi min et ξi mx. On obtient donc les sommes de Drboux comme cs prticulier des sommes de Riemnn, en ssocint à chque X des points ξ min, ξ mx tels que s(f, X) = S(f, X, ξ min ), S(f, X) = S(f, X, ξ mx ). En prticulier, lorsque l fonction est monotone, pr exemple croissnte, sur un sous-intervlle I i, lors ξi min = x i 1 et ξi mx = x i. Les sommes de Riemnn s n et S n données en début de ce prgrphe coïncident donc vec les sommes de Drboux inférieure et supérieure pour une fonction croissnte. 10

11 es-m themtiques.net 1.2 Propriétés de l intégrle de Riemnn Proposition 9 Pour f R 0, b, on X S,b : s(f, X) En prticulier, on (b ) inf f([, b]) b b f(x) dx S(f, X). f(x) dx (b ) sup f([, b]). (sis) (iis) Démonstrtion : L inéglité (sis) est conséquence immédite de l définition de s b resp. S. b Pour montrer (iis), il suffit de prendre X = {, b}. Théorème 10 (de Chsles) Soit c b. Alors, f R 0, b ( f R 0, c f R 0,c b ) et on l reltion de Chsles : b f(x) dx = c f(x) dx + b c f(x) dx. Démonstrtion : Pour tout X S,c, Y S c,b, on évidemment X Y S,b et s(f, X Y ) = s(f, X) + s(f, Y ). Ceci entrîne s b (f) = s c (f) + s b c(f). Le même s pplique à S(f). b Ainsi l intégrbilité sur [, c] et [c, b] implique celle sur [, b], et l reltion de Chsles. Réciproquement, tout Z S,b qui contient c se décompose en X Y vec X S,c, Y S c,b, et on les mêmes reltions pour les sommes de Drboux. Pour psser à s b (f) et S(f), b on peut toujours supposer c Z, quitte à l jouter, sns perte de générlité. On en déduit le théorème. (Exercice : détiller cette démonstrtion.) 11

12 es-m themtiques.net Définition 11 Pour b <, on définit b et pour b =, f(x) dx = 0. f(x) dx = b f(x) dx, Remrque Avec ces conventions, l reltion de Chsles est vlble quel que soit l ordre de, b, c (pr exemple ussi pour < b < c). C est en effet l principle motivtion pour ces définitions, ce qui lisse deviner l utilité et importnce de cette reltion dns les pplictions. Il convient d être très vigilnt concernnt cette générlistion lorsqu on utilise des inéglités (telles que celles de l Prop. 13), qui ne sont générlement vlbles que pour < b. Proposition 12 R 0, b est un sous-espce vectoriel du R espce vectoriel R [,b] des fonctions de [, b] dns R, et I : R 0, b R, f b f(x) dx est une forme linéire sur R 0, b. Autrement dit, o R 0, b et surtout f, g R 0, b, α, β R : α f + β g R 0, b et b (α f(x) + β g(x)) dx = α b f(x) dx + β b g(x) dx. Démonstrtion : Les sommes de Drboux ne sont ps linéires (cr sup et inf ne sont ps dditives). Pssons donc pr les sommes de Riemnn, dont l linérité, S(αf + βg, X, ξ) = αs(f, X, ξ) + βs(g, X, ξ), est évidente, ce qui donne, pr pssge à l limite X 0, le résultt souhité. (Exercice : détiller ceci...) 12

13 es-m themtiques.net Proposition 13 Pour f, g R 0, b, ( < b), on : f 0 = f g = f R 0, b et b b b f(x) dx 0, (1) f(x) dx f(x) dx b b g(x) dx, (2) f(x) dx. (3) Démonstrtion : (1) : f 0 = s(f, X) 0 et s(f, X) b f(x) dx. (2) : g f = g f 0 = (1) (g f) 0 (lin) = g f. (3) : on f f f, vec le (2) donc f f et f f. Remrque L réciproque du (1) est évidemment fusse, c est-à-dire f 0 n implique ps f 0. (Contre-exemple : sin x sur [ π, π].) Remrque Dns le cs f R 0, b, f 0, on que b f(x) dx est l ire de l épigrphe E = { (x, y) R 2 x [, b] et 0 y f(x) }. Théorème 14 (de l moyenne) Soit f C([, b]) (fonction continue de [, b] R). Alors b 1 c [, b] : f(x) dx = f(c) b } {{ } moyenne de f sur [, b] Démonstrtion : f étnt continue, on D près l éq. (iis), x i, x s [, b] : f(x i ) = inf f([, b]), f(x s ) = sup f([, b]). f(x i ) 1 b b f(x) dx f(x s ). 13

14 es-m themtiques.net D près le thm. des vleurs intermédiires ppliqué à f (continue) entre x i et x s, on c ]x i, x s [ (ou ]x s, x i [) tel que f(c) = 1 b b f(x) dx. 1.3 Intégrle de Riemnn et primitives En principe il est possible de clculer des intégrles en utilisnt simplement l définition en terme des sommes de Drboux. Or, ceci est générlement ssez lourd et difficile. De plus, ynt fit le clcul de l intégrle sur un intervlle, il fut le refire pour chque utre intervlle à lquelle on s intéresse (à moins de pouvoir fire un chngement de vribles plus ou moins compliqué). Exemple Clculer J k = 1 0 xk dx pour k = 1 et k = 2, en utilisnt des subdivisions équidistntes de [0, 1]. Solution. Comme x k est une fonction croissnte sur R +, elle est intégrble et les sommes de Drboux coïncident vec les sommes de Riemnn s n = n 1 i=0 1 n ( ) k i ; S n = s n + 1 n n = 1 n k+1 n i k. Pour k = 1, cette somme est bien connue : n i=1 i = 1 2n(n + 1), et donc S n = 1 2 (1 + 1 n ), J 1 = lim n S n = 1 2 Pour k = 2, il fut utiliser n i=1 i2 = 1 6n(n + 1)(2n + 1), d où S n = 1 6 i=1 n(n + 1)(2n + 1) n 3 = J 2 = 1 3. (Pour trouver l vleur de i 2, on peut utiliser i 2 = i(i 1) + i, et observer que l pemière expression est l vleur de (x i ) en x = 1. En permutnt somme et dérivées, on clcule lors l 2 e dérivée de l somme géométrique égle à (1 x n+1 )/(1 x), puis s limite en x = 1.) On voit que l méthode se générlise à n importe quel k N, mis pour k R les choses se compliquent. Aussi, pour clculer b xk dx vec [, b] [0, 1], il fut fire des chngements de vribles pour se rmener u cs ci-dessus. L objet de ce chpitre est d introduire l notion de primitive d une fonction, qui permettr d éviter ce genre de clcul, en utilisnt les conclusions du présent et les méthodes des suivnts chpitres. 14

15 es-m themtiques.net Primitive d une fonction continue Soit D R et f : D R une fonction numérique définie sur D. Définition 15 Une fonction F : D R est une primitive de f dns D ssi F est dérivble sur D, et F = f dns D. Proposition 16 Si F et G sont deux primitives de f, lors F G est une constnte sur tout intervlle I D. Démonstrtion : Soit, x I. On pplique le théorème des ccroissements finis à l fonction h = F G, dérivble sur [, x] I comme somme de fonctions dérivbles. On donc c ], x[ : (F G)(x) (F G)() = (x ) (F G) (c) } {{ } =f(c) f(c)=0 Donc F (x) G(x) = F () G(), ce qui est une constnte, indépendnte de x qui peut prcourir l ensemble des points de I. Remrque Le mot «intervlle» est essentiel dns cette proposition : si D est réunion d intervlles (ouverts) disjoints, F G peut être différent sur chcun des intervlles. Existence d une primitive Théorème 17 Toute fonction continue f : [, b] R possède une primitive, donnée pr F (x) = x f(t) dt. Démonstrtion : Vérifions que l fonction F (x) = x f(t) dt convient. D bord, cette intégrle existe pour tout x [, b] cr f continue sur [, b] donc f R 0, b. Clculons [ F (x + h) F (x) lim = 1 x+h ] x f(t) dt f(t) dt h 0 h h = 1 h x+h x f(t) dt (reltion de Chsles) 15

16 es-m themtiques.net D près le thm. de l moyenne, ξ [x, x + h] tel que Donc 1 h x+h x f(t) dt = f(ξ). F (x + h) F (x) lim = lim f(ξ) = f(x). h 0 h ξ x (NB : Si x = ou x = b on ne peut considérer que l limite à guche ou à droite, c est-à-dire h > 0 ou h < 0.) Remrque Ce résultt permet d identifier l intégrtion comme une ntidifférentition (à une constnte près), puisque F = f pour F (x) = x f(x) dx. Intérêt de l primitive D près le thm précédent, F (x) = x f(t) dt est une primitive de f, et d près l proposition 16, toute primitive de f est égle à F, à une constnte près. Donc, si F est une primitive quelconque de f, lors F = F + c, et en utilisnt l reltion de Chsles. F (b) F () = F (b) F () = b f(x) dx, Ainsi, l connissnce d une primitive quelconque F d une fonction f sur un ensemble D permet de clculer l intégrle de f sur n importe quel intervlle [, b] D, en ppliqunt l formule b f(x) dx = [ ] b F (x) F (b) F (). Ainsi, bien que cel soit possible, on n utilise dns l prtique qusiment jmis l définition de l intégrle de Riemnn en terme de sommes de Drboux, pour l clculer. Suf exceptions, on chercher toujours une primitive de f pr les méthodes qui seront développées dns l suite, pour ppliquer l formule ci-dessus. 1.4 Prtique du Clcul intégrl Nous llons ici border quelques méthodes pour clculer des primitives d une lrge clsse de fonctions. 16

17 es-m themtiques.net Intégrle indéfinie Soit f : D R continue. On note f(x) dx l une quelconque des primitives de f, définie à une constnte près que l on joute toujours explicitement. Exemple x dx = ln x + C. Ici, D f = R \ {0}, on peut donc voir des constntes différentes sur ], 0[ et sur ]0, [. Autrement dit, C est une fonction constnte sur chque sous-intervlle de D. On dit que f(x) dx est l intégrle indéfinie de f, lors que b f(x) dx s ppelle intégrle définie. Remrque On utilise l notion d intégrle indéfinie comme synonyme de primitive. On pourrit fire une distinction plus rigoureuse en définissnt l intégrle indéfinie f(x) dx comme l une quelconque des fonctions de l forme x f(x) dx, ou D n est ps spécifié. (C est insi qu on l détermine et qu on l utilise, dns l esprit du sous-chpitre qui précède.) Les deux définitions sont équivlentes u détil près qu on n obtient lors ps toutes les primitives pr les intégrles indéfinies : en effet, en chngent l borne inférieure on ne peut ps obtenir toutes les constntes, si x D est borné ou si les primitives de f sont bornées, c est-à-dire si lim x ± f(x) dx est finie Primitives des fonctions usuelles Pr dérivtion, on vérifie isément l vlidité des reltions données dns le tbleu 1. De même, on vérifie pr dérivtion (règle de chîne!) que u (x) f(u(x)) dx = F (u(x)) vec F (t) = f(t) dt. Cette formule ser étudiée plus en détil dns le prgrphe Elle permet d utiliser les formules élémentires ci-dessus pour toute une clsse de fonctions élémentires «composées». Son ppliction notmment u cs u(x) = x + b (et donc u = ) est immédite et donne : f( x + b) dx = 1 F ( x + b) Exercice Générliser le formulire précédent, en remplçnt x dns l intégrnd pr x + b. 17

18 es-m themtiques.net x α dx = xα+1 α C 1 (α R \ { 1}) dx = ln x + C x cos x dx = sin x + C sin x dx = cos x + C e x dx = e x + C ch x dx = sh x + C (rppel : ch x = 1 2 (ex + e x )) sh x dx = ch x + C (rppel : sh x = 1 2 (ex e x )) 1 dx = rctn x + C 1 + x2 1 dx = rcsin x + C ( 1 x 1) 1 x 2 1 dx = Arsh x + C = ln(x x 2 ) + C x 2 TAB. 1 Primitives des fonctions usuelles Intégrtion pr prties Proposition 18 Pour f, g C 1 (I R), on f (x) g(x) dx = f(x) g(x) f(x) g (x) dx ou encore, vec I = [, b] et en utilisnt les intégrles définies : b f (x) g(x) dx = [ ] b f(x) g(x) b f(x) g (x) dx 18

19 es-m themtiques.net Démonstrtion : On f(x) g(x) (+C) = (fg) (x) dx = = [f (x) g(x) + f(x) g (x)] dx f (x) g(x) dx + f(x) g (x) dx, D où (en bsorbnt l constnte d intégrtion dns les intégrles indéfinies) l première prtie de l proposition. L deuxième prtie s obtient en prennt l vleur en b moins l vleur en. Remrque Cette reltion est souvent utilisé pour diminuer successivement le degré d un polynôme g(x) qui multiplie une fonction f (x) que l on sit intégrer. Elle sert ussi pour l intégrtion des expressions fisnt intervenir les fonctions trigonometriques, où l on retombe sur l fonction d origine près deux intégrtions. Exemple Clculons l primitive x 2 e x dx. On poser deux fois successivement f = e x = f : x 2 e x dx = x 2 e x 2 x e x dx = x 2 e x 2 x e x + 2 e x dx = x 2 e x 2 x e x + 2 e x + C Exemple Clculons l primitive sin x e x dx. On poser successivement f = sin x, puis f = cos x : sin x e x dx = sin x e x cos x e x dx [ ] = sin x e x cos x e x ( sin x) e x dx = (sin x cos x) e x sin x e x dx On met tous les dns le membre de guche et obtient près division pr 2 : sin x e x dx = 1 2 (sin x cos x) ex ( + C ) 19

20 es-m themtiques.net Formule de Tylor vec reste intégrl Comme ppliction importnte de l intégrtion pr prties, démontrons le Théorème 19 (formule de Tylor vec reste intégrl) Pour, x R et f C n+1 ([, x]), on f(x) = f()+f () (x ) n! f (n) () (x ) n + 1 n! x f (n+1) (t) (x t) n dt. (4) (Rppel : on note C k (I) les fonctions k fois continûment dérivbles sur I.) Cette formule de Tylor vec reste intégrl est historiquement l première prmi les différentes formules de Tylor (cf. chp.??, pge??), trouvée pr Monsieur Brook Tylor ( ). Elle sert pour le clcul de développements limités qui seront étudiés u chpitre suivnt. Elle donne une pproximtion polynômile de l fonction f u voisinge de : en effet, si x est proche de, lors les termes de l forme (x ) k deviennent très petits, d utnt plus que k est élevé. Le dernier terme, ppelé «reste intégrl» du développement, tend encore plus vite vers zéro que (x ) n (comme on le démontre u chpitre??). Démonstrtion : cs Pour n = 0, l formule est vrie : en effet, elle s écrit dns ce f(x) f() = x f (t) dt, ce qui exprime simplement le fit que f est une primitive de f, lorsque f C 1 ([, x]). Supposons mintennt (4) vrie pour un certin n N, et que f (n+1) dmette une dérivée f (n+2) continue sur [, x]. Ainsi, les deux fcteurs dns le reste intégrl vérifient les conditions suffisntes pour pouvoir fire une intégrtion pr prtie, vec u = f (n+1) = u = f (n+2) et v (t) = (x t) n = v(t) = 1 n+1 (x t)n+1. Alors x = f (n+1) (t) (x t) n dt [ f (n+1) (t) 1 n+1 (x t)n+1] x 1 n+1 x f (n+2) (t) (x t) n+1 dt. L borne supérieure du crochet donne zéro et pour l borne inférieure les signes ( ) se compensent, on donc x f (n+1) (t) (x t) n dt = 1 n+1 f (n+1) () (x ) n n+1 x f (n+2) (t) (x t) n+1 dt 20

21 es-m themtiques.net et en reportnt ceci dns (4), on trouve l formule u rng n Chngement de vrible d intégrtion Proposition 20 Soit f : I R continue et ϕ : J I un difféomorphisme, c est-à-dire une bijection telle que ϕ et ϕ 1 soient continûment dérivbles. Dns ce cs, f(x) dx = F (ϕ 1 (x)) vec F (t) = f(ϕ(t)) ϕ (t) dt ( + C ). Autrement dit, F ϕ 1 est une primitive de f. En terme d intégrles définis, on ϕ(b) ϕ() f(x) dx = b f(ϕ(t)) ϕ (t) dt. Démonstrtion : Il fut et il suffit de montrer que F ϕ 1 comme dérivée f. Or, d près l règle de chîne, on (F ϕ 1 ) = F ϕ 1 (ϕ 1 ) Or, F = f ϕ ϕ et (ϕ 1 ) = 1/(ϕ ϕ 1 ) (ce qui se montre en dérivnt ϕ(ϕ 1 (x)) = x). Donc (F ϕ 1 ) = f ϕ ϕ 1 1/(ϕ ϕ 1 ) = f. Pour une intégrle définie, on donc β α f(x) dx = F (ϕ 1 (β)) F (ϕ 1 (α)) = ϕ 1 (β) ϕ 1 (α) f(ϕ(t)) ϕ (t) dt ce qui revient u même que l formule donnée dns l énoncé vec = ϕ 1 (α) et b = ϕ 1 (β). Applictions Disposition prtique : Ce théorème permet de clculer f si l on sit clculer f ϕ ϕ, ou réciproquement. Il est à l bse de tout «l rt de l intégrtion», qui consiste à trouver les bons chngements de vribles x = ϕ(t). Dns l prtique, on écrit lors x = ϕ(t) = dx dt = ϕ (t). 21

22 es-m themtiques.net On écrit symboliquement dx = ϕ (t)dt, et on substitue ces deux équtions dns l intégrle en question : f(x) dx = f(ϕ(t) ) ϕ (t)dt }{{} } {{ } =x =dx Puis, ynt trouvé l primitive F (t) du membre de droite, on retourne à l vrible x en substitunt t = ϕ 1 (x). Exemple Clculons l primitive sin x cos x dx sur l intervlle ] 1, 1[. Posons sin x = t = cos xdx = dt. C est justifié cr sin est une bijection différentible de [ π 2, π 2 ] sur [ 1, 1], et l fonction réciproque x = rcsin t est églement dérivble à l interieur de cette intervlle. D où sin }{{} x cos } {{ xdx } = t dt = 1 2 t2 + C = 1 2 (sin x)2 + C. =t =dt N.B. : En terme des définitions de l proposition, on trvillé vec ϕ 1 plutôt qu vec ϕ ; c est souvent plus insi qu on procède dns l prtique. Remrque Il fut s ssurer que l fonction ϕ est effectivement une bijection, générlement en considérnt ses propriétés de monotonie. Dns le cs echént, il fut découper l intervlle d intégrtion en des sous-intervlles sur lesquels ϕ est monotone Formule de l moyenne générlisée. Comme ppliction intéressnte des chngements de vrible, considérons le Théorème 21 (de l moyenne, générlisé.) Soient f, g C([, b]) et g > 0 sur ], b[. Alors, ξ [, b] : b f(x) g(x) dx = f(ξ) b g(x) dx. Exercice Démontrer ce théorème, en étudint l fonction G(x) = x g(t) dt pour justifier le chngement de vrible u(x) = + G(x) (b )/G(b). Solution : L fonction G est bien définie (g intégrble cr continue) et dérivble sur [, b], vec G = g > 0 sur ], b[. Donc G est strictement croissnte sur ], b[, et idem pour u, qui est donc bijection de [, b] sur [u(), u(b)] = [, b]. u est dérivble et 22

23 es-m themtiques.net u = g.(b )/G(b). Ainsi on peut fire le chngement de vrible pour psser de x à u : b b f(x) g(x) dx = f(x(u)) du. G(b) b. En utilisnt le théorème de l moyenne pour u f(x(u)), ũ [, b] : b f(x(u)) du = (b ) f(x(ũ)), on le résultt cherché, vec ξ = x(ũ) (puisque G(b) = b g(t) dt). 23

24 es-m themtiques.net 1.5 Intégrtion de frctions rtionnelles : décomposition en éléments simples Dns ce (long) chpitre, on montre comment on trouve une primitive pour toute frction rtionnelle f(x) = A(x) B(x), où A, B sont de polynômes. On procède pr étpes, en illustrnt l théorie à l ide de l exemple f(x) = A(x) B(x) = 2 x6 + 3 x 5 3 x 4 3 x 3 3 x 2 18 x 5 x 5 + x 4 2 x 3 x 2 x + 2 L première prtie de ce chpitre est plutôt lgébrique : nous citons et utilisons ici plusieurs théorèmes importnts d lgèbre sns démonstrtion, qui n ps s plce dns ce cours d nlyse Division euclidienne 1 e étpe : On utilise le Théorème 22 (et définition : division euclidienne) Soient A, B R[X], B 0. Alors il existe un unique couple (Q, R) de R[X] tel que A = B Q + R et deg R < deg B On dit que Q est le quotient et R le reste de l division euclidienne de A pr B. Ainsi on peut écrire f(x) = A(x) B(x) Q(x) + R(x) = = Q(x) + R(x) B(x) B(x) B(x) vec deg R < deg B. Le polynôme Q(x) s ppelle prtie entière de l frction rtionnelle. Exemple On effectue l division euclidienne comme suit : 2 x x 5 3 x 4 3 x 3 3 x 2 18 x 5 x 5 + x 4 2 x 3 x 2 x x x 5 4 x 4 2 x 3 2 x x 2x + 1 x 5 + x 4 x 3 x 2 22 x 5 x 5 + x 4 2 x 3 x 2 x + 2 x 3 21 x 7 On donc f(x) = 2x x 3 21 x 7 x 5 + x 4 2 x 3 x 2 x

25 es-m themtiques.net Polynômes irreductibles 2 e étpe : On considère donc dorénvnt une frction rtionnelle R(x)/B(x) telle que deg R < deg B. Pour procéder, on pose Définition 23 Les polynômes irréductibles (sur R) sont les polynômes de degré 1 et les polynômes de degré 2 sns rcine réelle (c est-à-dire X 2 + b X + c vec = b 2 4 c < 0). Un polynôme est unitire ssi le coefficient du terme de plus hut degré est 1. On se servir du Théorème 24 Tout polynôme de R[X] se décompose de mnière unique en un produit de l forme P (X) = (X r 1 ) m1 (X r p ) mp (X 2 +b 1 X+c 1 ) n1 (X 2 +b q X+c q ) nq c est à dire d une constnte qui est le coefficient du terme de plus hut degré de P, et de polynômes irréductibles unitires : r i sont les rcines (distinctes) de P, m i leurs multiplicités, et les fcteurs de degré 2 sont sns rcine réelle (c est-à-dire vec = b 2 j 4 c j < 0). On utilise cette décomposition pour le polynôme B(x) u dénominteur de l frction rtionnelle. On suppose de plus que le numérteur n ps de fcteur commun vec le dénominteur, sinon on simplifie pr ce fcteur commun. Exemple Pour trouver l fctoristion B(x), on commence pr chercher des rcines évidentes en tâtonnnt (i.e. en essynt pour x les vleurs 0, ±1,...). On trouve que B(1) = 0 et B( 2) = 0, donc (x 1)(x + 2) = x 2 + x 2 divise B(x). On effectue l division euclidienne x 5 + x 4 2 x 3 x 2 x + 2 x 2 + x 2 x 5 + x 4 2 x 3 x x 2 x + 2 x 2 x Or, x 3 1 = (x 1)(x 2 + x + 1), pr conséquent, B(x) = (x + 2)(x 1) 2 (x 2 + x + 1) En effet, x 2 + x + 1 est un trinôme du 2 nd degré à discriminnt négtif. 25

26 es-m themtiques.net Pôles et éléments simples 3 e étpe Définition 25 On dit que f(x) := A(x) B(x), A, B R[X], est une frction rtionnelle irréductible ssi les polynômes A et B sont sns fcteur commun. On ppelle pôles de l frction rtionnelle irréductible les rcines du polynôme B. Soit B(X) = (X r 1 ) m1 (X r p ) mp (X 2 + b 1 X + c 1 ) n1 (X 2 + b q X + c q ) nq l décomposition irréductible de B. On ppelle éléments simples de 1 e espèce reltifs ux pôles r i, les m i fonctions rtionnelles du type A 1 x r i, A 2 (x r i ) 2,..., A mi (x r i ) mi, où les A k sont des constntes réelles. On ppelle éléments simples de 2 e espèce reltifs ux polynômes irréductibles X 2 + b j X + c j, les n j fonctions rtionnelles du type B 1 x + C 1 x 2 + b j x + c j, où les B k, C k sont des constntes réelles. B 2 x + C 2 (x 2 + b j x + c j ) 2,..., B nj x + C nj (x 2 + b j x + c j ) nj, Exemple Décrire les éléments simples de R(x) B(x) = x 3 21 x 7 (x + 2)(x 1) 2 (x 2 + x + 1) éléments simples de 1 e espèce : le pôle x = 1 de multiplicité 2 2 éléments simples : A 1 x 1, A 2 (x 1) 2, A 3 pôle x = 2 de multiplicité 1 1 éléments simple : x + 2. éléments simples de 2 e espèce : 1 seul, ssocié u fcteur irreductible x 2 + x + 1 : B 1 x + C 1 x 2 + x + 1. Attention : il fut toujours d bord s ssurer de l décomposition complète du dénominteur! Pr exemple, B(x) urit pu être écrit comme B(x) = (x 1)(x + 2)(x 3 1) ; ce qui ne permet ps de voir imméditement les éléments simples. 26

27 es-m themtiques.net Théorème 26 Soit f(x) = A(x)/B(x) une fct. rtionnelle irréductible. Alors 1. Si A = BQ + R, deg R < deg B (div.euclidienne de A pr B), on f = A B = Q + R B dns D f. R 2. B se décompose de mnière unique comme somme de tous les éléments simples reltifs à B : R(x) B(x) = i k A ik (x r i ) k + j l B jk x + C jk (x 2 + b j x + c j ) k. (des) Exercice Donner l structure de l décomposition en éléments simples de f(x) = R(x)/B(x). On R(x) B(x) = x 3 21 x 7 (x + 2)(x 1) 2 (x 2 + x + 1) = A 1 x 1 + A 2 (x 1) A 3 x B 1 x + C 1 x 2 + x + 1. (*) NB : qund on ne demnde que l structure de l décomposition, on peut lisser les A i, B j, C j indéterminées Clcul des coefficients d une décomposition en éléments simples 4 e étpe : (l plus dure...) () : POUR LES PÔLES SIMPLES DE MULTIPLICITÉ 1 On multiplie l éq. (des) pr (x r i ), et on prend x = r i : dns le membre de droite ne survit que A i, dont l vleur est donné pr le membre de guche, R(r i )/B (r i ) vec B (x) = B(x)/(x r i ) (simplifié). Pr exemple, ppliquons ceci u clcul de A 3 : En multiplint (*) pr (x + 2), on x 3 ( 21 x 7 A1 (x 1) 2 (x 2 = (x + 2) + x + 1) x 1 + A ) 2 (x 1) 2 + A 3 + (x + 2) B 1 x + C 1 x 2 + x + 1 et en posnt x = 2, = A 3 A 3 = 1. 27

28 es-m themtiques.net (b) : LES COEFF. A imi DES PÔLES DE MULTIPLICITÉ m i Pour trouver le coefficient A i,mi qui correspond à un pôle d ordre m i, on multiplie pr (x r i ) mi, puis on prend x = r i : de mnière nlogue à ce qui précède, on trouve le coeff. recherché. Dns notre exemple, on détermine insi A 2 en multiplint pr (x 1) : x 3 ( 21 x 7 (x + 2)(x 2 + x + 1) = (x 1) A A3 1 + A 2 + (x 1) x B ) 1 x + C 1 x 2 + x + 1 et en prennt x = 1, A 2 = (1 21 7)/(3 3) = 3. (c) : LES COEFF. B jnj, C jnj DES FACTEURS QUADRATIQUES On peut ppliquer l même méthode, mis vec les rcines complexes de ces fcteurs x 2 + b j x + c j. Pour celà, on multiplie pr le fcteur (x 2 + b j x + c j ) nj, puis on prend x égl à une des rcines complexes du fcteur, pour trouver (vec l prtie réelle et imginire) les coeff. B j et C j : Dns notre cs, x 2 + x + 1 = x3 1 x 1, les rcines sont donc les 2 rcines 3 es non-triviles de l unité, j = exp 2 π i 3. (En effet, il convient de vérifier que x = j est vriment un pôle en clculnt R(j) = 1 21 j 7 0.) En multiplint (*) pr x 2 + x + 1 x 3 21 x 7 (x 1) 2 (x + 2) = (x2 + x + 1) et en prennt x = j, on trouve insi ( A1 x 1 + A 2 (x 1) 2 + A 3 x j 7 j j 2 2 j 2 4 j + j + 2 = B 1 j + C 1 ) + B 1 x + C j B 1 j + C 1 = = j 3 3 j 1 j ce qui donne (prtie réelle et imginire) les coefficients B et C près un petit clcul. Cependnt, ici ce clcul de nombres complexes est un peu lourd et on utiliser plutôt une utre méthode, pr exemple celle des limites. (d) : LES AUTRES COEFF. A ik DES PÔLES DE MULTIPLICITÉ m i > 1 Ces coefficients peuvent ussi se clculer pr l méthode du chngement de vrible t = x r i. Ceci nous rmène à un pôle en t = 0. Pour clculer les coefficients ssociés à ce pôle, on fit l division pr les utres fcteurs de B(t + r i ) suivnt les puissnces croissntes en t, à l ordre m i 1 ; c est-à-dire on s rrête lorsque le reste ne contient que des termes de degré supérieur ou égle à m i, de fçon à pouvoir mettre en fcteur t mi. Le quotient donne lors tous les coefficients ssociés u pôle r i. 28

29 es-m themtiques.net Exemple Dns notre exemple, le chngement de vrible est t = x 1 x = t + 1, donc x 3 21 x 7 (x 1) 2 (x + 2)(x 2 + x + 1) = t3 + 3 t 2 18 t 27 t 2 (t + 3)(t t + 3). On divise lors t t 2 18 t 27 pr (t + 3)(t t + 3) = t + 6 t 2 + t 3 suivnt les puissnces croissntes, à l ordre 1 : t + 3 t 2 + t t + 6 t 2 + t t 18 t 2 3 t t 18 t + 21 t t 3 18 t + 24 t t t 4 3 t 2 8 t 3 2 t 4. D où : t + 3 t 2 + t 3 = ( t)( t + 6 t 2 + t 3 ) + ( 3 t 2 8 t 3 2 t 4 ) En divisnt pr t 2 (t + 3)(t t + 3), on donc t + 3 t 2 + t 3 t 2 (t + 3)(t t + 3) = t 3 8 t 2 t2 t 2 + (t + 3)(t t + 3), et on déduit du premier terme que A 1 = 2 et A 2 = 3. NB : cette méthode est surtout intéressnte s il y un pôle de multiplicité élevée ( 4) et peu d utres fcteurs dns B(x), ou lors s il s git dès le début d un pôle en x = 0 (ce qui évite le chngement de vrible). (e) : MÉTHODES GÉNÉRALES POUR LES COEFF. RESTANTS (i) : méthode des limites Cette méthode consiste à multiplier d bord pr l plus bsse puissnce qui intervient dns l décomposition en éléments simples, et de prendre l limite x (où il suffit de grder les puissnces les plus élevées). Ainsi, on dns le membre de droite l somme des coefficients qui correspondent à cette puissnce, qui permet de déterminer un coefficient en terme des utres. Exemple Dns notre exemple, on multiplie pr x, l limite donne lors et donc B 1 = A 1 A 3 = 2 1 = 3. lim x4 x 5 = 0 = A 1 + A 3 + B 1 (ii) : méthode des vleurs prticulières 29

30 es-m themtiques.net Une utre méthode consiste à simplement prendre des vleurs prticulières pour x (différents des pôles) et insi d voir un système d équtions qui permettr de déterminer les coefficients mnqunts. Exemple Dns notre exemple, prenons x = 0 : 7 2 = A 1 + A 2 + A C 1 et donc C 1 = A 1 A 2 A3 2 = = = 1. Remrque : dns le cs générl, il fut insi créer un système d utnt d équtions (indépendntes) qu il reste de coefficients à déterminer. (iii) : pr identifiction L méthode générique qui mrche toujours mis qui n est ps toujours ps l plus rpide, consiste à réécrire l somme des éléments simples sur le dénominteur commun qui est B(x), et d identifier les coeff. des mêmes puissnces de x du membre de guche (coefficients de R(x)) et du membre de droite (les A, B, C multipliés pr une prtie des fcteurs de B(x)). Ainsi on obtient un système d équtions linéires dont l solution donne les coefficients (mnqunts) Appliction u clcul de primitives Avec l technique étudiée dns ce chpitre, on peut intégrer toute fonction rtionnelle f(x) = A(x) B(x). En effet, on commence pr simplifier A(x) pr les fcteurs irréductibles de B(x) pour désormis pouvoir supposer f(x) irréductible. Ensuite, u cs ou deg A deg B, on effectue l division euclidienne pour voir f(x) = Q(x) + R(x) B(x) vec deg R < deg B. Enfin, on décompose R(x) B(x) en éléments simples. On n donc plus qu à trouver les primitives pour les deux types d éléments simples, dx (x r) k et A x + B (x 2 + b x + c) k dx. L première intégrle ne pose ps de problème, s primitive est (x r) k+1 k + 1 si k 1 et ln x r si k = 1. Considérons donc le 2e type d intégrle. On l écrit d bord sous l forme A x + B (x 2 + b x + c) k = D 2 x + b (x 2 + b x + c) k + E (x 2 + b x + c) k 30

31 es-m themtiques.net vec D = A 2 et E = B b D. Ainsi, le premier terme est de l forme D u u k, vec D l primitive k+1 u k+1 (resp. D ln u pour k = 1). Tout ce qui reste donc à clculer est l primitive dx ( < 0). (x 2 +b x+c) k Pour ce fire, on se rmène pr un chngement de vrible à cette intégrle vec b = 0 et vec c = 1, en posnt successivement u = x + b 2, puis t = c b 2 /4 u). Pour clculer dt, on pose t = tn θ, θ ] π (t 2 +1) k 2, [ π 2, dt = (1 + tn 2 θ)dθ. [justifier ce chgt de vrible!] Alors dt (1 + tn 2 (t 2 + 1) k = θ)dθ (1 + tn 2 θ) = k dθ (1 + tn 2 θ) = (cos θ) 2k 2 dθ k 1 (rppel : 1/ cos 2 θ = 1 + tn 2 θ). Pour k = 1, une primitive est θ = rctn t. Sinon, on fit une intégrtion pr prtie d un fcteur cos x pour diminuer l exposnt de 2 : cos 2k 2 x dx = [cos 2k 3 x sin x] (2k 3) cos 2k 4 x( sin x) sin x dx = [cos 2k 3 x sin x] + (2k 3) cos 2k 4 x(1 cos 2 x) dx = 1 2k 2 ( [cos 2k 3 x sin x] + (2k 3) ) cos 2k 4 x dx où l dernière ligne est obtenue en fisnt psser toutes les cos 2k 2 x dx dns le membre de guche puis en divisnt pr le coefficient 4 2k. Avec cos 2k 3 x sin x = cos 2k 2 x tn x et cos 2 x = 1 + tn 2 x, on enfin dt I k := (t 2 + 1) k = 1 2k 2 ([ t (1 + t 2 ) k 1 ] ] + (2k 3)I k 1 ) ce qui permet, vec I 1 = rctn t, de clculer I k pour tout k N. Remrque Dns l prtique, on effectue le chngement de vribles pour psser de x 2 + b x + c à 1 + tn 2 θ en une seule fois. Exemple On écrir pr exemple ( x 2 + x + 1 = x + 1 ) 2 1 ( = x + 1 ) [ = 3 ( 4 x + 1 ) ] = (tn2 θ + 1), vec tn θ = ( 4 3 x + 1 2). 31

32 es-m themtiques.net Primitives des fonctions rtionnelles de sin x et cos x Définition 27 On dit que f(x) est une fonction rtionnelle de sin x et cos x s il existent des polynômes (en 2 vribles) A, B R[X, Y ] (c est-à-dire A = ij X i Y j, idem pour B) tels que f(x) = A(sin x, cos x)/b(sin x, cos x). Exemple f(x) = cos x sin x sin x cos 2 x : ici, A = Y X, B = X Y 2. Méthode d intégrtion : On distingue 3 cs (ide mnémotechnique : l nouvelle vrible est chque fois invrinte sous l trnsformtion considérée) si f( x) = f(x), on pose t = cos x (invrint, or sin( x) = sin(x)) si f(π x) = f(x), on pose t = sin x (invr., or cos(π x) = cos(x)) si f(π + x) = f(x), on pose t = tn x (invr., mis sin, cos chgt de signe) sin x Exemple f(x) = cos 3 x + sin 2. On pose t = cos x, dt = sin xdx, donc x dt f(x)dx = t 3 + (1 t 2 ), on rrive insi à une simple frction rtionnelle à intégrer, et on substituer finlement t = cos x dns le résultt. 32

33 es-m themtiques.net Autres frctions rtionnelles Dns les cs suivnts, on peut encore se rmener à l recherche d une primitive d une frction rtionnelle : Théorème 28 ) f(e x, sh x, ch x, thx) : on pose t = e x, x = ln t, dx = 1 t dt. Avec sh x = 1 2 (t ( t 1 ), ch x = ) 1 2 t + t 1, on retrouve une frction rtionnelle en t. ) b) f (x, n vec d bc 0 : on pose x+b c x+d y = n x + b c x + d b d yn x = c y n, dx = d b c (c y n ) 2 n yn 1 dy. et on retrouve encore une frction rtionnelle en y. c) f(x, x 2 + b x + c) : On trnsforme l rcine en une des formes suivntes : t : on pose lors t = sh u = t = ch u t 2 1 : on pose lors t = ± ch u (u > 0) = t 2 1 = sh u 1 t 2 : on pose lors t = sin u ou t = cos u Dns chcun des cs, on retombe sur une frction rtionnelle d un des types qui précèdent (vec ch, sh ou sin, cos). Exemple f(x) = x x2 + 4 x + 5 : on x2 +4 x+5 = (x+2) 2 +1, on poser donc x + 2 = sh u, d ou x x + 5 = ch u, dx = ch u du et sh u 2 f(x) dx = ch u du = (sh u 2) du ch u = ch u 2 u = x x Arsh (x + 2). 33

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction

Fonctions définies par une intégrale. On suppose que g et h sont deux fonctions réelles définies sur R d, telles que la fonction Prép. Agrég. écrit d Anlyse, Annexe n o 6. Méthode de Lplce dns R d Fonctions définies pr une intégrle On suppose que g et h sont deux fonctions réelles définies sur R d, telles que l fonction F(t = g(x

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Mathématiques, Semestre S1

Mathématiques, Semestre S1 Polytech Pris-Sud PeiP1 2011/2012 Notes de cours Mthémtiques, Semestre S1 Filippo SANTAMBROGIO 2 Tble des mtières 1 Les fonctions dns R et leurs limites 7 1.1 Fonctions réelles d une vrible réelle.........................

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

Rappels et compléments sur l intégrale de Riemann

Rappels et compléments sur l intégrale de Riemann Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1 ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Cours d Analyse Mathématique II

Cours d Analyse Mathématique II Année 22-23 Cours d Anlyse Mthémtique II F. Bstin Prise de notes rédigée pr Alice Slmon. Avec l prticiption de : Nicols Ghye (schéms) Sndy Assent (relecture) Préfce Avertissement Ce texte résulte d une

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques Bcclurét 20 Résumé Ce document contient les principles définitions, théorèmes et propriétés du cours de mthémtiques du tronc commun de mthémtiques de Terminle S. Je tiens à remercier

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux

Cours de Terminale S Lycée Camille Pissarro 2013-2014. Sébastien Andrieux Cours de Terminle S Lycée Cmille Pissrro 203-204 Sébstien Andrieux 7 juin 204 Tble des mtières I Cours de Terminle S 5 Risonnement pr récurrence 6 2 Suites et limites des suites 8 I Suite convergente,

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile.

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN

Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN Intégrle de Riemnn et Intégrle de Lebesgue Jen Gounon http://dm.ens.fr/culturemth Définitions INTEGRALE DE RIEMANN Dns tout le chpître, b et f est une fonction réelle bornée sur [,b] = I Définition. Un

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail