Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Dimension: px
Commencer à balayer dès la page:

Download "Synthèse de cours (Terminale S) Dérivation : rappels et compléments"

Transcription

1 Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on l note «f '( )» et on l ppelle «nombre h dérivé de l fonction f en». Dns ce cs, on dit que «l fonction f est dérivble en». Interpréttion géométrique Soit f une fonction définie sur un intervlle I et un élément de I. Soit C f l courbe représenttive de f dns un repère. ( ) Si f est dérivble en lors C f dmet une tngente u point ; ( ) tngente est : On en tire l éqution réduite de l tngente : y = f '( )( x ) + f ( ) ( ) ( ) ( ) y = f '. x+ f f '. f et une éqution de cette y y = f '( )( x ) + f ( ) f ( ) C f x PnMths [1-6] Août 008

2 Remrque : L écriture lim ( + ) ( ) f h f h ( ) = f ' équivut à : ( ) ( ) '( ) ε ( ) f + h = f + f h+ h h Avec : ε ( h) lim = 0. Pour h petit, on pourr lors écrire : f ( + h) f ( ) + f '( ) h, l quntité f ( ) + f '( ) h étnt ppelée «pproximtion ffine de f ( + h) u voisinge de ( ) f». Dérivbilité et continuité On le théorème fondmentl suivnt : Soit f une fonction définie sur un intervlle I et un élément de I. Si f est dérivble en (sur I) lors f est continue en (sur I). Remrque : l réciproque est fusse (pour s en convincre, on pourr considérer l fonction vleur bsolue en 0). Fonction dérivée Soit f une fonction définie sur un intervlle I. Si f est dérivble pour tout x de I, lors on dit que «l fonction f est dérivble sur I» et on note «f» l fonction définie pr : I x f ' x ( ) L fonction f est ppelée «fonction dérivée de l fonction f». Remrque (peut être lissée de côté en première lecture) : L nottion «f '» est due à Newton ( ) et est courmment utilisée en mthémtiques (en prticulier dns le secondire). Il en existe une utre, cette fois due à Leibniz ( ), qui est elle fréquemment utilisée en physique, en économie Il s git de «dy dx». PnMths [-6] Août 008

3 Cette nottion, dite «différentielle», exprime l idée d un rpport entre deux quntités f ( + h) f ( ) (différences) infinitésimles et doit donc être rpprochée de lim puisque h f ( + h) f ( ) cette limite peut être écrite : lim. ( + h) dy En toute rigueur, on écririt pour le nombre dérivé : f '( ) =. dx x = L nottion de Leibniz présente de nombreux vntges. Si, u lieu de considérer des quntités infinitésimles, nous considérons de petites différences (nous les notons lors Δ x et Δ y en lieu et plce, respectivement, de dx et dy ), nous pouvons Δy Δy écrire : f '( ) (ou, plus générlement f '( x) ), soit encore : Δ ( ) Δx Δx y f ' Δ x. On retrouve insi l idée fondmentle de l pproximtion ffine : une petite vrition sur les bscisses entrîner, en première pproximtion, une petite vrition sur les ordonnées qui lui est proportionnelle, le coefficient de proportionnlité n étnt rien d utre que le nombre dérivé. y f h f Δ x = + h = h, on retrouve : En posnt lors : Δ = ( + ) ( ) et ( ) f ( + h) f ( ) f ( ) h, soit : ( ) ( ) '( ) f + h f + f h. Fonctions dérivées des fonctions usuelles Les fonctions rtionnelles (dont les fonctions polynômes et l fonction inverse), l fonction rcine crrée et les fonctions trigonométriques sont dérivbles sur tout intervlle inclus dns leur ensemble de définition (ATTENTION! Ce résultt n est ps vlble pour l fonction rcine crrée en 0). Fonction Dérivée Intervlle I (mximl) x k ( k ) x 0 x x x 1 x x x x 1 1 x x x x * +* ou x x 1 x x + * n x x (si n > 0 ) n 1 * x nx * +* ( n ) ou (si n < 0 ) sin cos cos sin tn 1 π 1+ tn = \ ( k 1 ), k + cos PnMths [3-6] Août 008

4 Opértions et dérivtion Si f et g sont deux fonctions dérivbles sur un intervlle I, l fonction g ne s nnulnt ps sur I, et si k est un réel lors : L fonction f + g est dérivble sur I et on : ( f + g)' = f ' + g' ; L fonction kf est dérivble sur I et on : ( kf )' = kf ' ; L fonction fg est dérivble sur I et on : ( fg)' = f ' g+ fg' ; L fonction 1 ' g est dérivble sur I et on : 1 g ' = ; g g L fonction f ' g est dérivble sur I et on : f f ' g fg' =. g g Remrque : à prtir de l formule donnnt l dérivée de f g, on retrouve rpidement l expression de l dérivée de 1 g Fonctions dérivbles et sens de vrition On suppose que f est une fonction dérivble sur un intervlle I. Si f est croissnte sur I lors ' x I, f ' x 0 ) ; Si f est décroissnte sur I lors ' Si f est constnte sur I lors ' f est positive sur I ( ( ) f est négtive sur I ( x f ( x) f est nulle sur I ( x I, f '( x) = 0 ) ; I, ' 0 ) ; Remrque : une fonction f peut être strictement croissnte sur un intervlle et s dérivée s y 3 nnuler On considèrer, pr exemple, l fonction x x. Elle est strictement croissnte sur et s dérivée s nnule en 0 On suppose que f est une fonction dérivble sur un intervlle I. Si ' x I, f ' x 0 ) lors f est (strictement) f est (strictement) positive sur I ( ( ) croissnte sur I ; Si ' f est (strictement) négtive sur I ( x f ( x) décroissnte sur I ; Si ' f est nulle sur I ( x f ( x) I, ' 0 ) lors f est (strictement) I, ' = 0 ) lors f est constnte sur I ; PnMths [4-6] Août 008

5 Dérivée d une fonction composée Propriété Soit f une fonction dérivble sur un intervlle I et prennt ses vleurs dns un ensemble inclus dns un intervlle J. Soit g une fonction dérivble sur l intervlle J. Dns ces conditions, l fonction gof est dérivble sur l intervlle I et on : Soit : On en prticulier : Soit et b deux réels, étnt non nul. ( gof )' = f ' ( g ' of ) ( )( ) ( ) ( )( ) ( ) ( ) gof ' x = f ' x g ' of x = f ' x g '( f x ) Soit f définie et dérivble sur I et soit g l fonction définie pr g: x f ( x+ b) donc définie pour tout x tel que x + b pprtient à I). Dns ces conditions, l fonction g est dérivble et on : ( ) = '( + ) g ' x f x b (l fonction g est l composée des fonctions x x + b et f). (elle est Formulire Pour toute fonction u définie et dérivble sur un intervlle I (et, éventuellement, ne s nnulnt ps sur I), on : Fonction Dérivée n x u ( x) n 1 x nu. '( x). u ( x) x u( x) u' ( x) x u( x) Remrques : dns le deuxième cs, l fonction u est à vleurs strictement positives. PnMths [5-6] Août 008

6 Utilistion de l dérivée pour l recherche d un extremum locl Notion d extremum locl Soit f définie sur un intervlle I et soit un élément de I. On dir que «f dmet un mximum (minimum) en» s il existe un intervlle ouvert I x I, f x f f x f ). contennt et inclus dns I tel que : ( ) ( ) ( ( ) ( ) On ppelle «extremum locl de f» tout minimum locl ou mximum locl pour l fonction f. Théorème Soit f définie et dérivble sur un intervlle I et soit un élément de I. f ' = 0. Si f dmet un extremum locl en lors ( ) 3 L réciproque est fusse et l fonction x x nous donne encore un contre-exemple : s dérivée s nnule en 0 mis elle n y dmet ps un extremum locl! On cependnt : Soit f définie et dérivble sur un intervlle I et soit un élément de I. f ' = 0 et si f ' chnge de signe en lors f dmet un extremum locl en. Si ( ) f '( ) = 0 C f f '( b ) = 0 f '( x ) > 0 f '( x ) < 0 ( ) f ' x > 0 b PnMths [6-6] Août 008

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Terminle S Vlère BONNET vlere.bonnet@gmil.com) 9 mi Lycée PONTUS DE TYARD rue des Gillrdons 7 CHALON SUR SAÔNE Tél. : ) 85 46 85 4 Fx : ) 85 46 85 59 FRANCE ii LYCÉE PONTUS DE TYARD

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution .8 Aperçu de l intégrle.8 APERÇU DE L INTÉGRALE Estimtion de l ire d une région curviligne Erreur d pproimtion Aire ecte d une région curviligne 4 Intégrle définie 5 Intégrle définie négtive 6 Propriétés

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145.

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145. École de technologie supérieure Service des enseignements généru Locl B-500 54-96-898 Site internet : http://www.etsmtl.c/ MAT45 CALCUL DIFFÉRENTIEL ET INTÉGRAL NOTES DE COURS e PARTIE PAR GENEVIÈVE SAVARD,

Plus en détail

CHAPITRE 5 ANALYSE EN REGIME SINUSOIDAL

CHAPITRE 5 ANALYSE EN REGIME SINUSOIDAL CHAPITRE 5 ANALYSE EN REGIME SINUSOIDAL H.W. Bode (95-98), mthémticien et physicien méricin. Bode entr dès 99 ux Bell Lbs, où il trvill vec Fry et Nyquist sur l théorie des circuits et des systèmes. Il

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Microéconomie de l Incertitude M1

Microéconomie de l Incertitude M1 Microéconomie de l Incertitude M1 Emmnuel DUGUET Notes de Cours, 2012-2013, V1 2 I Concepts de bse 5 1 Les loteries 9 2 Le critère d espérnce mthémtique 13 2.1 Le prdoxe de Sint Pétersbourg....................

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

S.Mouassa 1, A.Beniaiche 2.

S.Mouassa 1, A.Beniaiche 2. L'infuence de 'émission spontnée sur 'effet de istiité optique des sers à sornts stures d'un résonteur Fry-Perot trimode dont 'érgissement est inhomogène. S.Mouss,.Beniiche. Déprtement d'optique et de

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures!

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures! SESSION 2013 MPIN007 EPREUVE SPECIFIQUE - FILIERE MP " INFORMATIQUE Durée : 3 heures " N.B. : Le cndidt ttcher l plus grnde importnce à l clrté, à l précision et à l concision de l rédction. Si un cndidt

Plus en détail

Calibration absolue par la mesure du faisceau direct

Calibration absolue par la mesure du faisceau direct DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont

Plus en détail

Guide d utilisation EasyMP Multi PC Projection

Guide d utilisation EasyMP Multi PC Projection Guide d utilistion EsyMP Multi PC Projection Tble des mtières 2 À propos d EsyMP Multi PC Projection Types de réunions proposés pr EsyMP Multi PC Projection... 5 Réunions à plusieurs imges... 5 Réunions

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Table des matières. Cristallographie. S.Boukaddid Cristallographie MP2

Table des matières. Cristallographie. S.Boukaddid Cristallographie MP2 S.Boukddid Cristllogrphie MP Cristllogrphie Tble des mtières 1 Bses de l cristllogrphie 1.1 Définitions....................................... 1. Crctéristiques des réseux cristllins......................

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

Dossier de demande de subvention

Dossier de demande de subvention Assocition Demnde de subvention n 12156*01 Loi du 1 er juillet 1901 reltive u contrt d ssocition Dossier de demnde de subvention Vous trouverez dns ce dossier tout ce dont vous vez besoin pour étblir votre

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Automates d arbres avec visibilité : rapport de stage de licence (L3)

Automates d arbres avec visibilité : rapport de stage de licence (L3) Automtes d rbres vec visibilité : rpport de stge de licence (L3) Nicols Perrin ENS de Lyon Mître de stge : Hubert Comon-Lundh - LSV, ENS Cchn Autre encdrnt : Florent Jcquemrd - LSV, ENS Cchn Résumé Mon

Plus en détail

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr Automtes temporisés Aml El Fllh Seghrouchni Aml.Elfllh@lip6.fr Pln Introduction Définition d un utomte temporisé Composition d utomtes temporisés Automtes hybrides Conclusion Le problème à résoudre monde

Plus en détail

Lancement d u site Internet

Lancement d u site Internet Lncement d u site Internet d u S M E T O M - G E E O D E www.smetom-geeode.fr Votre contct presse Erwn GUILLERON, chrgé de communiction SMETOM-GEEODE - 14 rue l Mirie - 77160 Poigny Tél : 01.64.00.26.45

Plus en détail

Mathématiques discrètes Chapitre 4 : relations binaires

Mathématiques discrètes Chapitre 4 : relations binaires U.P.S. I.U.T. A, Déprtement Informtique Année 2009-2010 Mthémtiques isrètes Chpitre 4 : reltions inires 1. Générlités Définition Soient E 1, E 2,...E n es ensemles. Une reltion n-ire est l onnée un sous-ensemle

Plus en détail

Le Plancher Rayonnant Surfacique à faible inertie

Le Plancher Rayonnant Surfacique à faible inertie Le Plncher Ryonnnt Surfcique à file inertie Vue en coupe mm *4 mm 0 5 4 * Selon le type d isolnt et selon le niveu d isoltion du plncher G r n t 0 i e ns Avis technique CSTB 4/-55 Grntie 0 ns GAN M34-0-058/059

Plus en détail

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant.

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant. Annexe A MESSAGE TYPE 8. COMMENTAIRES DES DEFINITIONS DE L ANNEXE NOTIONS ET METHODES DE MESURE 1. TERRAIN DE RÉFÉRENCE 1.1 Terrin de référence Le terrin de référence équivut u terrin nturel. S il ne peut

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

VIII Relations d ordre

VIII Relations d ordre VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

Centre de documentation de la console

Centre de documentation de la console Express Runtime Centre de documenttion de l console Version 2 Edition 1 Express Runtime Centre de documenttion de l console Version 2 Edition 1 Remrque Avnt d utiliser le présent document et le produit

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

5½ À partir de 1475$ /MOIS

5½ À partir de 1475$ /MOIS 5½ 1475$ TYPE A : 1500 pi 2 TYPE B : 1250 pi 2 4½ 1350$ TYPE C : 1230 pi 2 4½ 1350$ TYPE D : 1200 pi 2 4½ 1350$ TYPE E : 1500 pi 2 5½ 1475$ 3½ 1100$ TYPE F : 800 pi 2 3½ 1100$ TYPE G : 850 pi 2 TYPE H

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Théorie des automates et langages formels

Théorie des automates et langages formels Fculté des sciences Déprtement de mthémtiques Théorie des utomtes et lngges formels 1 4 7, d c d 2 c c d 5 c d c d, 8 c d 3 6 9,c,d,c,d,,c,d Année cdémique 2009 2010 Michel Rigo Tle des mtières Chpitre

Plus en détail

Optimisation non linéaire

Optimisation non linéaire 8-1-003 Optimistio o liéire Nio Silerio Support e cours proisoire pour l uité e leur Mthémtiques et sttistiques estié ux clsses u BTS Comptbilité-Gestio e l ECG. Itrouctio Au lycée, ue gre prtie u cours

Plus en détail

Calcul de la rugosité surfacique

Calcul de la rugosité surfacique VI èmes Journées d Etudes Techniques 200 The Interntionl congress for pplied mechnics L mécnique et les mtériux, moteurs du développement durble du 05 u 07 mi 200, Mrrkech Mroc Clcul de l rugosité surfcique

Plus en détail

Automates finis. porte

Automates finis. porte utomtes finis Il s git d un modèle très souple, qui s dpte à des domines très différents en informtique. D une fçon générle, il sert à représenter les divers étts d un système (mécnique, électronique ou

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K.

Caisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN. Mode d emploi. Eu Di U.K. Cisse enregistreuse électronique CE-T300 GROCERY DAIRY H.B.A. FROZEN FOOD DELICATESSEN Eu Di U.K. Mode d emploi Introduction et tle des mtières Introduction Toutes nos félicittions pour l cht de cette

Plus en détail

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement. Rélistion de sites Internet PME & Grndes entreprises Offre Premium Etude du projet Réunions de trvil et étude personnlisée de votre projet Définition d une strtégie de pré-référencement Webdesign Définition

Plus en détail