Épreuve de Mathématiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Épreuve de Mathématiques"

Transcription

1 Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de mahémaiques es auorisé. Exercice Soi la foncion numérique f définie sur R, par f( = si < f( = sin( si < f impaire f périodique de période ( poins Tracer, dans le plan muni d un repère orhogonal, une représenaion graphique de la foncion f sur l inervalle [ 3 ; 3 ]. Jusifier que f saisfai aux condiions de Dirichle. ( 3 Soi : S( = a + an cos(nω + b n sin(nω le développemen en série de Fourier associé à la foncion f. n= a Calculer ω. Jusifier que a = e a n = pour n. b Calculer b. c Calculer b n pour n e n. d Écrire le développemen de Fourier associé à f en précisan les quare premiers ermes non nuls. e Jusifier que S( = f( pour ou R. Calculer f e le carré de la valeur efficace de f. 5 On considère la foncion g définie sur R, par g( = 3 sin( + sin( 5 sin(3 a Calculer à l aide de la formule de Parseval g e le carré de la valeur efficace de g. b Calculer à 3 près, une valeur approchée du rappor ge fe / BTSblanc-A-3.ex

2 Exercice ( poins { U( = si < La foncion échelon unié, es définie sur R, par U : U( = si Les foncions e e s son des foncions causales de la variable qui admeen des ransformées de Laplace noées respecivemen E e S. Elles vérifien l équaion différenielle suivane s ( + s( = e( avec pour condiion iniiale s( = ( Soi e( = ( + U( + ( U(. a Faire, dans un repère orhogonal du plan, la courbe représenaive de la foncion e. b Déerminer sa ransformée de Laplace E. Pour p e p on adme que Déerminer les nombres réels A, B, C els que p (p + = ( p p + p (p + = A p + B p + 3 Résoluion de l équaion ( e représenaion graphique de la soluion C p + a Déerminer S(p la ransformée de Laplace de la soluion de l équaion (. b En déduire s( l original de S(p. c Monrer que la foncion s es définie par < s( = < s( = e ( e 3 s( = e d À l aide d un erminal graphique, on a obenu la représenaion suivane de la foncion s. ln(3, f(, O ln(3 3 Jusifier cee représenaion graphique sur l inervalle [ ; ]. e Déerminer le réel m, el que pour ou supérieur à m, s( soi inférieur à. On pourra uiliser la représenaion graphique donnée à la quesion d pour jusifier le choix à faire pour rouver m. Donner une valeur approchée de m à près. / BTSblanc-A-3.ex

3 Épreuve de Mahémaiques (Soluion Exercice Soi la foncion numérique f définie sur R, par f( = si < f( = sin( si < f impaire f périodique de période ( poins Tracer, dans le plan muni d un repère orhogonal, une représenaion graphique de la foncion f sur l inervalle [ 3 ; 3 ]. 3 O 3 f( Jusifier que f saisfai aux condiions de Dirichle. Sur l inervalle [ ; ] la foncion f es coninue parou e dérivable sauf pour = e pour = 3, mais les limies suivanes son finies : f ( ( = f ( (3 = f ( ( + = f ( (3 + = Donc f saisfai aux condiions de Dirichle e adme un développemen en série de Fourier. 3 Soi : S( = a + la foncion f. ( an cos(nω + b n sin(nω le développemen en série de Fourier associé à n= a Calculer ω. Jusifier que a = e a n = pour n. La période es donc : ω = La foncion f es impaire donc : a = e a n = pour n b Calculer b. b = f( sin( d = f( sin( d ( = sin( d + sin ( d = ( cos( d = [ sin( ] = ( sin( ( sin( b = 3 / 6 BTSblanc-A-3.ex

4 c Calculer b n pour n e n. b n = f( sin(n d = f( sin(n d ( = sin(n d + sin( sin(n d ( cos ( ( n cos ( ( + n d = = = ( sin(( n n = sin( ( n + + n sin(( + n + n sin( b = (n [ sin(( n sin(( + n n + n ( sin(( n sin(( + n n + n ] d Écrire le développemen de Fourier associé à f en précisan les quare premiers ermes non nuls. On a : b = 3 b = b 3 = 5 b = b 5 = S( = 3 sin( + sin( 5 sin(3 + sin(5 e Jusifier que S( = f( pour ou R. Comme la foncion f es coninue sur R, on a : S( = f( Calculer fe le carré de la valeur efficace de f. fe = f ( d = ( f ( d = d + sin ( d Même calcul qu en b, on a : f e = b donc : f e = 5 On considère la foncion g définie sur R, par g( = 3 sin( + sin( 5 sin(3 a Calculer à l aide de la formule de Parseval g e le carré de la valeur efficace de g. ge = + ( ( + + ( 5 = , 75 b Calculer à 3 près, une valeur approchée du rappor ge fe ge fe = , 99 / 6 BTSblanc-A-3.ex

5 Exercice ( poins { U( = si < La foncion échelon unié, es définie sur R, par U : U( = si Les foncions e e s son des foncions causales de la variable qui admeen des ransformées de Laplace noées respecivemen E e S. Elles vérifien l équaion différenielle suivane s ( + s( = e( avec pour condiion iniiale s( = ( Soi e( = ( + U( + ( U(. a Faire, dans un repère orhogonal du plan, la courbe représenaive de la foncion e. e( O 3 b Déerminer sa ransformée de Laplace E. Pour p e p on adme que Déerminer les nombres réels A, B, C els que E(p = p + p + p e p p (p + = ( p p + p (p + = A p + B p + C p + p (p + = A p + B p + C A(p + + Bp(p + + Cp = p + p = (B + Cp + (A + Bp + A (p + p (p + B + C = A + B = A = A = B = C = p (p + = ( p p + p + 3 Résoluion de l équaion ( e représenaion graphique de la soluion a Déerminer S(p la ransformée de Laplace de la soluion de l équaion (. ps(p + S(p = p + p + p e p (p + S(p = p + p + p e p S(p = S(p = p (p + + p(p + + p (p + e p ( p + 3 p 3 + ( p + p p + e p p + 5 / 6 BTSblanc-A-3.ex

6 b En déduire s( l original de S(p. s( = ( + 3 3e U( + ( ( + e ( U( c Monrer que la foncion s es définie par < s( = < s( = e ( e 3 s( = e d À l aide d un erminal graphique, on a obenu la représenaion suivane de la foncion s. ln(3, f(, O ln(3 m 3 Jusifier cee représenaion graphique sur l inervalle [ ; ]. La dérivée : s ( = + 3 e = 3e s annule pou : = ln(3 ln(3 s ( + ln(3 s( 3e e Déerminer le réel m, el que pour ou supérieur à m, s( soi inférieur à. On pourra uiliser la représenaion graphique donnée à la quesion d pour jusifier le choix à faire pour rouver m. Donner une valeur approchée de m à près. Si > m alors s( < on a : e 3 e < e < e 3 (, < ln e 3 > ( e ln 3, >.35 6 / 6 BTSblanc-A-3.ex

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Intégrales paramétrées

Intégrales paramétrées Lycée Faidherbe, Lille PC* 8 9 Feuille d eercices du chapire Inégrales paramérées Cenrale PC 7 ) ln + n Limie de n + ) d. X 6 Soi f coninue e bornée de [; [ vers. Prouver l eisence nf ) de I n = d e calculer

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1

Université Claude Bernard Lyon-1 Licence «Sciences et technologie» Unité d enseignement Math. I Algèbre CONTROLE FINAL 18 Janvier 2012-durée 2h 1 = 1 Universié Claude Bernard Lyon- Licence «Sciences e echnologie» Unié d enseignemen Mah. I Algèbre CONTROLE FINAL 8 Janvier 0-durée h L énoncé compore cinq exercices sur deux pages. Documens, calcularices

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

Série n 2 : Résolution numériques des EDO.

Série n 2 : Résolution numériques des EDO. Universié Claude Bernard, Lyon I Licence Sciences & Tecnologies 43, boulevard 11 novembre 1918 Spécialié Maémaiques 696 Villeurbanne cedex, France Opion: MAO 007-008 Série n : Résoluion numériques des

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

EXERCICES SUR LES COURBES PARAMETREES

EXERCICES SUR LES COURBES PARAMETREES EXERCICES SUR LES COURBES PARAMETREES. Eudier les courbes représenaives des foncions f définies ci-dessous. a) f) = cos, sin ) b) f) = sin, ) sin + cos c) f) = sin, cos ) d) f) = 4cos sin, cos )cos ).

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

BACCALAURÉAT PROFESSIONNEL Systèmes Electroniques Numériques. Contrôle en Cours de Formation

BACCALAURÉAT PROFESSIONNEL Systèmes Electroniques Numériques. Contrôle en Cours de Formation SESSION 2007 BACCALAURÉAT PROFESSIONNEL Sysèmes Eleroniques Numériques E1 ÉPREUVE SCIENTIFIQUE A CARACTERE PROFESSIONNEL Sous épreuve E11 MATHÉMATIQUES Conrôle en Cours de Formaion Evaluaion n 1 Dae :

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mathématiques La clarté des raisonnements et la qualité de la rédaction interviendront dans l appréciation des copies. L usage d un instrument de calcul et du formulaire officiel de mathématiques

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

Développements limités

Développements limités BTS DOMOTIQUE Développemens limiés 8- Développemens limiés Table des maières I Foncion eponenielle I. Développemen limié d ordre................................... I. Développemen limié d ordre...................................

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t²

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t² Parie A Pour ou réel, on pose h() = 1 + ² - e-. 1) Prouver que la foncion h ainsi définie es dérivable sur [ ;+ [, que h es dérivable sur [ ;+ [, e calculer h () e h () pour ou réel. Préciser les valeurs

Plus en détail

BTS Blanc Épreuve de Mathématiques du Groupement A

BTS Blanc Épreuve de Mathématiques du Groupement A BTS Blanc Épreuve de Mathématiques du Groupement A La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l appréciation des copies. L usage d un instrument

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux 1 héorie DU2-Al IU GEII Nîmes DU 2 - Alernance Représenaion fréquenielle - Séries de Fourier Yaël hiaux yael.hiaux@iu-nimes.fr Janvier 2015 2 DU2-Al héorie 1 héorie 2 3 3 DU2-Al Une somme de sinusoïdes?

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/??

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/?? PCSI-PCSI DNSn 4 Corrigé 4-5 Eercice ENTRAINEMENT PERSONNEL R R Déerminer les soluions y: de chacune des équaions différenielles suivanes : y(). y +y +y=++e Soluion. (E c ): r +r+=, soluions complees,

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Travaux dirigés - L3 DIM Traitement Numérique du Signal

Travaux dirigés - L3 DIM Traitement Numérique du Signal Faculé des sciences e d ingénierie. Universié Paul Sabaier Travaux dirigés - L3 DIM Traiemen Numérique du Signal Exercice n o : Soi le signal x)=3 cos00 Π ). Calculez la valeur des échanillons de x) si

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé.

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé. NOM : Examen Final EL4 Noe : Durée : H4. Calcularice non auorisée car inuile. Aucun documen ersonnel n'es auorisé. Pour chaque réonse, on exliquera la démarche qui condui au résula roosé. Les exressions

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

Cours de Mathématiques. Chapitre 2 : Transformation de Fourier

Cours de Mathématiques. Chapitre 2 : Transformation de Fourier Chapire : Transormaion de ourier UNIVERSITE DE TULN IUT DE TULN DEPARTEMENT GEII Cours de Mahémaiques Chapire : Transormaion de ourier Enseignane : Sylvia Le Beux sylvia.lebeux@univ-ln.r Bureau A04-04

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

I. Mesure de température et chaîne de transmission optique

I. Mesure de température et chaîne de transmission optique IRSCPA BTS INFORMATIQUE INDUSTRIELLE Session 1998 Epreuve de : Physique Appliquée Durée : 3 heures Coefficien :3 Les amplificaeurs opéraionnels son ous considérés comme idéaux. Un formulaire es fourni

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Dans toutes les questions suivantes, le système est orthonormal sauf il est énoncé. e x + 2e 4x e 4x e 4x. 1 4) dx = arctan(x) arctan 2

Dans toutes les questions suivantes, le système est orthonormal sauf il est énoncé. e x + 2e 4x e 4x e 4x. 1 4) dx = arctan(x) arctan 2 Dans ous ls qusions suivans, l sysèm s orhonormal sauf il s énoncé I- ( poins) Parmi ls réponss proposés à chaqu qusion, un sul s jus Écrir l nombr d chaqu qusion donnr, avc jusificaion, sa répons corrspondan

Plus en détail

Pendules couplés. θ 2. Université Pierre et Marie Curie, Paris VI. PHYSIQUE NUMÉRIQUE Devoir sur table du 15 novembre 2007

Pendules couplés. θ 2. Université Pierre et Marie Curie, Paris VI. PHYSIQUE NUMÉRIQUE Devoir sur table du 15 novembre 2007 Universié Pierre e Marie Curie, Paris VI Licence de physique NS Cachan Physique fondamenale, PHYTM PHYSIQU NUMÉRIQU Devoir sur able du 15 novembre 27 Pules couplés Durée de l épreuve : 2h Les éléphones

Plus en détail

Fiche d exercices 12 : Lois normales

Fiche d exercices 12 : Lois normales Fiche d exercices 1 : Lois normales Exercice 1 Loi normale cenrée e réduie N (0,1) Une variable aléaoire Z sui la loi N (0,1). On donne P ( Z 1,8 ) 0, 964 e P ( Z,3) 0, 989. Calculer les probabiliés suivanes

Plus en détail

Recueil d exercices d analyse pour une remise à niveau

Recueil d exercices d analyse pour une remise à niveau Recueil d exercices d analyse pour une remise à niveau Suies e Séries numériques Exercice (Cesaro e sinus iéré). Théorème de Cesaro Soi (u n ) n une suie réelle convergene de limie l. Monrer que la suie

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

Traitement du signal

Traitement du signal Spé ψ 6- evoir n Traiemen du signal EXTAIT E E3A PSI Quesion 9 Analyse de l ALI enrée ( : v = par consrucion ; enrée ( : i = donc U v = I relaion enrée-sorie : l ALI es bouclé sur son enrée inverseuse

Plus en détail

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac Chapire : Produi de convoluion Disribuion e peigne de Dirac UNVERSTE DE TULN UT DE TULN DEPARTEMENT GE Cours de Mahémaiques Chapire : Produi de convoluion Disribuion e peigne de Dirac Enseignane : Sylvia

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Résolution numérique de problèmes de contrôle optimal via la condition nécessaire, application au problème de transfert d orbite à faible poussée

Résolution numérique de problèmes de contrôle optimal via la condition nécessaire, application au problème de transfert d orbite à faible poussée Résoluion numérique de problèmes de conrôle opimal via la condiion nécessaire, applicaion au problème de ransfer d orbie à faible poussée Présenaion TIPE 23: conrôle opimal 4 janvier 23 Lycée Ferma Toulouse

Plus en détail

La transformée de Laplace

La transformée de Laplace a ransformée de alace Méhode mahémaique ayan our objecif: Conourner la difficulé de résoluion des équaions différenielles Offrir une résoluion algébrique Très bien adaée à l élecronique Commen le cours

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Sujet Gr A IRIS 8 Épreuve de Mathématiques La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l appréciation des copies. L usage d un instrument de calcul

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Eude mérique des courbes Exercices de Jean-Louis ouge erouver aussi cee fiche sur wwwmahs-francefr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR Ce documen comprend : une fiche descripive du suje desinée au professeur. une siuaion d évaluaion desinée au candida. une grille d'évaluaion / noaion desinée au professeur. FICHE DESCRIPTIVE DU SUJET DESTINÉE

Plus en détail

Les hacheurs à liaison directe

Les hacheurs à liaison directe es hacheurs à liaison direce I. Hacheur série (Buck) Exercice I n considère le monage ci conre : a ension d alimenaion es égale à 200 V, la fréquence de découpage es noée f (période ) e le rappor cyclique

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales Partie A a est un nombre réel appartenant à l intervalle [0 ;π]. On considère la suite géométrique (u n ) de premier terme u 0 cos a et de raison sin a. 1) Exprimer u n en fonction de n et déterminer la

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Le problème de Cauchy. Résultats fondamentaux.

Le problème de Cauchy. Résultats fondamentaux. Le problème de Cauchy. Résulas fondamenaux. 1. Noion de soluion maximale. Problème de Cauchy. 1.1 Forme normale d une équaion différenielle y = f(x,y). On éudie ici les équaions différenielles (ou sysèmes

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

Introduction à l'analyse Harmonique

Introduction à l'analyse Harmonique Inroducion à l'analyse Harmonique E. Monseny able des maières Inroducion 3 Séries de Fourier 3. Déniions.......................................... 3. Propriéés e héorème imporan.............................

Plus en détail