Cours de 1ère S/ Géométrie plane. Eric Dostal

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Cours de 1ère S/ Géométrie plane. Eric Dostal"

Transcription

1 Cours de 1ère S/ Géométrie plne Eric Dostl Aout 015

2 Tble des mtières Vecteurs et repérge dns le pln.1 Rppels Bses, Repères et Coordonnées Equtions de droites

3 Chpitre Vecteurs et repérge dns le pln.1 Rppels Définition 1 Soit A et B deux points distincts du pln, le vecteur AB est prfitement déterminé pr : s direction : celle de l droite (AB son sens : de A vers B s longueur : AB Dns ce cs, on dit que AB est un vecteur directeur de l droite (AB. Proposition 1 AB = CD si et seulement si ABDC est un prllélogrmme (éventuellement plti. Cette proposition, justifie de donner un nom à un vecteur indépendnt de points qui sont fixes, pr exemple : AB = u Pr convention, pour un point A, on ppelle le vecteur AA vecteur nul que l on note 0. On définit l somme de deux vecteurs u+ v insi que le produit d un vecteur pr un réel k. u. Exemple : Soit un tringle ABC. Construire les points M, N et P tels que AM = BC + AB CN + AC = CB AP + BP + CP = 0 Définition vecteur. Soit un vecteur u. On ppelle norme de u, notée u, l longueur de ce Propriétés : 0 = 0 k. u = k. u

4 E. Dostl CHAPITRE. VECTEURS ET REPÉRAGE DANS LE PLAN Attention! u + v n est ps toujours égl à u + v. En fit, c est l inéglité tringulire : u + v u + v vec églité ssi u et v sont colinéires. Définition l un de ces vecteurs est nul u et v sont colinéires ssi ou on peut écrire v = k. u vec k 0 Définition 4 u et v deux vecteurs non nuls sont othogonux ssi leurs directions sont perpendiculires. On note lors u v. Si k est positif les deux vecteurs ont le même sens, et si k est négtif, ils sont de sens contrire. Remrque : Toutes ces propriétés sont vries dns le pln mis ussi dns l espce. (On verr l nnée prochine l utilistion de vecteurs dns l espce. Appliction On considère un prllélogrmme ABCD. Sur ce prllélogrmme, on plce les points I et J définis pr les reltions : BI = 1 AB et JC = BC. Montrer que D, I et J sont lignés. Méthode 1 Pour montrer que deux droites sont prllèles ou que trois points sont lignés, on montre que deux vecteurs sont colinéires pr exemple en montrnt qu ils sont proportionnels.. Bses, Repères et Coordonnées Définition 5 On ppelle bse ( i, j du pln, l donnée de deux vecteurs i et j non colinéires. On ppelle repère (O; i, j du pln, l donnée d un point origine O et d une bse ( i, j. Un repère (O; i, j est orthogonl si i et j sont orthogonux. Un repère (O; i, j est orthonorml si i et j sont orthogonux et tous deux de norme 1. Définition 6 A tout point M du pln, on ssocie les coordonnées : M(x; y dns le repère (O; i, j ssi OM = x. i + y. j. A tout vecteur u du pln on ssocie les coordonnées : u(x; y dns l bse ( i, j ssi u = x. i + y. j. Propriété : Soient deux vecteurs u et v de coordonnées respectives (x; y et (x ; y dns l bse ( i, j.

5 E. Dostl CHAPITRE. VECTEURS ET REPÉRAGE DANS LE PLAN 1. u = 0 ssi x = y = 0 { x=x. u = v ssi y=y. u + v (x + x ; y + y 4. k. u (kx; ky Propriété : Soient deux points A et B de coordonnées respectives (x A ; y A et (x B ; y B dns le repère (O; i, j. Soit I le milieu de [AB]. 1. AB (x B x A ; y B y A. I ( x A+x B ; y A+y B Proposition ( Critère de colinérité ( x x (O; i; j vec u et v y y lors : u et v sont colinéires ssi xy x y = 0 (déterminnt nul Proposition Critère d orthogonlité dns un R.O.N. ( x Si le pln est muni d un repère orthonormé (O; i; j vec u y ( x et v y lors : u v ssi xx + yy = 0 ( ( -51 Exemple : u et v dns une bse ( i, j. -4 On clcule leur déterminnt (produit en croix : ( 4 ( 51 = 10 ( 10 = = 0. donc u et v sont colinéires. Théorème 4 Théorème de Thlès Soient deux droites distinctes (AA et (BB sécntes en O lors : { OA (AB // (A B ssi = k. OA OB = k. (même coef de proportiopnnlité OB De plus dns ces conditions on : A B = k. AB. Preuve : Si (AB // (A B lors cel signifie que les vecteurs A B et AB sont colinéires donc proportionnels. Il existe donc un coefficient k de proportionnlité tel que A B = k. AB. Or A, A et O sont lignés donc il existe un coef de proportionnlité tel que OA = α. OA. De même B, B et O sont lignés donc il existe un coef de proportionnlité tel que OB = β. OB. Dns le repère (O; OA, OB (qui est bien un repère cr les droites étnt distinctes et sécntes, les vecteurs de bse ne sont ps colinéires, on : A(1; 0 et B(0; 1 mis ussi A (α; 0 et B (0; β. Donc on en déduit que ( -1 AB et que ( α A 1 B β 4

6 E. Dostl CHAPITRE. VECTEURS ET REPÉRAGE DANS LE PLAN L églité vectorielle A B = k. AB implique lors que α = k et β = k. (pr identifiction des coordonnées (Propriété Si OA = k. OA et OB = k. OB lors pr propriété de Chsles, A B = ( A O + OB = k. AO + k. OB = k.( AO + OB = k. AB. Exercice : Soient un prllélogrmme ABCD et I et J tels que DJ = 1 1 BC. Déterminer, si elles existent, les coordonnées de 1. I dns le repère (A; AB, AD ;. C dns le repère (D; DJ, DC ;. B dns le repère (D; DJ, IC. DC et BI = Proposition 5 Norme dns un R.O.N. Si le pln est muni d un repère orthonormé (O; i; j et u de coordonnées u = x + y ( x y lors : Exercice : Le pln est muni d un repère orthonormé. On considère les points suivnts : A( ; 1, B( 4; 4 et C(1;. Quelle est l nture du tringle ABC?. Equtions de droites Définition 7 Le pln est muni d un repère. Toute droite D non verticle (non prllèle à l xe des ordonnées du pln dmet une éqution réduite de l forme y = mx + p. Toute droite D verticle du pln dmet une éqution réduite de l forme x = k. Dns le premier cs, on dit que m est le coefficient directeur (ou pente et p est l ordonnée à l origine. Mis on préfère une condition d pprtennce qui corresponde à toutes les droites du pln : Définition 8 Le pln est muni d un repère. Toute droite D du pln dmet une éqution crtésienne de l forme x + by + c = 0. C est une condition d pprtennce à l droite : M(x; y D ssi x + by + c = 0. Ceci est en fit un théorème-définition. Nous llons dmettre que toutes les droites dmettent effectivement une éqution de cette forme. Nous verrons dns l recherche des ces équtions crtésiennes, l rison de leur existence. 5

7 E. Dostl CHAPITRE. VECTEURS ET REPÉRAGE DANS LE PLAN Remrque : Une droite dmet en fit une infinité d équtions de ce type, toutes égles à un coefficient multiplicteur près. ( 5 Exemple : Dns un repère, on considère A(1;, B( ; 1 et u. Determiner une éqution crtésienne de D = (AB et de D, l droite pssnt pr A et de vecteur directeur u. Indiction : rédiger pr condition d pprtennce en terme de colinérité de vecteurs. M(x; y D ssi... Proposition 6 Le pln est muni d un repère orthonormé. D d éqution crtésienne x + by + c = 0. ( b Un vecteur directeur de D est u. Un ( vecteur norml à D (i.e. un vecteur directeur d une droite perpendiculire à D est v. b ( 5 Appliction : Dns un R.O.N., A( 1; et v 7 Déterminer une éqution de l droite (d pssnt pr A tel que v soit norml à cette droite.. Théorème 7 Dns un repère, on considère D et D d équtions respectives : x + by + c = 0 et x + b y + c = 0. D et D sont prllèles ssi b b = 0. (ou encore, même coef directeur s il existe Si c est un R.O.N., D et D sont perpendiculires ssi + bb = 0. ( b Preuve : 1 D dmet pour vecteur directeur u D//D ssi u // u u et v sont colinéires le determinnt de u b ( b = 0 b b = 0 ( b et u ( b et D : u ( b est nul D D ssi ( u u ( b b u et u b( b + = 0 + bb = 0 sont orthogonux 6

Cours de Mathématiques Produit scalaire, orthogonalité

Cours de Mathématiques Produit scalaire, orthogonalité Produit sclire, orthogonlité Tble des mtières I Produit sclire.................................... 2 I.1 Définition et premières propriétés...................... 2 I.2 Exemples clssiques..............................

Plus en détail

Chapitre 05 Les nombres complexes Première partie

Chapitre 05 Les nombres complexes Première partie Terminle S. Lycée Desfontines Melle Chpitre 05 Les nomres complexes Première prtie Le pln est rpporté à un repère orthonorml direct ( O;ÄOI ;ÄOJ ), ppelé pln complexe. Dns tout ce chpitre, et désignent

Plus en détail

I. Parabole. Coniques. 1. Définition. Remarque

I. Parabole. Coniques. 1. Définition. Remarque I. Prole. Définition Soit D une droite et F un point n'pprtennt ps à cette droite. On ppelle prole de foyer F et de directrice D l'ensemle des points M du pln tels que MF H est le projeté orthogonl de

Plus en détail

Département de mathématiques Cégep de Saint-Laurent Algèbre linéaire et géométrie vectorielle 201-NYC Automne 2014 Yannick Delbecque. alors v = 0.

Département de mathématiques Cégep de Saint-Laurent Algèbre linéaire et géométrie vectorielle 201-NYC Automne 2014 Yannick Delbecque. alors v = 0. Déprtement e mthémtiques Cégep e Sint-Lurent Algère linéire et géométrie vectorielle 201-NYC Automne 2014 Ynnick Delecque Propriétés es vecteurs et géométrie ffine Résumé es propriétés Axiomes espce vectoriel

Plus en détail

DM1. Nombres complexes, homographies. u w = u w.

DM1. Nombres complexes, homographies. u w = u w. Université Pul Sbtier, Année 205-206 Licence LPS DM Nombres complexes, homogrphies. Dns ce problème, on considère le pln ffine euclidien P muni d un repère orthonormé (0, i, j). On identifier P vec l ensemble

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry vril EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deu fonctions continues sur un intervlle [ ; b] donc g f est

Plus en détail

Les proportions. Fractions. Pourcentages. Théorème de Thalès. Fonctions linéaires. Equations d une droite. Fonctions affines.

Les proportions. Fractions. Pourcentages. Théorème de Thalès. Fonctions linéaires. Equations d une droite. Fonctions affines. Les proportions. Frctions. Pourcentges. Théorème e Thlès. Fonctions linéires. Equtions une roite. Fonctions ffines. I Tbleu e proportions 1 Définition. Soit le tbleu T ci-essous. x 1 x 2 x 3... x n y 2

Plus en détail

Chapitre 2 Géométrie plane

Chapitre 2 Géométrie plane Chapitre 2 Géométrie plane I. Colinéarité de deux vecteurs 1) Vecteurs colinéaires Définition : Soit u et v deux vecteurs non nuls. Les vecteurs u et v sont colinéaires si l'un est le produit de l'autre

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Nombres complexes. 1 Dé nitions. 2 Interprétation géométrique

Nombres complexes. 1 Dé nitions. 2 Interprétation géométrique Nomres complexes 1 Dé nitions Dé nition 1 On ppelle ensemle des nomres complexes et on note C l ensemle des nomres qui s écrivent sous l forme + i vec R; R et où i est un nomre tel que i = 1 : est l prtie

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Chapitre II - Complexes (Partie I)

Chapitre II - Complexes (Partie I) vq vq Forme lgérique d un nomre complexe Chpitre II - Complexes (Prtie I) Théorème. et définition. Il existe un ensemle noté C, ppelé ensemle des nomres complexes, tel que :. l ensemle C contient l ensemle

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

Corrigés des exercices de mathématiques pour les élèves qui entrent en seconde.

Corrigés des exercices de mathématiques pour les élèves qui entrent en seconde. Exercice : Corrigés des exercices de mthémtiques pour les élèves qui entrent en seconde. ) Clculer (sns clcultrice) : 8 ; 8 ; c 8 ; d 8 ; e ; f ; g ; h. ) Ecrire sous l forme, et entiers vec le plus petit

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

Parabole. Joël Moreau. 14 décembre 2004

Parabole. Joël Moreau. 14 décembre 2004 Prole Joël Moreu 4 décemre 004 Prémule : Lorsque l on construit une conique à prtir de 5 points dns un logiciel de géométrie comme CABRI il est presqu impossile d otenir une prole. L étude suivnte indique

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

dans un EVMPS Moindres carrés

dans un EVMPS Moindres carrés Meilleure pproximtion dns un EVMPS Moindres crrés Meilleure pproximtion Définition. Soit V un EVMPS, W un sous-espce quelconque de V, et u un vecteur quelconque de V. On ppelle meilleure pproximtion de

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

Examen de géométrie - Durée : 2h

Examen de géométrie - Durée : 2h Université de Lorrine Fculté des sciences et technologies L2 Mthémtiques 31/05/2016 Exmen de géométrie - Durée : 2h Consigne s ppliqunt à tous les exercices : fire oligtoirement des figures. Elles devront

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

1. Les fonctions affines.

1. Les fonctions affines. L E S F O N C T I O N S U S U E L L E S. Les fonctions ffines.. Définition. Une fonction ffine est une fonction f définie sur R pr : f ( x) = x+ b.2 Représenttion grphique. o o Si b =, l fonction est linéire.

Plus en détail

, f(x) est l image de l élément x de E par f.

, f(x) est l image de l élément x de E par f. I- Rppels : I- 1 Déinition d une onction : Soient E et F deu intervlles de R ou une réunion d intervlles de R Déinition 1: Une onction ssocint un élément de l ensemble E (ensemble de déprt dns l ensemble

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉQUATIONS INÉQUATIONS SYSTÈMES Site MthsTICE de Adm Troré Lycée Technique Bmko I Équtions du second degré : Résolution pr l méthode du discriminnt : Pour résoudre l éqution du second degré b c = ( d inconnu,

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs - Seconde Lycée Jacquard 2014/2015 Rappel du plan - 1-2 3 4 5 Translation - Définition n o 1: Translation On considère deux points A et B du plan. On appelle translation qui transforme A en B la transformation

Plus en détail

Un cerf-volant articulé.

Un cerf-volant articulé. Un cerf-volnt rticulé. A l origine, nous sommes prtis d un texte de Hdmrd 1 : " Un qudriltère ABCD (rhomboïde) est tel que deux côtés djcents AD, AB sont égux, insi que les deux utres côtés CB,CD. Prouver

Plus en détail

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel.

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. I Colinéarité de deux vecteurs Définition 1: Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. Exemples : Les vecteurs u -5 3 et v 15-9 sont colinéaires car

Plus en détail

1. Notion d intégrale Interprétation graphique

1. Notion d intégrale Interprétation graphique Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine

Plus en détail

Les équations du premier et du second degré à la règle et au compas

Les équations du premier et du second degré à la règle et au compas Les équtions du premier et du second degré à l règle et u comps Scienceinfuse - ntenne de formtion et de promotion du secteur sciences & technologies rue des Wllons 72 L6.02.01-1348 Louvin-l-Neuve Les

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure.

Chapitre : VECTEURS SESSION ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. SESSION 2006 Chapitre : VECTEURS 1 ABCD est un parallélogramme de centre O. Donner l ensemble des relations vectorielles possibles sur cette figure. D. Le FUR 1/ 21 2 ABCD est un parallélogramme de centre

Plus en détail

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N.

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N. Groupe seconde chnce Feuille d exercice n 7 Exercice 1 On considère Un segment [AC] de longueur 16 cm, et le point B situé sur [AC] à 6 cm de C. P est un point du cercle de dimètre [AB] tel que AP = 8

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

TS 2, Correction Bac Blanc n o 2

TS 2, Correction Bac Blanc n o 2 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont

Plus en détail

Dividende Diviseur. est une écriture fractionnaire du quotient de 2,5 par 10, donc

Dividende Diviseur. est une écriture fractionnaire du quotient de 2,5 par 10, donc I Ecriture frctionnire 1 Définition et b sont deux nombres, et b 0 Dividende Diviseur Le quotient de pr b se note b, ou b ( écriture frctionnire) 10 numérteur Exemple b dénominteur est une écriture frctionnire

Plus en détail

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES HAPITRE DÉTERMINANTS ET INVERSION DE MATRIES Introduction Dns l lgèbre mtricielle, les déterminnts occupent une plce d importnce tnt en théorie qu en prtique est que l vleur numérique du déterminnt d une

Plus en détail

DIFFÉRENTES TECHNIQUES GÉOMÉTRIQUES UTILES

DIFFÉRENTES TECHNIQUES GÉOMÉTRIQUES UTILES 11- géométrie -- 1 DIFFÉRENTES TECHNIQUES GÉOMÉTRIQUES UTILES 1- Détermintion de l direction et du pendge d'un pln à prtir de trois points quelconques du pln. Soit: x y z A 300 2000 1000 B 600 2200 800

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

Ch 11 Produit scalaire et applications 1 ère S 1

Ch 11 Produit scalaire et applications 1 ère S 1 Ch 11 Produit sclire et pplictions 1 ère S 1 Tble des mtières I. Produit sclire de deux vecteurs...1 A. Norme d'un vecteur (rppel)...2 B. Définition du produit sclire à l'ide des normes uniquement...2

Plus en détail

CALCULS NUMÉRIQUES CALCUL LITTÉRAL ARITHMÉTIQUE. ( 10 ) m p = 10 m p $ 10 n = 0,00...0!" # $# 1 avec n zéros. 10 m 10 p = 10 m+ p 10 m

CALCULS NUMÉRIQUES CALCUL LITTÉRAL ARITHMÉTIQUE. ( 10 ) m p = 10 m p $ 10 n = 0,00...0! # $# 1 avec n zéros. 10 m 10 p = 10 m+ p 10 m CLCULS NUMÉRIQUES CLCUL LITTÉRL Frctions Distributivité D + b D = + b D Puissnces D b D = b D b c d = c b d b : c d = b d c k ( + b ) = k + kb k ( - b ) = k - kb ( + b ) k = k + bk ( - b ) k = k - bk n

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

Résumé de cours de mathématiques. Quatrième

Résumé de cours de mathématiques. Quatrième 1 Algèbre Résumé de cours de mthémtiques 1.1 Grndeurs et mesures Qutrième Conversions des longueurs Les longueurs sont exprimées en km, hm, dm, m, dm, cm ou mm Pour convertir une longueur dns une unité

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

GEOMETRIE PLANE. VECTEURS ET DROITES.

GEOMETRIE PLANE. VECTEURS ET DROITES. I. Les vecteurs : rappels et compléments. GEOMETRIE PLANE. VECTEURS ET DROITES. Propriétés et définitions à connaître : 1) Un vecteur AB est caractérisé par trois données : sa direction (celle de la droite

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Définition d'une intégrale. Calcul intégral

Définition d'une intégrale. Calcul intégral Définition d'une intégrle Clcul intégrl. Introduction... p2 4. Primitives d'une fonction continue sur un intervlle... 2. Intégrle d'une fonction continue positive sur [;]... p5 p 5. Recherche de primitives...

Plus en détail

RAPPELS SUR LES VECTEURS

RAPPELS SUR LES VECTEURS RAPPELS SUR LES VECTEURS 1 re S Ce chapitre est constitué d une part de rappels de Seconde (les exemples y seront donc limités et les propriétés ne seront par re-démontrées) et d autre part d exercices

Plus en détail

Partie A : un arc de cercle apparent

Partie A : un arc de cercle apparent Correction de CCP nnée TSI. On do, Mθ)) = Prtie A : un rc de cercle pprent cos θ) + sin θ) = donc Mθ) pprtient u cercle C.. ) Comme ], + [, on ], [. Comme Arccos rélise une bijection continue et strictement

Plus en détail

Chapitre 4 - Vecteurs

Chapitre 4 - Vecteurs nde Chapitre 4 - Vecteurs 01-013 Chapitre 4 - Vecteurs I Translation et vecteur TD1 : Déplacer une figure par translation On veut déplacer la figure F en suivant l algorithme suivant : Pour transformer

Plus en détail

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications. LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

Espaces vectoriels normés ; espaces de Banach

Espaces vectoriels normés ; espaces de Banach Chpitre 7 Espces vectoriels normés ; espces de Bnch Un espce vectoriel normé complet est ppelé un espce de Bnch On note K pour R ou C 71 Exemples d espces vectoriels normés 711 Normes sur K n Sur K n,

Plus en détail

Pour multiplier deux fractions, on multiplie les numérateurs entre eux et les dénominateurs entre eux.

Pour multiplier deux fractions, on multiplie les numérateurs entre eux et les dénominateurs entre eux. Forulire de Révision pour le Brevet des Collèges Algèbre Clculs sur les frctions Pour dditionner (ou soustrire) deux frctions, on les réduit u êe dénointeur, puis on dditionne (ou on soustrit) les nuérteurs

Plus en détail

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63 Tble des mtières 1. ALGORITHMES...15 A) LES PRINCIPAUX ALGORITHMES À SAVOIR CONSTRUIRE ET MANIPULER...15 1. Comment écrire un lgorithme qui clcule un terme u n d'une suite numérique définie pr récurrence?...15

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

Espaces vectoriels munis d un produit scalaire EVMPS

Espaces vectoriels munis d un produit scalaire EVMPS Espces vectoriels munis d un produit sclire EVMPS Produits sclires générlisés Définition. Dns l espce vectoriel V un produit sclire est une fonction ssocint à chque pire ordonnée ( x, y) de vecteurs de

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

Les Vecteurs ( En seconde )

Les Vecteurs ( En seconde ) Les Vecteurs ( En seconde ) Dernière mise à jour : Mardi 22 Avril 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) -1- J aimais et j aime encore les mathématiques pour elles-mêmes

Plus en détail

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u.

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u. Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique point M tel que OM= u. On écrit u (x; y) pour

Plus en détail

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez Les vecteurs Lycée du golfe de Saint Tropez Année 2014/2015 Seconde ( Lycée du golfe de Saint Tropez) Vecteurs Année 2014/2015 1 / 21 1 Notion de vecteur s Égalité de deux vecteurs 2 s Propriétés 3 Construction

Plus en détail

Nombres rationnels. 1 Définition de Q. On définit, sur l ensemble Z Z, la relation binaire R de la façon suivante : (a, b)r(a, b ) ab = ba

Nombres rationnels. 1 Définition de Q. On définit, sur l ensemble Z Z, la relation binaire R de la façon suivante : (a, b)r(a, b ) ab = ba Nomres rtionnels Définition de Q On définit, sur l ensemle Z Z, l reltion inire R de l fçon suivnte : (, )R(, ) = Propriété. R est une reltion d équivlence. Démonstrtion : Réflexivité : Elle découle de

Plus en détail

Intégrale 4 ème math B.H.Hammouda Fethi

Intégrale 4 ème math B.H.Hammouda Fethi Intégrle 4 ème mth BHHmmoud Fethi Intégrle d une onction continue et positive : Déinition : Le pln est muni d un repère orthogonl Soit une onction continue et positive sur un intervlle, et F une primitive

Plus en détail

Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs)

Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs) Pour les élèves de l'échange Italie : travail sur les normes de vecteurs (longueurs des vecteurs) Leçons : 4 Colinéarité de vecteurs 4-1- Rappel Soit u et v deux vecteurs non nuls. On dit que u et v sont

Plus en détail

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB).

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB). Vdouine Terminle S Cpitre 4 Intégrtion Définition Soit f une fonction continue et positive sur un intervlle I contennt et deu nomres tels que. L représenttion grpique est trcée dns un repère ortogonl O;;

Plus en détail

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées. Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une

Plus en détail

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la

Remarque : A chaque translation correspond un vecteur qu on appelle vecteur de la Vecters I. Notion de vecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe point D tel qe les segments

Plus en détail

Colinéarité de vecteurs Équation cartésienne d une droite

Colinéarité de vecteurs Équation cartésienne d une droite Colinéarité de vecteurs Équation cartésienne d une droite Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur les vecteurs 3. Égalité de deux vecteurs.........................................

Plus en détail

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que CLCULS 'IRES. INTEGRLES. PRIMITIVES ) Intégrle d'une fonction. Soit f une fonction définie sur [ ; ] et C s coure représenttive dns un repère orthogonl ( ; j ). Si I est le point tel que I i, J le point

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Espaces préhilbertiens réels

Espaces préhilbertiens réels 9 Espces préhilbertiens réels Pln de cours I Générlités................................................. 1 A Produit sclire........................................... 1 B Norme euclidienne........................................

Plus en détail

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION 1) On donne les points A et A', construire à l'aide du quadrillage les points B' et C' tels que AA'B'B et AA'C'C soient des parallélogrammes. 2) On donne les

Plus en détail

Espaces préhilbertiens

Espaces préhilbertiens 1 Espces préhilbertiens On désigne pr E un espce vectoriel réel non réduit à {}. 1.1 Produit sclire Définition 1.1 On dit qu une forme bilinéire symétrique ϕ sur E est : positive si ϕ (x, x) pour tout

Plus en détail

Chapitre 6 : Logarithme

Chapitre 6 : Logarithme Chpitre 6 : Logrithme Introduction Pour représenter grphiquement des nombres qui vrient sur plusieurs ordres de grndeur (pr exemple de à 000), on ne peut ps utiliser l échelle hbituelle où les grdutions

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

Géométrie analytique

Géométrie analytique 8 décembre 2009 Théorème Dans( le plan muni d un repère orthonormal O; i, ) j, on considère une droite( passant par A et α de vecteur directeur u. β) Tout point M de cette droite est tel que : AM = t u,

Plus en détail

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E.

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E. http://mths-sciences.r LES FONCTIONS NUMÉRIQUES USUELLES I) Générlités ) Déinition Soit I un intervlle de, une onction est une reltion qui ssocie à tout élément x de I, un nombre réel (x) u plus. : I x

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

LES RADICAUX D INDICE n

LES RADICAUX D INDICE n Chpitre 1 LES RADICAUX D INDICE n 1 Nomres réels et puissnces (rppels) Exercice 1 Démontrer que l ddition et l multipliction confèrent à l ensemle des réels une structure de chmps ( corps commuttif) Exercice

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

Compléments d intégration

Compléments d intégration ISA BTP, nnée ANNÉE UNIVERSITAIRE - CONTRÔLE CONTINU Compléments d intégrtion Durée : h Les clcultrices sont utorisées. Tous les exercices sont indépendnts. Il ser tenu compte de l rédction et de l présenttion.

Plus en détail

Chap.9 Les fonctions polynômes du second degré (1)

Chap.9 Les fonctions polynômes du second degré (1) Chp.9 Les fonctions polynômes du second degré () Forme développée Forme cnonique Polynôme du second degré Forme fctorisée Polynôme du second degré f x x x c ( ) Forme développée réduite 3 ) Exemples f

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail