Chapitre 6 : Calcul littéral
|
|
|
- Victoire Lajoie
- il y a 9 ans
- Total affichages :
Transcription
1 Chpitr 6 : Clul littérl 1. Propriétés d l ddition t d l soustrtion Définition. L ddition st l opértion qui fit orrspondr à dux nomrs t lur somm +. t sont ls trms d tt somm. Définition. L soustrtion st l opértion qui fit orrspondr à dux nomrs t lur différn Rmrqus :. t sont ls trms d tt différn. ) L oppos d st. Pr xmpl : l opposé d 4 st 4, l opposé d st. 3 ) L différn d t d st l somm d t d l opposé d : ) L opposé d st ( ) =+, don : = + ( ) ( ) = + d) Lorsqu un somm omport plusiurs trms préédés d + ou d, on dit qu st un somm lgériqu. + st un somm lgériqu d 3 trms t x+ y+ z k st un somm lgériqu d 4 trms. L'ddition st ommuttiv : C + + = + L ommuttivité prmt d'éhngr l'ordr ds trms dns un somm. x+ = + x 7+ 3 = 3 + ( 7) 4 4 L soustrtion n st ps ommuttiv :. Contr-xmpl : 8 3= 5, mis 3 8=
2 En générl : x = ( x) ( 4 y) = y 4 Plus générlmnt : t sont opposés. Don : = ( ) L opposé d un somm st l somm ds opposés d hun d ss trms. ( + + ) = ( + ) = + ( + ) = + t. L'ddition st ssoitiv : A + ( + ) + = + ( + ) = + + On put groupr ls trms omm on vut dns l lul d un somm. Voilà pourquoi on put lissr d ôté ls prnthèss lorsqu'on érit ds somms. ( ) = 5+ 4= 9 5 t ( ) x+ ( x+ y) = ( x+ x) + y= x+ y L soustrtion n st ps ssoitiv : = = + 7= 9. ( ) ( ). Contr-xmpl :( 18 ) 4= 1, mis ( ) ( ) En générl : ( ) = = 18 = 0. Si ls () sont préédés d + on put lissr ls () d ôté! ( ) = + Si ls () sont préédés d on put ls supprimr à ondition d hngr l sign d hqu trm ntr ()
3 0 st l'élémnt nutr d l'ddition : N + + 0= 0+ = Exmpl. 5+ 0= 0+ 5= 5. 0 n st ps élémnt nutr d l soustrtion : 0= mis 0 =. L ddition st symétriqu : tout nomr dmt un t un sul opposé. C st l nomr qui jouté à donn un somm égl à 0. S +, + ( ) = + = 0 L'opposé d 3 st ( ) L opposé d x st x 3 = 3 : 3+ 3= 0 : x ( x) + = 0. Propriétés d l multiplition t d l division Définition. L multiplition st l opértion qui fit orrspondr à dux nomrs t lur produit =. t sont ls fturs d t produit. Définition. L division st l opértion qui fit orrspondr à dux nomrs t ( 0 ) lur quotint : =. st l dividnd t l divisur d quotint. Dns l éritur frtionnir st l numértur t l dénomintur. Rmrqus : 1 ) L invrs d un nomr non nul st 1 :=. L invrs d 1 L invrs d 3 st 1 3. L invrs d 0, st 5 L invrs d 5 7 st L invrs d st. 7 5 ) L quotint d pr st l produit d pr l invrs d : 1 : = = 3 Un nomr t son invrs ont mêm sign! st d nouvu.
4 3 1 3 : 4= = 3 = 3 0, : x= 7 = x x : = = 3 3 ) Lorsqu un xprssion omport plusiurs fturs préédés d ou d : on dit nor qu st un produit. On préfèr l éritur frtionnir dns s. : = 1 1 xz x : y z : = x z = y y 1 : : d= d L multiplition st ommuttiv : C = L ommuttivité prmt d'éhngr l'ordr ds fturs dns un produit. x = x= x y ( ) 7 = 7y L division n st ps ommuttiv : : :. Contr-xmpl : 8 4 =, mis 4 = 1 = 0,5. 8 Ls fturs préédés d sont u numértur Ls fturs préédés d : sont u dénomintur En générl : t sont invrss. Don : 1 = 4
5 L multiplition st ssoitiv : A ( ) = ( ) = = On put groupr ls fturs omm on vut dns l lul d un produit. Voilà pourquoi on put lissr d ôté ls prnthèss lorsqu'on érit ds produits. ( 3) 4= 6 4= 4 t ( ) x ( x y) = ( x x) y= x y L division n st ps ssoitiv : Contr-xmpl :( 16 : 4 ) : 4 : En générl : = 3 4 = 1= 4. ( : ) : :( : ). 16 : 4 : = 16 : = 8. = =, mis ( ) 1 ( : ) : = : = = :( : ) : = = = 1 st l'élémnt nutr d l multiplition : N 1= 1 = = = 1 ( 1 ) 1 n st ps élémnt nutr d l division r : :1= mis = 1 1 := st l invrs d.. L multiplition st symétriqu : tout nomr non nul dmt un t un sul invrs 1. C st l nomr qui multiplié pr donn un produit égl à 1. S 0, = = 5
6 3. Opposés ) Opposés d'un somm t d'un différn : ( + ) = ( ) = + ) Opposés d'un produit t d'un quotint : ( ) = ( ) = ( ) = = L s distriu sur ls trms ntr () L s rpport à un sul ftur! ( x+ 4y 5) = x 4y+ 5 ( x) 6= 1x ( + ) ( x y) = ( )( x y) = ( + ) ( y x) x 1 x 1 1 x = = 4. Distriutivité ) Distriutivité simpl : L multiplition st distriutiv pr rpport à l'ddition t l soustrtion : D / + ( ) + = + D / ( ) = Démonstrtion géométriqu d l 1 r formul : L ir du grnd rtngl st : d un prt : ( + ) d utr prt : + Don : ( + ) = + Démonstrtion lgériqu d l formul : ( ) ( ( )) ( ) = + = + = r 1 formul 6
7 ( ) 4 + = 4+ 4 ( ) 3x+ 8 x= 3x x+ 8x= 3x + 8x 0,5( x 6y) = 0,5x+ 3y ( 3x+ 6y) ( 7) = 1x 4y 4 x 7 4x 8 x 8 5 ( 3) = = = 6 ( ) = = = = ( ) 17= 17 ' = 16' ,8 7+ 4, 7= ( 15,8+ 4,) 7= 0 7= 140 CALCUL MENTAL ) Distriutivité doul : ( + )( + d) = + d+ + d ( + )( d) = d+ d ( )( + d) = + d d ( )( d) = d + d Démonstrtion géométriqu d l 1 r formul : L ir du grnd rtngl st : d un prt :( + )( + d) d utr prt : + d+ + d Don :( + )( + d) = + d+ + d Démonstrtion lgériqu d l drnièr formul : ( )( d) = ( + ( ) )( + ( d) ) = + ( d) + ( ) + ( )( d) = d + ( 4+ 3)( ) = = ( ) ( ) 3x+ 8 x 1 = 6x 3x+ 16x 8= 6x + 13x 8 7
8 5. Réduir un xprssion littérl Un xprssion littérl ou un somm lgériqu put omportr ds trms smlls : sont ds trms v l mêm prti littérl. x, 5x t 17x sont ds trms smlls. 3, 5 t 7 sont ds trms smlls. 6 Mis : 4x y t x y sont ds trms smlls. 3x t 5y n sont ps ds trms smlls. 6x t 7x n sont ps ds trms smlls. x y t 8xy n sont ps ds trms smlls. Réduir un somm lgériqu, st l érir v l moins d trms possil. Pour l on dditionn ls trms smlls. x 5x+ 17x = x= 14x ( ) D + / t ( 3 7) + + = + + = D + / t x y+ x y= 5x y 3x+ 9y+ 4+ 4x 6y= 7x+ 3y+ 4 N mélngz ps : + = + + = = 4 t. = = = Dévloppr ou fftur un xprssion littérl L distriutivité prmt d trnsformr un produit n un somm : ( ) + = + produit On dit qu on fftu ou dévlopp l produit. somm 8
9 Définition. Dévloppr ou fftur un xprssion littérl, st trnsformr tous ls produits d ( ) n ds somms lgériqus, puis réduir. Avnt d fftur un xprssion, hituz-vous à soulignr ls trms! Ls différnts trms doivnt êtr fftués d ord, r sont ds produits (règls d priorité)! Attntion lorsqu un trm st préédé du sign! ( ) ( ) = = r 1 trm trm ( x ) x x( x ) = 4x + 8x 6x + 6x= x + 14x r 1 trm trm x 3x ( x 1) x (7x+ 8) + 5 ( 3x+ ) r 1 trm = = x 3 trm trm 4 trm 3x x x+ x x 8 x+ 10 ( x ) ( x ) r 1 trm ( x x x ) = réduir d' ord!! ( x x ) = = 6x 6x 8 ( ) ( 3) ( ) ( 5 ) + + r 1 trm trm 6 ( 10 + ) ( ) = = = = L trm st préédé du sign, on l fftu d ord ntr (), puis on supprim ls (). 9
10 7. Ftorisr un xprssion littérl L distriutivité prmt ussi d trnsformr un somm n un produit : somm ( ) + = + produit On dit qu on mis l ftur ommun n évidn. Plus générlmnt : Définition. Ftorisr un xprssion, st l trnsformr n un produit. Exmpls d miss n évidn: 5x+ 5y= 5( x+ y) 7 14= 7+ ( 7) = 7( + ) ( 3 5) 4x 77xy= 7 6 x x 7 11 x y= 7x( 6x 11y) 6,7+ 4,7= ( 6+ 4),7= 10,7= 7 4( x+ 1) 5( x+ 1) = ( x+ 1)( 4 5) = = pgd(36,60) = 1 8. Produits / idntités rmrquls ) Crré d un somm : ) Crré d un différn : ( ) + = + + ( ) doul produit trinôm rré prfit = + doul produit trinôm rré prfit ) Produit d un somm pr un différn : Démonstrtion : ( + ) = ( + )( + ) ) = = = + + ( ) ( ) + = différn d dux rrés 10
11 ( ) = ( )( ) ) = + = + = + ( )( ) ) + = + Attntion : = Ls élèvs font toujours ls mêms futs ( ) + + ( ) Donnz ds ontr-xmpls numériqus : ) Efftur : x+ 3 = x + x 3+ 3 = x + 6x+ 9 ( ) ( ) ( ) 7 = 7+ 7 = = = = 10' = 9' 16 ( ) 5 8x 5+ 8x = 5 8x = 5 64x ( )( ) ( ) 5 48= ( 50 )( 50+ ) = 50 = '500 4= ' 496 ) Ftorisr : x + 8x+ 16= x + 4 x+ 4 = ( x+ 4) 9 6+ = ( 3) 3 + = ( 3 ) = = = 30 = 900 ( ) z 9k = ( z 3k)( z+ 3k) = ( 9 ) 9 + = ( 9 ) ( )( ) = = 8 1'600= 6'
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
Impôts 2012. PLUS ou moins-values
Impôt 2012 PLUS ou moin-values SUR VALEURS MOBILIÈRES ET DROITS SOCIAUX V v ti t à d f co o OP m à l Et L no di (o 20 o C c tit po Po c c or o o ou c l ou d 2 < Vou avz réalié d cion d valur mobilièr t
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
NOTICE DE MONTAGE VERSION 72
L â pour port oulnt motl NOTIE E MONTGE VERSION â pour port oulnt motl NOMENLTURE: â, rl t qunllr m l Montnt vrtux ntérur Entrto ( u) Fullr (0 u) l n polytyrèn ( u) Montnt vrtl potérur Smll Prt or upérur
Réseau des bibliothèques du Pays de Pamiers Guide du Numérique
Réau d bibliothèqu du Pay d Pamir Guid du Numériqu Sit Intrnt du réau d lctur http://www.pamir.raubibli.fr C qu vou pouvz fair dpui notr it Intrnt : EXPLORER LE CATALOGUE : Plu d 80 000 documnt ont à votr
Exemple de Plan d Assurance Qualité Projet PAQP simplifié
Exmpl d Plan d Assuranc Qualité Projt PAQP simplifié Vrsion : 1.0 Etat : Prmièr vrsion Rédigé par : Rsponsabl Qualité (RQ) Dat d drnièr mis à jour : 14 mars 2003 Diffusion : Equip Tchniqu, maîtris d œuvr,
a g c d n d e s e s m b
PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
UNE AVENTVRE DE AGILE & CMMI POTION MAGIQUE OU GRAND FOSSÉ? AGILE TOVLOVSE 2011 I.VI VERSION
UN AVNTVR D AGIL & CMMI POTION MAGIQU OU GRAND FOÉ? AGIL TOVLOV 2011 VRION I.VI @YAINZ AKARIA HT T P: / / W WW.MA RTVIW.F HT T P: / / W R WW.KIND OFMAG K.COM OT @ PAB L OP R N W.FR MARTVI. W W W / :/ P
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013
Enrichissmnt modal du Slctiv Mass Scaling Sylvain GAVOILLE 1 * CSMA 2013 11 Colloqu National n Calcul ds Structurs 13-17 Mai 2013 1 ESI, [email protected] * Autur corrspondant Résumé En raison
LE SURENDETTEMENT. a s s e c o. leo lagrange UNION NATIONALE DES ASSOCIATIONS FAMILIALES. union féminine civique et sociale
LE SURENDETTEMENT 1 lo lagrang UNION NATIONALE 2 L'ENDETTEMENT 1984 : 4 ménags sur 10 avaint ds crédits (crédit à la consommation + immobilir) 1997 : 1 ménag sur 2 a un crédit n cours 55 % ds consommaturs
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
Journée d échanges techniques sur la continuité écologique
16 mai 2014 Journé d échangs tchniqus sur la continuité écologiqu Pris n compt d critèrs coûts-bénéfics dans ls étuds d faisabilité Gstion ds ouvrags SOLUTION OPTIMALE POUR LE MILIEU Gstion ds ouvrags
LITE-FLOOR. Dalles de sol et marches d escalier. Information technique
LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion
Corrigé du baccalauréat S Pondichéry 13 avril 2011
Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand
7. Droit fiscal. Calendrier 2014. 7.1 Actualité fiscale 7.2 Contrôle et contentieux fiscal 7.3 Détermination du résultat fiscal.
7. Droit fiscal 7.1 Actualité fiscal 7.2 Contrôl t contntiux fiscal 7.3 Détrmination du résultat fiscal 7.4 Facturation : appréhndr ls règls juridiqus t fiscals, t maîtrisr l formalism 7.5 Gstion fiscal
nous votre service clients orange.fr > espace client 3970*
nous votr srvi lints orang.fr > spa lint 3970* vous souhaitz édr votr abonnmnt Orang Mobil Bonjour, Vous trouvrz i-joint l formulair d ssion d abonnmnt Orang Mobil à rtournr omplété t par vous-mêm t par
Chapitre 8. Structures de données avancées. Primitives. Applications. L'informatique au lycée. http://ow.ly/35jlt
L'nformtqu u lycé Chptr 8 http//ow.ly/35jlt Chptr 8 Structurs d donnés vncés Un structur d donnés st un orgnston logqu ds donnés prmttnt d smplfr ou d'ccélérr lur trtmnt. 8.1. Pl En nformtqu, un pl (n
au Point Info Famille
Qustion / Répons au Point Info Famill Dossir Vivr un séparation La séparation du coupl st un épruv souvnt longu t difficil pour la famill. C guid vous présnt ls différnts démarchs n fonction d votr situation
f n (x) = x n e x. T k
EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr
Cours et travaux dirigés Mécanique du point et du solide
Cours t tru irigés éniqu u point t u soli β G α C Frnçois BINET rofssur tir Unirsité Liogs IUT u Liousin Sit GEII Bri Unirsité Liogs. I.U.T. u liousin. Sit G.E.I.I. Bri Frnçois BINET - - Soir Bss rpèrs
Matériau pour greffe MIS Corporation. Al Rights Reserved.
Matériau pour grff MIS Corporation. All Rights Rsrvd. : nal édicaux, ISO 9001 : 2008 atio itifs m rn pos méd int i dis c a u x 9 positifs 3/42 té ls s dis /CE ur r l E. po ou u x U SA t s t appr o p a
Titrages acidobasiques de mélanges contenant une espèce forte et une espèce faible : successifs ou simultanés?
Titrgs cidobsiqus d mélngs contnnt un spèc fort t un spèc fibl : succssifs ou simultnés? Introduction. L'étud d titrgs cidobsiqus d mélngs d dux ou plusiurs cids (ou bss) st un xrcic cournt [-]. Ls solutions
DOSSIER DE CANDIDATURE POUR UNE LOCATION
DOSSIER DE CANDIDATURE POUR UNE LOCATION Ls informations donnés nécssairs pour traitr votr candidatur rstront confidntills. Un dossir incomplt n put êtr xaminé. C dossir d candidatur rst soumis à l approbation
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
TVA et Systèmes d Information. Retour d expérience d entreprise. A3F - 26 mars 2015 Hélène Percie du Sert COFELY INEO
isr la t l t t zon iqur nt TVA t Systèms d Information Rtour d xpérinc d ntrpris A3F - 26 mars 2015 Hélèn Prci du Srt COFELY INEO Pour Sup Ins À p NB. M 30/03/2015 Sommair isr la t l t t zon iqur nt I
Exprimez-vous lors du choix de vos pneus:
xprimez-vous lors du choix de vos pneus: xigez des pneus sûrs, ÉnergÉtiquement efficaces et silencieux! 72 d 72 d POUR MILLURS PNUS SUR LS ROUTS SUISSS S exprimer lors du choix des pneus? onner son avis
Les ressources du PC
Modul 2 Ls rssourcs du PC Duré : 2h (1 séanc d 2h) Ctt séanc d dux hurs suit l ordr du référntil d compétncs du portfolio rattaché à c modul (v. portfolio du modul 2). Votr ordinatur PC st un machin composé
Juin 2013. www.groupcorner.fr
r p d r i Do Juin 2013 www.groupcornr.fr Contact Pr : Carolin Mlin & Jan-Claud Gorgt Carolin Mlin TIKA Mdia 06 61 14 63 64 01 40 30 95 50 [email protected] Jan-Claud Gorgt J COM G 06 10 49 18 34 09
Comment utiliser une banque en France. c 2014 Fabian M. Suchanek
Commnt utilisr un banqu n Franc c 2014 Fabian M. Suchank Créditr votr compt: Étrangr Commnt on mt d l argnt liquid sur son compt bancair à l étrangr : 1. rntrr dans la banqu, attndr son tour 2. donnr l
CLOUD TROTTER La Vache Noire Sud - 203 rue Oscar Roulet - 84440 Robion - Tél. : 04 90 76 56 27-06 80 050 050 - www.lavachenoiresud.
Cloud Trottr La Vach Noir Sud - 203 ru Oscar Roult - 84440 Robion - Tél. : 04 90 76 56 27-06 80 050 050 - www.lavachnoirsud.com Cloud Trottr Cloud Trottr Prnz d la hautur! ds carts d caractèr pour donnr
FONDATION CLEMENTINE ET MAURICE ANTILLE
FONDATION CLEMENTINE ET MAURICE ANTILLE Règlement d ttriution de ourses et de prêts d études et de formtion du déemre 006 Artile premier Ojet et hmp d pplition Le présent règlement est étli en pplition
TUBES ET PROFILS CREUX
TUBES GAZ SOUDÉS SÉRIE LÉGÈRE DITS «TARIF 1 et 2» Norme de référene : NF EN 10255 (ex NF A 49-145) Nune : S195T Étt de surfe : noir ou glvnisé ÉPAISSEUR DÉNOMINATION en poues Tubes noirs lisses MASSE LINÉIQUE
Garantie des Accidents de la Vie - Protection Juridique des Risques liés à Internet
Résrvé à votr intrlocutur AXA Portfuill : CR012764 N Clint : 1 r réalisatur : Matricul : 2 réalisatur : Matricul : Intégr@l Garanti ds Accidnts d la Vi - Protction ds Risqus liés à Intrnt J complèt ms
C est signé 11996 mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N 780 004 099 DOC 007 B-06-18/02/2015
st signé 11996 mars 2015 Mutull soumis au livr II du od d la Mutualité - SIREN N 780 004 099 DO 007 B-06-18/02/2015 Édition 2015 Madam, Monsiur, Vous vnz d crér ou d rprndr un ntrpris artisanal ou commrcial
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
A. RENSEIGNEMENTS GÉNÉRAUX. (Adresse civique) 3. Veuillez remplir l'annexe relative aux Sociétés en commandites assurées à la partie E.
Chubb du Canada Compagni d Assuranc Montréal Toronto Oakvill Calgary Vancouvr PROPOSITION POLICE POUR DES INSTITUTIONS FINANCIÈRES Protction d l Actif Capital d Risqu A. RENSEIGNEMENTS GÉNÉRAUX 1. a. Nom
Catalogue Produits métallurgiques et fournitures associées
Sommair Produits plats 1 pag 1 Couvrtur, bardag t plastiqus industrils 2 pag 7 Poutrlls t parachèvmnt 3 pag 16 Laminés t profilés spéciaux 4 pag 28 Catalogu Produits métallurgiqus t fourniturs associés
DEMANDE DE GARANTIE FINANCIÈRE ET PACK RCP
DEMANDE DE GARANTIE FINANCIÈRE ET PACK RCP ADMINISTRATEURS DE BIENS ET AGENTS IMMOBILIERS Compagni Europénn d Garantis t Cautions 128 ru La Boéti 75378 Paris Cdx 08 - Tél. : +33 1 44 43 87 87 Société anonym
Guide de correction TD 6
Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un
Initiation à la virologie Chapitre IV : Diagnostic viral
Initiation à la virologi Chapitr IV : Diagnostic viral [www.virologi-uclouvain.b] Objctifs du modul Nous disposons d outils d laboratoir nous prmttant d détctr ls infctions virals t lurs ffts. Lorsqu on
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
Programme GénieArts Î.-P.-É. 2009-2010. GénieArts
Programm GéniArts Î.-P.-É. 2009-2010 GéniArts Allum l nthousiasm ds juns à l égard d l acquisition ds matièrs d bas par l truchmnt ds arts. Inspir la collaboration ntr ls artists, ls nsignants, ls écols
Bloc 1 : La stabilité, une question d équilibre
Bloc 1 : La stabilité, un qustion d équilibr Duré : 3 hurs Princips scintifiqus Ls princips scintifiqus s adrssnt aux nsignants t aux nsignants. Structur Un structur st un form qui résist aux forcs qui,
Toyota Assurances Toujours la meilleure solution
Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou
Le guide du parraina
AGREMENT DU g L guid du parraina nsillr co t r g ra u co n r, Partag rs ls mini-ntrprnu alsac.ntrprndr-pour-apprndr.fr Crér nsmbl Ls 7 étaps d création d la Mini Entrpris-EPA La Mini Entrpris-EPA st un
Évaluation de performance et optimisation de réseaux IP/MPLS/DiffServ
AlgoTl 2003 (dpt-info.labri.fr/algotl03) Banyuls-sur-mr, 12-14 mai 2003 Exposé invité, mardi 13 mai, 9h-10h Évaluation d prformanc t optimisation d résaux IP/MPLS/DiffSrv par Fabric CHAUVET Jan-Mari GARCIA
e x o s CORRIGÉ 07-01 ... Chapitre 7. La conduite du diagnostic 1. Bilan fonctionnel par grandes masses Bilan fonctionnel de la société Bastin
................................................... Chapitr 7. La cnduit du diagntic CORRIGÉ 07-01 1. Bilan fnctinnl par grand ma Bilan fnctinnl d la ciété Batin Empli tabl 3 900 Rurc prpr 3 870 Actif
Influence du milieu d étude sur l activité (suite) Inhibition et activation
Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
Les maisons de santé pluridisciplinaires en Haute-Normandie
Ls maisons d santé pluridisciplinairs n Haut-Normandi tiq Guid pra u EDITO Dans 10 ans, l déficit d médcins sra réllmnt problématiqu si l on n y prnd pas gard. D nombrux généralists quinquagénairs n trouvront
McAfee Firewall Enterprise Control Center
Guie e émrrge rpie Révision A MAfee Firewll Enterprise Control Center version 5.3.1 Ce guie e émrrge rpie fournit es instrutions générles sur l onfigurtion e MAfee Firewll Enterprise Control Center. 1
CENTRE FRANCO-ONTARIEN DE RESSOURCES PÉDAGOGIQUES
Éditions Éditions Bon d command 015-0 un pu, baucoup, à la foli! Format numériqu n vnt au www. 006-009, Éditions CFORP, activités AVEC DROITS DE REPRODUCTION. 08:8 Pag 1-1 r un pu, baucoup, a la foli!
Guide d'utilisation Easy Interactive Tools Ver. 2
Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive
- Phénoméne aérospatial non identifié ( 0.V.N.I )
ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence
Devenez ingénieur en Génie Informatique et Statistique par la voie de l apprentissage
Dvnz ingéniur n Géni Informatiqu t Statistiqu par la voi d l apprntissag > Formation d ingéniur d 3 ans par altrnanc habilité par la Commission ds Titrs d Ingéniur (CTI) Rntré 2015 www.polytch-lill.fr
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
/HVV\VWqPHVFRPELQDWRLUHV
/HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x
THÈSE. présentée à. par Nicolas Palix. DOCTEUR Spécialité: INFORMATIQUE. Langages dédiés au développement de services de communications
N o d'ordr: 3623 THÈSE présnté à L'UNIVERSITÉ BORDEAUX 1 Écol Doctoral d Mathématiqus t Informatiqu par Nicolas Palix pour obtnir l grad d DOCTEUR Spécialité: INFORMATIQUE Langags dédiés au dévloppmnt
Guide de référence de l'installateur et de l'utilisateur
Gui référn l'instlltur t l'utilistur Climtisur systèm VRV IV REYQ8T7Y1B REYQ10T7Y1B REYQ12T7Y1B REYQ14T7Y1B REYQ16T7Y1B REYQ18T7Y1B REYQ20T7Y1B REMQ5T7Y1B Gui référn l'instlltur t l'utilistur Climtisur
The onlylyon s makers magazine : Business & Good News #01. by ONLYLYON. Part-Dieu 42 French Tech 18 Numérique 22 Vertical 50
Th onlylyon s mkrs mgzin : Businss & Good Nws #01 by ONLYLYON Prt-Diu 42 Frnch Tch 18 Numériqu 22 Vrticl 50 Biopôl grlnd 14 Evnts 82 Tous ddictd 90... 1 r smstr 2014 Contcts ADERLY Agnc pour l Dévloppmnt
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet [email protected] Cours d
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+
01 / 24 0 0!( 10 10 20 20 02 / 24 20 20 30 30 40 40 Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) 03 / 24 40 40 50 50 60 60 60 60 04 / 24 70 70 80 80 80 80 Système de Repérage
Conditions générales de vente de Mobility Société Coopérative (CGV)
Condtons énérls d vnt d Molty Soété Coopértv (CGV) Qulqus rèls uoup d lnts Molty ontnts Etr smplmnt loyl 1. Crt Molty ou rt omné Après lur nsrpton, ls nouvux lnts rçovnt un rt Molty qu prmt l ès ux véuls,
Hector Guimard et le fer : inventivité et économie
L'Art nouvau t la frronnri Hctor Guimard t l fr : invntivité t économi Comm tous ls grands créaturs du mouvmnt Art nouvau, Hctor Guimard a été confronté à la disciplin d la frronnri. Aucun architct d qualité
ÉLECTRONIQUE NUMÉRIQUE
ÉLECROIQUE 4 ÉLECROIQUE UMÉRIQUE 1. IÉRÊ DES SIGAUX UMÉRIQUES 1.1 ransmission du signal L traitmnt du signal st réalisé ar ds circuits élctroniqus (analogiqus ou numériqus). La grandur hysiqu à msurr :
Base de données bibliographique. p. 30 - p. 33. valorisation économique de l'eau potable. energétique et municipales. p.13 - fédérale de.
Bas d donnés bibliographiqu alpau.org Typ d Autur Titr d Titr du Editur Anné Vol. N Dat d Paginatio résumé mots clfs mots documnt l'ouvrag/titr d périodiqu n clfs fix l'articl Jnni Robrt Qul puplmnt pour
La transformation et la mutation des immeubles de bureaux
La transformation t la mutation ds immubls d buraux Colloqu du 14 févrir 2013 L group d travail sur la transformation ds immubls d buraux a été lancé n novmbr 2011 à la dmand du consil d administration
Deux nouveaux bâtiments MINATEC bientôt livrés
E JOURNA D'INFORMATION n 33 Fév 15 l événmnt Dux nouvux bâtimnts MINATEC bintôt livrés MINATEC s grndit d 11 500 m 2 vc l livrison prochin du Bâtimnt Cntr d compétncs (BCC) t d l Amphi Phlm. D quoi rspctivmnt
Découverte Sociale et Patrimoniale
Découvrt Social t Patrimonial M :... Mm :... Dat :... Origin du contact :... Sommair 1. Vous 3 Votr famill 3 Votr situation matrimonial 4 Votr régim matrimonial 4 Libéralités 4 2. Votr actif 5 Vos garantis
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Le mandat de Chercheur qualifié du F.R.S.-FNRS
L mandat d Chrchur qualifié du F.R.S.-FNRS 18 Févrir 2014 L règlmnt rlatif à c mandat st disponibl dans son intégralité sur notr sit wb www.frs-fnrs.b Tabl ds matièrs 1. Dispositions réglmntairs, financièrs
L ENSEEIHT. et intégrez une formation innovante en Midi-Pyrénées. Ingénierie Informatique et Réseaux : un métier d avenir 50 %
L NSIHT INPT-NSIHT Mmbr d PRS Dè Bc +2, DUT, BTS, ATS, Licnc d ingnir d pcilit Informtiq t Rx ont mbch vnt l obtntion dfinitiv d lr diplôm. L 5 % rtnt ont mbch vc n dli moyn d rchrch d mploi d 2 moi. L
Inclure la vidéo comme levier de sa stratégie marketing
Inclur l vidéo comm lvir d s strtégi mrkting 2motion.com Stphni Prot, Dirctric Adjoint, 2motion [email protected] Strtégi mrkting Un strtégi mrkting s définit comm un pln d ctions coordonnés miss n ouvr
COURS D ANALYSE. Licence d Informatique, première. Laurent Michel
COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................
Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot
Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une
J adopte le geste naturel
J adopt l t naturl Franchi Crédit Conil d Franc Mod opératoir naturl t l J adopt Préambul Rjoindr Crédit Conil d Franc, c t rjoindr un cntain d homm t d fmm qui partant lur xpérinc dpui plu d 10 an ; un
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Développement de site web dynaùique Dot.NET
Dévloppmnt d sit wb dynaùiqu DotNET Voici qulqus xmpls d sits wb administrabl Cs sits Wb sont dévloppé n ASPNET sur un Bas d donné SQL 2005 C typ d dévloppmnt wb convint parfaitmnt a un boutiqu n lign,
Chapitre 3: TESTS DE SPECIFICATION
Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o
Le traitement des expulsions locatives
L traitmnt ds xpulsions locativs n io nt s til v ré p d t n am m t ai p n nd a m om r ay td m Tr C l ab i u O COMPTE RENDU DU SÉMINAIRE DU 10 SEPTEMBRE 2012 u n io at j n c sti n g ssi A c in d Au ui q
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.
ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns
Les nouvelles orientations politiques du budget 2015 du Gouvernement prévoient
GO NEWSLETTER N 1/2015 19 janvir 2015 L «Spurpaak» du Gouvrnmnt t ss réprcussions sur la formation ACTUALITÉ L «Spurpaak» du Gouvrnmnt t ss réprcussions sur la formation Allianc pour la qualification profssionnll
Commune de Villars-sur-Glâne Plan directeur du stationnement Bases
Commun d Villars-sur-Glân Plan dirctur du stationnmnt Bass [04 011 3.5 octobr 04] Commun d Villars-sur-Glân Plan dirctur du stationnmnt Bass Sommair Bass légals 3 Objctifs t prcips généraux 4 Invntair
Licence M.A.S.S. Cours d Analyse S4
Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,
«COMBATTRE LES BLEUS» Ce que signifie le programme social des Conservateurs pour les femmes
«COMBATTRE LES BLEUS» C qu signifi l programm social ds Consrvaturs pour ls fmms La 13 Conférnc national d la condition féminin du CTC Documnt d conférnc L hôtl Crown Plaza Ottawa L hôtl Ottawa Marriott
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)
Dpt GEII IUT Bordaux I FILTRAGE AALOGIQUE t UMERIQUE (Vol. 8) G. Couturir Tl : 5 56 84 57 58 mail : [email protected] Sommair I-Itroductio p. II-Filtrag aalogiqu p. 4 II-- Filtrs pass-bas d'ordr
Assurer les proposants donneurs de rein
Nwsttr SCOR Goba Lif Nwsttr SCOR Goba Lif Févrir Profssur Eric Thrvt, Srvic d Néphroogi, Hôpita Europén Gorgs Pompidou, Paris, Franc Pourquoi s Pays-Bas sont-is champion du mond pour nombr d donnurs vivants
Vu la loi n 17-99 portant code des assurances prom ulguée par le dahir n 1-02-238 du 25 rejeb 1423 (3 octobre 2002), telle qu'elle a été complétée ;
Arrêté du ministr s financs t la privatisation n 2241-04 du 14 kaada 1425 rlatif à la présntation s opérations d'assurancs (B.O. n 5292 du 17 févrir 2005). Vu la loi n 17-99 portant co s assurancs prom
Murs coupe-feu dans maisons mitoyennes à une famille
Maison A Maison B FERMACELL Murs coup-fu ans maisons mitoynns à un famill Eition suiss Murs coup-fu qui assurnt un résistanc 90 minuts ans ls maisons mitoynns à un famill construits n ois (1HG100) Murs
Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud
Budget Constrained Resource Allocation for Non-Deterministic Workflows on a IaaS Cloud Eddy Caron, Frédéric Desprez, Adrian Muresan, Frédéric Suter To cite this version: Eddy Caron, Frédéric Desprez, Adrian
PHY2723 Hiver 2015. Champs magnétiques statiques. [email protected]. Notes partielles accompagnant le cours.
PHY2723 Hiver 2015 Champs magnétiques statiques [email protected] otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique
