Lois de probabilité à densité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Lois de probabilité à densité"

Transcription

1 Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre Densité de probbilité Espérnce, vrince et écrt-type L loi uniforme sur [ ; b] 3. Définition, exemple Espérnce d une loi uniforme L loi normle centrée réduite 4 3. Définition Utilistion de l clcultrice L loi normle Cs générl 6 4. Définition Propriétés Utilistion de l clcultrice Probbilités d événements prticuliers Tble des figures Loi uniforme sur [ ; b] Loi normle centrée réduite Utilistion de l courbe de l loi de densité Loi normle N ( µ ; σ ) Ce cours est plcé sous licence Cretive Commons BY-SA

2 LOI À DENSITÉ SUR UN INTERVALLE I En préliminire u cours : Exercices :, pge 5 [TrnsMth] Il s git dns ce chpitre d étudier des exemples de lois de probbilités sur des vribles létoires, lorsque celle-ci peut prendre toutes les vleurs d un intervlle I de R, on prle de loi de probbilité continue, ou à densité. Activité : Activité pge 7 [TrnsMth] Loi à densité sur un intervlle I. Deux exemples pour comprendre Exemple : Soit X l vrible létoire mesurnt l durée excte du temps d ttente ux urgences d un hôpitl. On suppose que ce temps d ttente est toujours inférieur à 3 heures. L vrible létoire X peut prendre n importe quelle vleur dns l intervlle [0 ; 3]. On ne peut donc ps énumérer les possibilités sous l forme X = x i. On dit que l loi de probbilité de X est à densité. Le clcul de l probbilité que le temps d ttente soit exctement de h 3 mn est ici complètement inutile 3. Il serit pr contre intéressnt de déterminer l probbilité que ce temps d ttente soit compris entre et heures (ce que l on noter p (X [ ; ])) ou bien soit inférieure à une heure et demi (ce que l on noter p (X, 5)). Exemple : Une usine produit de l eu minérle en bouteille. On note Y l vrible qui, à chque bouteille prélevée u hsrd, ssocie le tux de clcium de l eu qu elle contient. L vrible létoire Y peut prendre toutes les vleurs dns [0 ; + [. C est ussi une loi de probbilité à densité. Il pourrit être intéressnt de déterminer l probbilité que le tux de clcium dépsse un tux limite de 6,5 mg pr litre, ce qu on noter p (Y > 6, 5).. Densité de probbilité Définition : Soit I un intervlle de R et f une fonction définie sur I. On dit que f est une densité de probbilité sur J si :. f est continue et positive sur I. f (x) dx = I Remrque : Dns le cs où I n est ps borné, on dmettr que cette intégrle existe et qu elle représente l ire «sous l courbe». Définition : Soit f une densité de probbilité sur un intervlle I et X une vrible létoire à vleurs dns un intervlle I. On dit que X suit l loi à densité f si, pour tout réels, b de I (vec < b) : p (X [ ; b]) = b f (x) dx Propriété : Soit X une vrible létoire qui suit une loi de densité f sur I. Pour tout I, p (X = ) = f (x) dx = 0 Remrque : On donc pr exemple p (X ) = p (X < ) cr p (X ) = p (X < )+p (X = ) (événements incomptibles). Exercices : 0, pge 30 et 33 pge 3 4, 3, 5, 7 pge pge 30 6 [TrnsMth]. Rppels sur les vribles létoires.. Loi à densité. 3. On verr d illeurs pr l suite que cette probbilité est nulle. 4. Clculs de probbilités. 5. Densité de probbilité. 6. Loi exponentielle, durée de vie.

3 LA LOI UNIFORME SUR [A ; B].3 Espérnce, vrince et écrt-type.3 Espérnce, vrince et écrt-type Définition : Soit X une vrible létoire de densité f sur [ ; b]. L espérnce mthémtique de X est le nombre E (X) défini pr : E (X) = b xf (x) dx Remrque : Dns le cs d une vrible létoire prennt un nombre fini de vleurs, l formule de l espérnce étit : n E (X) = p x + p x + + p n x n = p i x i L définition précédente est cohérente vec ce résultt, en remplçnt l somme n i= pr l intégrle b. Définition : Soit X une vrible létoire de densité f sur [ ; b]. On note m = E (X). L vrince de X est le nombre V (X) défini pr : V (X) = E ((X m) ) L écrt-type de X est le nombre σ (X) défini pr : σ (X) = V (X) Remrque : On dmettr que l écrt-type est une mesure de dispersion de l vrible létoire X utour de son espérnce. Exercice : 8 pge 30 7 [TrnsMth] i= L loi uniforme sur [ ; b]. Définition, exemple Propriété : Soient et b deux réels tels que < b et f l fonction définie sur [ ; b] pr : f (x) = b Alors f est une densité de probbilité sur [ ; b]. (voir figure ) Figure Loi uniforme sur [ ; b] Démonstrtion : f est continue sur [ ; b] et est clirement positive. b f (x) dx = [ ] b b b dx = x b = b b b = b b = Définition : Soient et b deux réels tels que < b et X une vrible létoire. On dit que X suit l loi uniforme sur [ ; b] lorsque X dmet comme densité de probbilité l fonction f définie sur [ ; b] pr : f (x) = b 7. Espérnce et vrince d une loi à densité. 3

4 . Espérnce d une loi uniforme 3 LA LOI NORMALE CENTRÉE RÉDUITE Exemple : On reprend l exemple du. et on suppose que le temps d ttente u urgences de cet hôpitl suit l loi uniforme sur [0 ; 3]. On lors : p (X [ ; ]) = p (X, 5) = 3 0 dt = [ x ] 3 dt = = = 3,5 0 [ x ],5 3 dt = =, =. Espérnce d une loi uniforme Propriété : Soit X une vrible létoire qui suit l loi uniforme sur [ ; b]. Alors : Démonstrtion : E (X) = b xf (x) dx = b [ ] b x b dx = b x E (X) = + b = b b b = b (b ) = (b )(b+) (b ) = b+ Exercices :, pge 3 et 35, 36 pge , 39, 40, 4, 4 pge , 3 pge 30 0 [TrnsMth] 3 L loi normle centrée réduite Activités : Exercice 3 pge 5 et Activité pge 6 [TrnsMth] 3. Définition Définition : On dit qu une vrible létoire X sur R suit l loi normle centrée réduite si s loi de densité est : f (x) = e x π On note cette loi N (0 ; ). (voir figure ) Figure Loi normle centrée réduite 8. Loi uniforme. 9. Utilistions de l loi uniforme. 0. Espérnce, vrince.. Rppels sur l loi binomile.. De l loi binomile à l loi normle. 4

5 3 LA LOI NORMALE CENTRÉE RÉDUITE 3. Utilistion de l clcultrice Remrques :. On dmettr que l fonction f est une loi de densité sur R, en prticulier que + f (x) dx = ( ). Le point A comme coordonnées 0 ; π cr f (0) = π e 0 = π 3. L courbe représentnt f est symétrique pr rpport à l xe des ordonnées. 3. Utilistion de l clcultrice On ne peut ps trouver grâce ux techniques hbituelles de primitives de l fonction f. On utiliser donc l clcultrice qui permet de clculer directement p ( X b) lorsque X suit l loi normle centrée réduite (voir pge 5[TrnsMth], en prennt µ = 0 et σ = ). Exemples : On suppose que l vrible létoire X suit l loi normle centrée réduite.. À l clcultrice, p ( X ) 0, 359. Grphiquement, cel correspond à l ire bleue sur l figure 3. Figure 3 Utilistion de l courbe de l loi de densité. p ( X ) correspond à l ire verte sur l figure 3. Comme l courbe est symétrique pr rpport à l xe des ordonnées, cette ire est l même que l ire bleue, donc : p ( X ) = p ( X ) 0, À l clcultrice, on p (, 96 X, 96) 0, 95. Donc, p ({X <, 96} {X >, 96}) = p (, 96 X, 96) 0, 05. Pr suite, en dehors de l intervlle [, 96 ;, 96], l courbe est très proche de l xe des bscisses. Remrque : Comme l loi de densité f dmet une courbe représenttive symétrique pr rpport à l xe des ordonnées, on p (X 0) = p (X 0) = 0, 5. Exemple : On veut déterminer p (X >, 5). Ceci n est ps possible à déterminer directement à l clcultrice. Pr contre : p (X 0) = p (0 X, 5) + p (X >, 5) On donc : Exercices : 3, 4 pge 4 3 [TrnsMth] 3. L loi normle centrée réduite. p (X >, 5) = p (X 0) p (0 X, 5) = 0, 5 p (0 X, 5) 0, 5 0, 433 = 0, 068 5

6 4 LA LOI NORMALE CAS GÉNÉRAL 4 L loi normle N (µ ; σ ) 4. Définition Propriétés Définition : On dit qu une vrible létoire X suit l loi normle N ( µ ; σ ) si l vrible létoire X µ σ l loi normle centrée réduite N (0 ; ). Remrque : On peut montrer que, dns ce cs, l loi de densité est donnée pr l fonction f suivnte : f (x) = σ π e ( x µ σ ) suit On trcé l courbe représenttive de cette fonction sur l figure 4. Cette courbe est symétrique pr rpport à l droite d éqution x = µ. Figure 4 Loi normle N ( µ ; σ ) Propriété : (dmise) Soit X une vrible létoire suivnt l loi normle N ( µ ; σ ). Alors : E (X) = µ V (X) = σ et σ (X) = σ Remrque : Les prmètres de l loi normle N ( µ ; σ ) sont donc son espérnce et s vrince. On peut montrer que, plus l écrt-type σ est importnt, plus l courbe est «pltie». Module : TD 3 pge 8 4 [TrnsMth] 4. Utilistion de l clcultrice Comme pour l loi normle centrée réduite, on utiliser l clcultrice pour déterminer p ( X b) (voir pge 5 [TrnsMth]). Comme l loi de densité f dmet une courbe représenttive symétrique pr rpport à l droite d éqution x = µ, on p (X µ) = p (X µ) = 0, 5. Exemple : On reprend l exemple du. et on suppose que le tux de clcium dns l eu minérle suit l loi normle d espérnce 5 et d écrt-type,5 (c est-à-dire l loi N ( 5 ;, 5 ) ) et on veut déterminer p (Y 6, 5). L courbe de l loi de densité étnt symétrique pr rpport à l droite d éqution x = 5, on p (Y 5) = 0, 5 De plus : p (Y 5) = p (5 Y 6, 5) + p (Y 6, 5) On donc : p (Y 6, 5) = p (Y 5) p (5 Y 6, 5) = p (5 Y 6, 5) À l clcultrice, on obtient p (5 Y 6, 5) 0, 343, d où p (Y 6, 5) 0, Pour mettre en évidence l influence de l écrt-type. 6

7 RÉFÉRENCES 4.3 Probbilités d événements prticuliers Exercices : 5, 6 pge , 46 pge 3 et 49, 50, 5, 54 pge pge 3 et 75 pge , 56, 58 pge 34 ; 59 pge 35 et 76 pge 39 8 [TrnsMth] 4.3 Probbilités d événements prticuliers Propriété : (dmise) Soit X l vrible létoire qui suit l loi normle N ( µ ; σ ). Alors : Remrques : p (µ σ X µ + σ) 0, 68 p (µ σ X µ + σ) 0, 95 p (µ 3σ X µ + 3σ) 0, 977. Ces trois probbilités ne dépendent ni de l espérnce µ, ni de l écrt-type σ.. Il y donc 95 % de chnces que l vleur soit dns l intervlle [µ σ ; µ + σ] Module : TD 4 pge 9 9 [TrnsMth] Exercices : 7, 8 pge 6 0 [TrnsMth] Références [TrnsMth] TrnsMATH Term ES Spécifique / L Spécilité, édition 0 (Nthn), 3, 4, 5, 6, 7 5. Loi normle N ( µ ; σ ). 6. Utilistions. 7. De l loi binomile à l loi normle. 8. En pssnt pr l loi normle centrée réduite. 9. Pour étudier l probbilité de quelques événements prticuliers. 0. Probbilités d événements prticuliers. 7

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

FAQ sur l utilisation d Ecoline-solo

FAQ sur l utilisation d Ecoline-solo FAQ sur l utilistion d Ecoline-solo De quel mtériel i-je esoin pour compléter les informtions demndées dns Ecoline-solo? Pour remplir rpidement toutes les informtions demndées dns Ecoline-solo, vous devez,

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Quantification et échantillonnage

Quantification et échantillonnage numérique à l et échntillonnge Signl physique (onde lumineuse, onde sonore) : vrition d une grndeur physique (éclirement, pression) en temps et/ou espce Sénce 4 et échntillonnge Contrintes de l représenttion

Plus en détail

Intégrale curviligne et applications aux fonctions holomorphes

Intégrale curviligne et applications aux fonctions holomorphes Chpitre 2 Intérle curviline et pplictions ux fonctions holomorphes 2. Intérle curviline - Indice d un point pr rpport à un lcet 2.. Définitions et propriétés de bses Soit f : [, b] R! C une fonction, on

Plus en détail

Cours de Terminale ES /Probabilités : Lois à densité. E. Dostal

Cours de Terminale ES /Probabilités : Lois à densité. E. Dostal Cours de Terminle ES /Probbilités : Lois à densité E. Dostl février 2017 Tble des mtières 7 Probbilités : Lois à densité 2 7.1 Vrible létoires à densité................................... 2 7.1.1 Vrible

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

1 Introduction. y = f 1 (x) On suppose que la fléchette atteint toujours la cible, et on appelle x l abscisse du point d impact P.

1 Introduction. y = f 1 (x) On suppose que la fléchette atteint toujours la cible, et on appelle x l abscisse du point d impact P. Introduction Un jeu consiste à lncer une fléchette sur des cibles dont l forme est donné dns chque cs pr le domine de pln coloré, situé u dessus du segment représentnt l intervlle [; ], et dont l ire totle

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 2015 Durée : 4 heures [ Baccalauréat S Nouvelle-Calédonie \ 19 novembre 015 A. P. M. E. P. EXERCICE 1 7 points Une usine produit de l eau minérale en bouteilles. Lorsque le taux de calcium dans une bouteille

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

Lois de probabilité continues

Lois de probabilité continues Lois de probbilité continues Tble des mtières I Lois de probbilité continues I.1 Principe et définitions........................................... I. Exemples de lois continues.........................................

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

LOI DE PROBABILITE CONTINUE

LOI DE PROBABILITE CONTINUE LOI DE PROBABILITE CONTINUE I) VERIFIER LES ACQUIS ( voir le chpitre des probbilités) 1) Clculer l moyenne, l vrince et l'écrt-type de ces deux séries sttistiques x i 3 5 6 10 effectifs 5 20 10 15 x =

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

Lois de probabilité continues

Lois de probabilité continues Lois de proilité continues. Notion de loi à densité de proilité... p 4. Durée de vie sns vieillissement... p. Lois de proilité continues... p5 5. Loi exponentielle... p3 3. L loi uniforme... p7 Copyright

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

SVE 101, TD Feuille Variables aléatoires continues et théorèmes asymptotiques

SVE 101, TD Feuille Variables aléatoires continues et théorèmes asymptotiques SVE, TD Feuille 7 7. Vribles létoires continues et théorèmes symptotiques Exercice 7. Dns un érodrome, l durée du processus d tterrissge d un vion, mesuré en minutes, est une vrible létoire T dont l densité

Plus en détail

4. Puissances et racines

4. Puissances et racines PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost.

Plus en détail

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016

Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 2016 Corrigé du Baccalauréat S Nouvelle-Calédonie Mars 0 A. P. M. E. P. EXERCICE Commun à tous les candidats points Partie A Une boite contient 00 médailles souvenir dont 50 sont argentées, les autres dorées.

Plus en détail

R.O.C. Nombres complexes. Pondichéry Enseignement spécifique. Exercice 4 Enoncé Restitution organisée de connaissances

R.O.C. Nombres complexes. Pondichéry Enseignement spécifique. Exercice 4 Enoncé Restitution organisée de connaissances Nombres complexes R.O.C. Pondichéry 22. Enseignement spécifique. Exercice 4 Prtie A Restitution orgnisée de connissnces Soit z uombre complexe. On rppelle que z est le conjugué de z et que z est le module

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

201-NYC SOLUTIONS CHAPITRE 8

201-NYC SOLUTIONS CHAPITRE 8 Chpitre 8 Nombres complexes 7 -NYC SOUTIONS CHAPITRE 8 8. EXERCICES. ) Re() 5, Im() b) Re(), Im() 8 c) Re() 5, Im() d) Re(), Im() e) Re(), Im() f) Re(), Im() 6. ) x + i et x i b) x + i et x i c) x + i

Plus en détail

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI

Toutes les questions de cours et R.O.C. au bac de T.S. Vincent PANTALONI Toutes les questions de cours et R.O.C. u bc de T.S. Vincent PANTALONI VERSION DU 9 MARS 2012 Tble des mtières Bc 2011 3 Bc 2011 5 Bc 2010 9 Bc 2009 11 Bc 2008 13 Bc 2007 17 Bc 2006 19 Bc 2005 21 ii Remerciements.

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Théorie des langages Automates finis

Théorie des langages Automates finis Théorie des lngges Automtes finis Elise Bonzon http://we.mi.prisdescrtes.fr/ onzon/ elise.onzon@prisdescrtes.fr 1 / 51 Automtes finis Introduction Formlistion Représenttion et exemples Automtes complets

Plus en détail

Terminale ES. Lois de probabilité à densité

Terminale ES. Lois de probabilité à densité Terminle ES Loi à densité sur un intervlle On considère une expérience létoire et un univers ssocié muni d une proilité. I Vrile létoire continue Définition Une vrile létoire continue X est une fonction

Plus en détail

1 Langages reconnaissables

1 Langages reconnaissables 8INF713 Informtique théorique Automne 2014 Exercices 1 Lngges reconnissles 1.1 Considérez les deux utomtes suivnts et répondez ux questions suivntes : q 3, q 3 q 4 () A 1 () A 2 Figure 1 () Quel est l

Plus en détail

Fiche 10 : Probabilités

Fiche 10 : Probabilités Fiche 10 : Probbilités Pln de l fiche I - Les prties d un ensemble E II - Probbilité III - Probbilité conditionnelle IV - Vrible létoire V - Lois discrètes usuelles VI - Loi continue I - Les prties d un

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Théorie de langages, TD3

Théorie de langages, TD3 Théorie de lngges, TD3 Octoer 6, 25 Automtes finis. Definitions Un utomte fini déterministe (DFA deterministic finite utomton) est une mchine de clcul A qui peut être définie pr les cinq éléments suivnts.

Plus en détail

Chapitre XI : Lois continues

Chapitre XI : Lois continues Chpitre XI : Lois continues Extrit du progrmme : I. Lois de proilité à densité 1. Vrile létoire à densité Dns de nomreux domines, on est mené à étudier des vriles létoires pouvnt prendre, du moins théoriquement,

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Contrôle Continu 3 Novembre 2015

Contrôle Continu 3 Novembre 2015 L2 MIASHS 20 2016 Introduction à l Modélistion Sttistique Contrôle Continu 3 Novembre 20 Durée : 1h30 Documents interdits clcultrices UPPA utorisées Chque réponse devr être justifiée et rédigée de mnière

Plus en détail