Equations d'état, travail et chaleur
|
|
|
- Irène Lajoie
- il y a 9 ans
- Total affichages :
Transcription
1 Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un gz prfit à une pression de br et une tempérture de 0 C. On donne br 0 5. ) L'éqution d'étt d'un gz prfit est :. On en déduit que R et que n pr suite, R est en J. mol. K ( le produit est homogène à une énergie ). ) D'près l formule précédente : R 8, ,4.0 m.mol,4 L.mol Exercice On note v le volume mssique en m.kg - d'un gz prfit de msse molire M. ) Montrer que l'éqution d'étt de ce gz peut s'écrire v r. réciser l'expression de r et son unité. ) On donne : M(O) 6 g.mol - ; R 8, SI ; br 0 5. Clculer l vleur de r pour le dioxygène. ) En déduire le volume mssique du dioxygène à 00 K et br. ) L'éqution d'étt du gz est : v, n désignnt le nombre de moles de gz m contenu dns une msse m kg. Nous vons donc n M M, d'où : R v r R r unité: J.kg. K M M 8, ) r. 0 r 60J.kg. K ) D'près v r, on tire : v 0,77 m. kg Remrque En thermodynmique, il fut fire ttention à ne ps se fire piéger dns les pplictions numériques. Les pressions doivent être en, les volumes en m, et les msses en kg. Les données dns les énoncés sont souvent dns des unités différentes.
2 - 8 - Exercices Exercice Le grphe suivnt montre l courbe du produit d'une mole d'un gz réel à l tempérture 00 K en fonction du logrithme déciml de l pression exprimée en br. A log ) Dns quel domine le gz peut-il être considéré comme prfit? roposez un encdrement pour les vleurs de l pression. ) En déduire l vleur numérique de A. ) r définition, un gz prfit est un gz réel pris à bsse pression cr le volume des molécules insi que leurs interctions deviennent négligebles. L'éqution d'étt d'une mole d'un gz prfit étnt R, le produit est indépendnt de l pression à tempérture constnte. L courbe montre que ceci est vri jusqu'à Log 0, 5soit br. Le gz réel peut donc être considéré comme prfit pour 0 < < br ) A très fible pression, le gz est prfit et donc R A d'où : A R,49 kj Exercice 4 Un gz obéit à l'éqution du gz prfit. A prtir d'un étt d'équilibre du gz, l pression ugmente de % et l tempérture de %. Déterminer l vrition reltive du volume. L'éqution du gz est. En prennt l différentielle de cette expression, on obtient : d + d d En divisnt chque membre pr le produit, il vient : d + d d d d + d
3 hermodynmique D'où : d d d % % % L vrition reltivedu volumeest donc de% Remrque Les différentielles logrithmiques sont prticulièrement intéressntes lorsque l'on veut b c mnipuler une expression du type, où, et sont trois vribles. Si l'on cherche à relier des petites vritions d, d où d utour d'un point,,, il suffit de prendre le logrithme de l'expression et de différentier. On obtient insi : b c d b d c d b c b c ln( ) ln ln + ln ln +. d d Ainsi, dns l'exercice, on pouvit psser directement de à + d. d d De même, si l'on trouve une éqution du type + b 0, on peut imméditement ffirmer que les vribles et sont reliées pr une reltion du type b K où K est une constnte. Exercice 5 Un gz obéit à l'éqution de n der Wls qui s'écrit pour une mole : ( + )( b) R et b : constntes positives ) Dns le système interntionl, quelles sont les unités de et b? ) Ecrire l'éqution de n der Wls dns le cs de n moles. ) our que l formule soit homogène, il fut que soit homogène à et b à d'où : : J.m b : m ) Soient ' et ' les grndeurs pour une mole. Si l'on ccole n systèmes de une mole, on obtient un système à n moles de grndeurs n' ( est une vrible extensive) et ' ( est une vrible intensive). L reltion pour une mole étnt ( ' + )( ' b) R, on obtient pour le système à n moles : ' ( + )(( ) b) R n n soit : ( n + )( nb) n L'éqution de n der Wls pour n moles est donc : ( + )( nb)
4 - 0 - Exercices Exercice 6 On considère un système thermodynmique d'éqution d'étt F(,, ) 0. ) Montrer que. ) En clculnt toutes les dérivées prtielles, vérifier l formule dns le cs de n moles d'un gz prfit et d'un gz de n der Wls. ) Si l fonction d'étt est du type F(,, ) 0, nous vons dns les étts,, et +d, +d, +d : D'où : F(,, ) 0 F(+d, +d, +d)0 F( + d, + d, + d) - F(,, ) p d + d + d 0 On en tire les reltions suivntes : A tempérture constnte d 0 : A pression constnte d 0 : A volume constnt d 0 : d d d d d d En multiplint membre à membre les trois reltions, on obtient l reltion demndée : ) ) Dns le cs d'un gz prfit, nous vons d'où : d + d d. On en tire les reltions suivntes en prennt successivement d 0, d 0 et d 0 : On peut vérifier que. b) Dns le cs d'un gz de n der Wls, les clculs sont plus lourds. A prtir de l'éqution ( n + )( nb), on obtient en différentint : ( n n nb)d + + ( nb) d d
5 hermodynmique - - D'où les reltions : nb n nb) ( n + n nb) ( n + nb Là ussi, on vérifie que. Remrques ) L'éqution d'étt F(,, ) 0 d'un gz prfit est tout simplement - 0. ) Il est très importnt de comprendre l significtion physique d'une dérivée prtielle du type K. Elle trduit simplement le fit que si l'on fit une petite trnsformtion à volume constnt, l vrition d de l tempérture ser reliée à l vrition d de l pression pr l reltion d d K soit : d K d. ) L démonstrtion de l reltion montre que l'on pour toutes les vribles, et correspondnt à,, : et. Exercice 7 ) Clculer les coefficients thermoélstiques, β, χ d'un gz prfit. ) Quelle doit être l nture de l'éqution d'étt d'un gz pour que β? ) r définition : β χ L'éqution du gz prfit donnnt d + d d, on obtient : β χ
6 - - Exercices ) pour voir β il fut que. Cette éqution ne peut ps être simplifiée cr une dérivée est à pression constnte et l'utre à volume constnt. our simplifier l'éqution, il fut se servir des résultts de l'exercice précédent et trnsformer les deux dérivées prtielles en une seule. L reltion donne. A prtir de l reltion, on obtient :. Nous urons donc β lorsque l'éqution d'étt du gz ser telle que : Cette éqution signifie qu'à tempérture constnte, les vritions de volume d et de pression d sont reliées pr : d d Soit : d d + 0 cst. Ainsi, à tempérture constnte, l'éqution d'étt doit être cst ce qui signifie que l constnte est une fonction f() de l tempérture. our que β, l'éqution générle d'étt d'un gz doit donc être du type : f () Exercice 8 L'éqution d'étt d'un fluide peut s'écrire : ln ( ) ( ) k o o o ) Clculer le coefficient de dilttion isobre de ce fluide. ) Que représente le coefficient k? ) Nous vons ln. L'éqution d'étt donne imméditement : ) De l même mnière χ ln k. d'où : k χ
7 hermodynmique - - Exercice 9 On donne : χ mercure 8. 0 m. N br 0 5 On compresse litre de mercure liquide de br à 000 br de mnière isotherme. Clculer le volume finl. Commenter le résultt. r définition χ. On en déduit que lors de l compression isotherme : χ d d χd d f χ( D'où : ln χ (f i ) f i ) f i e AN) f 996 cm i Le mercure est donc prtiquement incompressible. Ceci n'est ps surprennt cr l grnde mjorité des liquides et des solides cette propriété. Exercice 0 Un morceu de métl est pris à 0 C sous une pression de br. Déterminer l pression qu'il fut exercer sur ce morceu de métl pour que son volume reste constnt lorsque s tempérture psse à 0 C. On donne 5 50 χ 70. K et.. L trnsformtion étnt isochore, il nous fudrit le coefficient thermoélstique β où u moins l dérivée prtielle. Les coefficients et χ fisnt intervenir les utre dérivées, on peut en sortir en les combinnt. et χ χ χ On en tire dns une trnsformtion à volume constnt : D'où : d d d d Δ Δ χ χ χ f i + (f i ) AN)f 75 br χ Remrque On urit pu ussi utiliser l reltion générle βχ pour trouver l reltion β. χ
8 - 4 - Exercices Exercice ) Clculer le trvil qu'il fut fournir pour compresser réversiblement mole de gz prfit de mnière isotherme de l'étt à l'étt. AN) 00 K R 8, SI 0 L 0 L ) On fit décrire réversiblement le cycle ABCDA à l mole de gz précédente. Ce cycle est composé de deux trnsformtions isochores de volumes et et de deux isothermes de tempértures et. C D B A Exprimer le trvil totl W reçu pr le gz en fonction des prmètres. ) L trnsformtion étnt réversible, nous vons δw -d. L'éqution d'étt du gz étnt R, on en déduit : δw R d W R ln AN) W,7 kj ) -- rnsformtion AB : d'près l formule précédente : W R ln -- rnsformtion BC : le volume étnt constnt, le trvil est nul : W 0 -- rnsformtion CD : W R ln R ln -- rnsformtion DA : W 4 0 D'où u totl : W Wi R( ) ln Remrques ) Bien que l'exercice soit élémentire, il fut noter que l formule fondmentle du trvil est δw ext d et ps δw d. Ici, le fit que les trnsformtions soient réversibles, donc lentes, impose que ext d'où l'utilistion de l seconde formule.
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
Influence du milieu d étude sur l activité (suite) Inhibition et activation
Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances
Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits
semestre 3 des Licences MISM annnée universitaire 2004-2005
MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
COURS D ANALYSE. Licence d Informatique, première. Laurent Michel
COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................
/HVV\VWqPHVFRPELQDWRLUHV
/HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x
Le canal étroit du crédit : une analyse critique des fondements théoriques
Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
3- Les taux d'intérêt
3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents
Chapitre VI Contraintes holonomiques
55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce
Partie 4 : La monnaie et l'inflation
Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet [email protected] Cours d
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
Toyota Assurances Toujours la meilleure solution
Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou
ANALYSE NUMERIQUE NON-LINEAIRE
Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre
Chapitre 1 : Fonctions analytiques - introduction
2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
LANGAGES - GRAMMAIRES - AUTOMATES
LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront
VIBRATIONS COUPLEES AVEC LE VENT
VIBRATIONS OPLEES AVE LE VENT Pscl Hémon Lbortoire d Hydrodynmique, LdHyX Ecole Polytechnique, Pliseu Octobre 00 Vibrtions couplées vec le vent Si vous pense que j i révélé des secrets, je m en ecuse.
Theorie des mrches Dns ce chpitre, on etudie l'interction de l'ore et de l demnde sur un mrche d'un bien donne. On etudier, en prticulier, l'equilibre du mrche. Etnt donne qu'on s'interesse uniquement
Licence M.A.S.S. Cours d Analyse S4
Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,
AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)
Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,
Notes de révision : Automates et langages
Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s
INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE
INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE POUR LES SERRURES D ENTRÉE À CLÉ EXTÉRIEURES VERROUILLABLES, À POIGNÉE DE BRINKS HOME SECURITY. POUR LES PORTES DE
Statuts ASF Association Suisse Feldenkrais
Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion
Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages
Modifiction simultnée de plusieurs crctéristiques d un bien hédonique : une nouvelle méthode de clcul de l vrition de bien-être des ménges Trvers Muriel * Version provisoire Résumé : De nombreuses situtions
Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2
Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch
MnSfe pour les Utilitiés L Protection ntichute pour les Industries de l'energie Frnçis TowerLtch LdderLtch Les questions de protection nti-chute Les chutes de huteur sont l cuse de mortlité l plus importnte
EnsEignEmEnt supérieur PRÉPAS / BTS 2015
Enseignement supérieur PRÉPAS / BTS 2015 Stnisls pour mbition de former les étudints à l réussite d exmens et de concours des grndes écoles de mngement ou d ingénieurs. Notre objectif est d ccompgner chque
ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE
Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 [email protected] [email protected]
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Guide d'utilisation Easy Interactive Tools Ver. 2
Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive
Guide des bonnes pratiques
Livret 3 MINISTÈRE DE LA RÉFORME DE L'ÉTAT, DE LA DÉCENTRALISATION ET DE LA FONCTION PUBLIQUE 3 Guide des bonnes prtiques OUTILS DE LA GRH Guide des bonnes prtiques Tble des mtières 1. Introduction p.
Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!
Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,
Régression multiple : principes et exemples d application. Dominique Laffly UMR 5 603 CNRS Université de Pau et des Pays de l Adour Octobre 2006
Régression multiple : principes et eemples d ppliction Dominique Lffly UMR 5 603 CNRS Université de Pu et des Pys de l Adour Octobre 006 Destiné à de futurs thémticiens, notmment géogrphes, le présent
Magister en : Génie Mécanique
الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université
Introduction à la modélisation et à la vérication p. 1/8
Introduction à l modélistion et à l vériction Appliction ux systèmes temporisés Ptrici Bouyer LSV CNRS & ENS de Cchn Introduction à l modélistion et à l vériction p. 1/8 Modélistion & Vériction Introduction
Conseils et astuces pour les structures de base de la Ligne D30
Conseils et stuces pour les structures de bse de l Ligne D30 Conseils et stuces pour l Ligne D30 Ligne D30 - l solution élégnte pour votre production. Rentbilité optimle et méliortion continue des séquences
Physique : Thermodynamique
Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une
LITE-FLOOR. Dalles de sol et marches d escalier. Information technique
LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion
Compte rendu de la validation d'un observateur cascade pour la MAS sans capteurs mécaniques sur la plate-forme d'essai de l'irccyn
Compte rendu de l vlidtion d'un oservteur cscde pour l MAS sns cpteurs mécniques sur l plte-forme d'essi de l'irccyn Mlek GHANES, Alin GLUMINEAU et Roert BOISLIVEAU Le 1 vril IRCCyN: Institut de Recherche
U-31 CHIMIE-PHYSIQUE INDUSTRIELLES
Session 200 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE E-3 SCIENCES PHYSIQUES U-3 CHIMIE-PHYSIQUE INDUSTRIELLES Durée : 2 heures Coefficient : 2,5 Durée conseillée Chimie
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot
Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une
NEWS PRO ACTIV. www.activexpertise.fr. [Juillet 2015] Ce mois-ci on vous parle de. L arrêté est applicable à compter du 1er Juillet 2015.
Ce mois-ci on vous prle de i Rpport de repérge minte : Trnsmission u Préfet obligtoire à compter du 1 er juillet 2015 Simplifiction des formlités : De bonnes nouvelles pour les entreprises de dignostic
La pratique institutionnelle «à plusieurs»
L prtique institutionnelle «à plusieurs» mury Cullrd Février 2013 Nicols, inquiet: «Qund je suis seul vec quelqu un, il se psse des choses» Vlentin, à propos de l institution : «Ici, y beucoup de gens,
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.
CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le
Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure
République Algérienne Démocrtique et Populire Ministère de l enseignement supérieur et de l recherche scientifique Université Mentouri de Constntine Fculté des sciences et sciences de l ingénieur Déprtement
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
- Phénoméne aérospatial non identifié ( 0.V.N.I )
ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence
Premier principe : bilans d énergie
MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie
Chapitre 7: Dynamique des fluides
Chapitre 7: Dynamique des fluides But du chapitre: comprendre les principes qui permettent de décrire la circulation sanguine. Ceci revient à étudier la manière dont les fluides circulent dans les tuyaux.
1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1.
T/TR 01-01 Pge 3 r+ 1. EQUIPMENT CONCERNE L interconnexion numerique interntionl pour le service visiophonique et de visioconf&ence necessite l stndrdistion des principux prmttres num&iques tels que d~it,
Premier principe de la thermodynamique - conservation de l énergie
Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse
La plateforme Next Generation Mini guide
L plteforme Next Genertion Mini guie Ce guie onis été réé pour vous permettre e vous fmiliriser rpiement ve les nomreuses fontionnlités et outils isponiles sur l plteforme Next Genertion. Apprenez où trouver
Chapitre 6. Réactions nucléaires. 6.1 Généralités. 6.1.1 Définitions. 6.1.2 Lois de conservation
Chapitre 6 Réactions nucléaires 6.1 Généralités 6.1.1 Définitions Un atome est constitué d électrons et d un noyau, lui-même constitué de nucléons (protons et neutrons). Le nombre de masse, noté, est le
COURS DE THERMODYNAMIQUE
I.U.T. de Saint-Omer Dunkerque Département Génie Thermique et énergie COURS DE THERMODYNAMIQUE eme Semestre Olivier PERROT 010-011 1 Avertissement : Ce cours de thermodynamique présente quelques applications
1 Thermodynamique: première loi
1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction
INSTALLATION DE DETECTION INCENDIE
reglement > > instlltion E ETECTON NCENE NSTALLATON E ETECTON NCENE Une instlltion de détection incendie pour objectif de déceler et signler, le plus tôt possible, d une mnière fible, l nissnce d un incendie,
Wieland-Werke AG, 89070 Ulm, Allemagne Février 2012
Wieln-Werke AG, 89070 Ulm, Allemgne Février 2012 Conitions générles e livrison 1. Conitions ontrtuelles, roit pplile Nous livrons et fournissons es presttions onformément à notre onfirmtion e ommne érite
Avant d utiliser l appareil, lisez ce Guide de référence rapide pour connaître la procédure de configuration et d installation.
Guide de référence rpide Commencer Avnt d utiliser l ppreil, lisez ce Guide de référence rpide pour connître l procédure de configurtion et d instlltion. NE rccordez PAS le câle d interfce mintennt. 1
Équivalence masse-énergie
CHPITRE 5 NOYUX, MSSE ET ÉNERGIE Équivalence masse-énergie. Équivalence masse-énergie Einstein a montré que la masse constitue une forme d énergie appelée énergie de masse. La relation entre la masse (en
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!
Pour développer votre entreprise Compt Avec EBP Compt, vous ssurez le suivi de l ensemble de vos opértions et exploitez les données les plus complexes en toute sécurité. Toutes les fonctionnlités essentielles
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.
SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :
SP. 3 Concentration molaire exercices Savoir son cours Concentrations : Calculer les concentrations molaires en soluté apporté des solutions désinfectantes suivantes : a) Une solution de 2,0 L contenant
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Directives COV et alternative lipochimique : peintures, encres, nettoyage, dégraissage...
Directives COV et lterntive lipochimique : peintures, encres, nettoyge, dégrissge... Alin LEMOR Recherche & Développement, Novnce, BP 20609, Venette, 60206 Compiègne Cedex, Frnce, Fx. +33 (0)3 44 90 70
Communauté française de Belgique ENSEIGNEMENT À DISTANCE. Cours 219 Série 9 PHYSIQUE C2D. Synthèse
Cours 9 Communauté française de Belgique Série 9 ENSEIGNEMENT À DISTNCE PHYSIQUE CD Synthèse Cours 9 Série 9 Cours 9 - Physique Série 9 - Présentation Page Cours 9 - Physique Série 9 - Présentation Page
Clients légers IGEL et bureaux virtuels : synergie idéale et coût minimal
Clients légers IGEL et bureux virtuels : synergie idéle et coût miniml Infrstructure de bureux virtuels vec clients légers IGEL Universl Desktop : Une plus grnde liberté de conception pour vos postes de
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.
Rélistion de sites Internet PME & Grndes entreprises Offre Premium Etude du projet Réunions de trvil et étude personnlisée de votre projet Définition d une strtégie de pré-référencement Webdesign Définition
Exercices sur le thème II : Les savons
Fiche d'exercices Elève pour la classe de Terminale SMS page 1 Exercices sur le thème : Les savons EXERCICE 1. 1. L oléine, composé le plus important de l huile d olive, est le triglycéride de l acide
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)
Bac S 2015 Antilles Guyane http://labolycee.org EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points) La benzocaïne (4-aminobenzoate d éthyle) est utilisée en médecine comme anesthésique local
Santé et sécurité psychologiques en milieu de travail
CAN/CSA-Z1003-13/BNQ 9700-803/2013 Norme ntionle du Cnd Snté et sécurité psychologiques en milieu de trvil Prévention, promotion et lignes directrices pour une mise en œuvre pr étpes Avilble in English
Transfert. Logistique. Stockage. Archivage
Trnsfert Logistique Stockge Archivge Trnsfert, logistique, stockge Pour fire fce ux nouveux enjeux, il est importnt de pouvoir compter sur l'expertise d'un spéciliste impliqué à vos côtés, en toute confince.
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
Exemples d utilisation de G2D à l oral de Centrale
Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf
LOGICIEL FONCTIONNEL EMC VNX
LOGICIEL FONCTIONNEL EMC VNX Améliortion des performnces des pplictions, protection des données critiques et réduction des coûts de stockge vec les logiciels complets d EMC POINTS FORTS VNX Softwre Essentils
P17- REACTIONS NUCLEAIRES
PC A DOMICILE - 779165576 P17- REACTIONS NUCLEAIRES TRAVAUX DIRIGES TERMINALE S 1 Questions de cours 1) Définir le phénomène de la radioactivité. 2) Quelles sont les différentes catégories de particules
