Vision et images -12,0-15,0-18,0-20,0-25,0-30,0-40,0-50,0 61,0 30,5 22,5 20,0 16,5 15,5 13,5 12,5

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Vision et images -12,0-15,0-18,0-20,0-25,0-30,0-40,0-50,0 61,0 30,5 22,5 20,0 16,5 15,5 13,5 12,5"

Transcription

1 Séanc n 2 Vision t iags Exrcic n Rlation d conjugaison Un objt AB st placé dvant un lntill convrgnt d cntr optiqu O. L point A st situé sur l ax optiqu d la lntill. L iag A B st foré sur un écran. On donn ls surs algébriqus t tablau suivant : dans l (c) (c) d / ' ( - ) d/ ( - ) -2,0-5,0-8,0-20,0-25,0-30,0-40,0-50,0 6,0 30,5 22,5 20,0 6,5 5,5 3,5 2,5.On définit : d / t d / ' A l aid d un tablur ou d un calculatric, rprésntr d n fonction d d. A l aid d l outil d odélisation, détrinr l équation d la courb obtnu. d'f(d) 9 y 0,9926x + 9,

2 La courb obtnu st un droit dont l équation, donné par l tablur, st la suivant : Y 0,993x + 9,92 Soit, copt tnu ds notations t d la précision ds donnés : d 0,99 d + 9,9 2.En déduir la distanc focal f d la lntill. La rlation d conjugaison s écrit : f' + f' Soit : d d + f' d d + C L ordonné à l origin d la courb xpérintal corrspond à la vrgnc C d la lntill étudié. Par idntification avc l équation fourni par l tablur, il vint : C 9,9 δ D plus : C /f D où : f /C Application nuériqu : f /9,9 0,0 Rarqu : 0,99 On vérifi ainsi, qu aux incrtituds d surs t d calcul près, la courb xpérintal st d pnt, c qui st n accord avc la rlation obtnu à partir d la forul d conjugaison.

3 Exrcic n 2 L od acro La photographi d un flur d orchidé a été pris avc un apparil argntiqu n utilisant l od «acro». C od nécssit un dispositif particulir prttant d éloignr la lntill objctif d un distanc assz grand du fil, bin au-dlà d la distanc focal d l objctif utilisé. L apparil st uni d un objctif d 00 d distanc focal. La flur a un grandur d 3,0 c. Ell st photographié à un distanc d 20 c d la lntill objctif..a. Fair un schéa d la situation à l échll /2 vrticalnt t /4 horizontalnt. Rprésntr la flur par un sgnt vrtical AB. b. Construir l iag A B d AB. c. Détrinr graphiqunt la grandur A 'B' t la position ' d l iag. Sur l schéa, la distanc st d 5 c ; copt tnu d l échll utilisé t ds convntions d orintation : ' +20 c Sur l schéa, la longuur du sgnt A B st d,5 c, copt tnu d l échll t ds convntions d orintation : A 'B' - 3,0 c 2.a. Indiqur sur l schéa qul dvra êtr l placnt du fil. Voir schéa b. Vérifir la position d l iag n calculant '. La rlation d conjugaison s écrit : f' Par suit : + f' Donc : f' + f'x

4 ' f'x f' + Application nuériqu : 00x( 200) ' ( ) 00 ' +200 ' +20 c c.est-c qu l résultat st n accord avc c qui st écrit plus haut sur la particularité du od acro? Nous rarquons qu : ' > f La lntill objctif st bin éloigné d un distanc assz grand du fil, doubl d la distanc focal. C résultat st bin n accord avc c qui st écrit concrnant la particularité du od acro. 3.On dit généralnt qu l on st n od acro lorsqu la grandur d l iag sur l fil st égal ou supériur à la grandur d l objt. a.calculr la grandur d l iag. La rlation du grandissnt s écrit : A'B' AB A 'B' ABx f'x A 'B' ABx f' + A 'B' f' ABx f' + f'x ABx ( f' + ) x Application nuériqu : 0 A 'B' 3,0x A 'B' - 3,0 c ( ) b.calculr l grandissnt, puis n déduir ls caractéristiqus d l iag d la flur sur la pllicul. Par définition : γ A 'B'/ AB

5 Or : A'B' AB Par suit : γ f' f' + Application nuériqu : γ 0,0 / (0,0 + (-20)) γ - L iag st réll, rnvrsé, d ê grandur qu l objt. (cf xrcic livr p.24 n 4 : 2 f t ABA B ) c.l résultat st-il n accord avc l affiration ci-dssus? La détrination graphiqu st n accord avc l affiration ci-dssus : Iag t objt sont d ê grandur. Pour la suit, on supposra qu la grandur d l iag st égal à cll d l objt. L cadr d l iag sur l fil a un forat d 24 sur 36. Au tirag du fil, c cadr st agrandi à un forat d 2 c sur 8 c. 4.Qull sra alors la grandur d l iag d la flur? Au tirag l cadr pass d 24 à /24 5 La taill d l iag d la flur sra donc 5 fois plus grand. La grandur d l iag d la flur sra donc d 5 c. 5.Qul st, à votr avis, l intérêt du od acro? La acrophotographi consist à réalisr ds photos ntts pour lsqulls l iag st plus grand qu l objt rél. Il s agit d ptits objts pris n photo d très près. Exrcic n 3 Ls défauts d l œil Un œil odélisé par un lntill convrgnt d vrgnc variabl, placé à 5,0 d un écran(rétin). a. Un œil étrop, c st-à-dir sans défaut visul, put accoodr d 25,0 c (punctu proxiu, PP) à l infini (punctu rotu, ). Calculr l doain dans lqul la vrgnc vari.

6 La rlation d conjugaison s écrit : f' C L œil étant étrop, l iag s for toujours sur la rétin, qull qu soit la position d l objt. Par suit : ' 5,0x0-3 Si l objt st à l infini (au punctu rotu) : / 0 Il vint : C L plan focal iag st confondu avc la rétin : f Application nuériqu : C 66,7 δ 5, 0x0 Si l objt st à 25,0 c (au punctu proxiu) : - 25,0x0-2 Par suit : C PP 5, 0x0 25, 0x0 2 ( ) ' 70,7 δ soit 4, d distanc focal nviron. b. Un œil yop a un cristallin idntiqu à l œil étrop, c st-à-dir ls ês valurs d vrgnc, ais la rétin st à 5,2 d la lntill. Détrinr ls positions d l nsbl ds objts pour lsquls l iag s for sur la rétin. Par hypothès : ' 5,2 5,0x0-3 Calculons, à l aid d la rlation d conjugaison, ls valurs d corrspondant aux vrgncs calculés précédnt. Pour l : C x Application nuériqu : 5, 0x0 x5, 2x0 ( 5, 0 5, 2) x0 ' -,4 x

7 Pour l PP : CPP PP L application nuériqu conduit à : PP - 0,20 PP c. Qull prcption un prsonn yop a-t-ll ds objts placés n dhors d cs positions? Si l objt st plus près qu 0,20 ou plus loin qu,4, l iag n st plus sur la rétin t la prsonn voit flou. d. Mês qustions qu ls qustions b. t c. pour un œil hyprétrop dont la distanc ntr la lntill t la rétin st d 4,8. Mê éthod qu dans la qustion b. n prnant Pour l : C C 4, 8x0 66, 7x4, 8x0 Pour l PP : 4, 8x0 70, 7x4, 8x0,5-0,32 ' 4,8 : L hyprétrop voit flou si l objt st plus près qu 0,32.

Terminale ES DS n 4 Vendredi 14 décembre 2012

Terminale ES DS n 4 Vendredi 14 décembre 2012 Trminal ES DS n Vndrdi décmbr Ercic. Sur points Ls qustions sont indépndants.. Résoudr ls équation t inéquation suivants. a) b). Etudir l sign d a) b). Pour chacun ds fonctions suivants, calculr sa fonction

Plus en détail

Correction feuille TD 3 : probabilités conditionnelles, indépendance

Correction feuille TD 3 : probabilités conditionnelles, indépendance Univrsité d Nic-Sophia Antipolis -L2 MASS - Probabilités Corrction fuill TD 3 : probabilités conditionnlls, indépndanc Exrcic Dans ct xrcic, nous supposons pour simplir qu ls yux d'un êtr humain sont soit

Plus en détail

LENTILLES EPAISSES LENTILLES MINCES

LENTILLES EPAISSES LENTILLES MINCES AEP / ptiqu géométriqu / Lntills / Pag sur 0 LETILLES EPAISSES LETILLES MICES. Lntill épaiss. Vocabulair Lntill biconvx Lntill équiconvx Lntill biconcav Lntill équiconcav Lntill plan convx Lntill plan

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

Transferts thermiques

Transferts thermiques IUT d St Dnis Départmnt Géni Industril t Maintnanc Modul THERMb (S2) Transfrts thrmiqus corrction ds xrcics Exrcic 1 01 01 01 01 01 01 01 01 01 01 01 isolant Flux thrmiqu00 11 Flux thrmiqu Rsistanc lctriqu

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

TS Bac blanc n 5 Mai 2016

TS Bac blanc n 5 Mai 2016 TS Bac blanc n 5 Mai 6 Ls raisonnmnts doivnt êtr justifiés t ls calculs détaillés. L barèm st indicatif. La calculatric st autorisé mais ls échangs ntr élèvs sont intrdits. Exrcic 5 pts Parti A : Conditionnmnt

Plus en détail

IMPÉDANCES D ENTRÉE ET DE SORTIE

IMPÉDANCES D ENTRÉE ET DE SORTIE MPÉDNCE D ENTÉE ET DE OTE. DÉFNTON On s plac n régim sinusoïdal forcé. oit Q un quadripôl. Nous allons modélisr c quadripôl n utilisant ls impédancs d ntré t d sorti. quadripôl Q V V. Point d vu du génératur

Plus en détail

Baccalauréat S Métropole 20 juin 2013

Baccalauréat S Métropole 20 juin 2013 Baccalauréat S Métropol 0 juin 0 EXERCICE Commun à tous ls candidats 4 points Puisqu l choix d l arbr s fait au hasard dans l stock d la jardinri, on assimil ls proportions donnés à ds probabilités.. a.

Plus en détail

Polynésie 2012 BAC S Correction

Polynésie 2012 BAC S Correction Polynési 1 BAC S Corrction 1 / 6 Exrcic 1 1. a. L point B appartint à la courb Γ donc f() c'st-à-dir a + b Par conséqunt a + b 1 t donc a + b L point C appartint à la courb Γ donc f(5) 5 c st-à-dir 5 +

Plus en détail

Chap D.5 Exercice de Bac LE SPECTROMÈTRE DE MASSE (Polynésie minutes)

Chap D.5 Exercice de Bac LE SPECTROMÈTRE DE MASSE (Polynésie minutes) LE SPECTROMÈTRE DE MASSE (Polynési 014 90 inuts) La spctroétri d ass st un tchniqu d analys prttant d détctr t d idntifir ds oléculs. Ell st utilisé dans différnts doains scintifiqus : physiqu, chii, astrophysiqu,

Plus en détail

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS J AUVRAY Systèms lctroniqus LS OMPOSANTS ATIFS L TRANSISTOR IPOLAIR Il st constitué d 3 couchs d smi-conductur rspctivmnt N P t N (ou PNP).La couch cntral, la bas,st minc, sa largur doit êtr très infériur

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction ponntill A) Fonctions ponntills d bas q Fonction () = q, avc q > 0 Déinition : Soit q un nombr strictmnt positi donné La suit déini, pour tout ntir naturl n, par : n u n = q st un suit géométriqu

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2004

Corrigé du baccalauréat S Amérique du Sud novembre 2004 Corrigé du baccalauréat S Amériqu du Sud novmbr 200 EXERCICE 7points Parti A. a. Pour tout x, f (x) = x x = x.or lim =+ donc lim = 0. x x + x x + x x x Donc lim f (x) = 0. x + b. La fonction f produit

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

PRIMITIVES EXERCICES CORRIGES

PRIMITIVES EXERCICES CORRIGES Cours t rcics d mathématiqus Ercic n. Dérivé t primitivs ) Calculz la dérivé d la fonction f défini par PRIMITIVES EXERCICES CORRIGES f 9+. ) Déduisz-n du primitivs d la fonction g défini par g ) Détrminr

Plus en détail

L INDICE DE RÉFRACTION PAR ÉLEVATION APPARENTE; LA MÉTHODE DE CHAULNES

L INDICE DE RÉFRACTION PAR ÉLEVATION APPARENTE; LA MÉTHODE DE CHAULNES L INDICE DE RÉFRACTION PAR ÉLEVATION APPARENTE; LA MÉTHODE DE CHAULNES ) L but du travail Détrminr l indic d réfraction du vrr, du plastiqu t ds différnts liquids par élévation ) Rappls théoriqus : L indic

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011 Corrction du baccalauréat S (obligatoir Polynési 0 juin 0 Exrcic Commun à tous ls candidats points Méthod : L dssin suggèr d considérr la rotation d cntr A t d angl π Son écritur complx st : z z A = i

Plus en détail

7.B ANNEXE: RÉGULATEURS ANALOGIQUES

7.B ANNEXE: RÉGULATEURS ANALOGIQUES 7.B ANNEXE: ÉGULATEUS ANALOGIQUES 7.B. Généralités Pour réalisr un régulatur analogiqu, on adoptra un montag à amplificatur qui prmt d réalisr la fonction d transfrt souhaité dans un larg gamm d'utilisation.

Plus en détail

Daniel Abécassis. Année universitaire 2010/2011

Daniel Abécassis. Année universitaire 2010/2011 Danil bécassis. nné univrsitair 00/0 COURS L UE Chimi Physiqu. Chapitr VII : Chimi analytiqu. Calcul du ph VII.. Transormations associés à ds réactions acido-basiqus. Dans c paragraph, nous allons étudir

Plus en détail

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+

Plus en détail

Thème 5. Corps purs et changements d état physique

Thème 5. Corps purs et changements d état physique hè 5 Cors urs t changnts d état hysiqu Qustionnair On chauff un élang d au t d glac à C : la tératur du élang augnt la tératur diinu la tératur n vari as On cori un élang d au t d vaur d au initialnt à

Plus en détail

ÉTUDE D UN TRANSFORMATEUR

ÉTUDE D UN TRANSFORMATEUR A 05 PHYS. I ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Les calculatrices sont interdites

Les calculatrices sont interdites CONCOURS COMMUNS POLYTECHNIQUES Ls calculatrics sont intrdits L épruv st composé d dux problèms indépndants décrivant ls princips physiqus d dispositifs vibrants (microphons t sismograph). Il st consillé

Plus en détail

PARTIE II : COMPRENDRE. Chapitre 10 Oscillateurs, travail et énergie

PARTIE II : COMPRENDRE. Chapitre 10 Oscillateurs, travail et énergie RTI II : COMRNDR ratiqur un déarc xpérintal pour ttr n évidnc : - ls diérnts paraètrs inlunçant la périod d un oscillatur écaniqu ; - son aortissnt. Établir/xploitr ls xprssions du travail d un orc constant

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

Correction DST optique ondulatoire

Correction DST optique ondulatoire PT Champagn 04 Corrction DST optiqu ondulatoir Sptmbr 04 Corrction DST optiqu ondulatoir Parti I. I..a L phénomèn obsrvé st la diffraction. I..b La formul avc d au dénominatur n st pas homogèn à un longuur.

Plus en détail

Exercice 1.sur 10 points Commun à tous les candidats

Exercice 1.sur 10 points Commun à tous les candidats Trminal S Bac Blanc d mathématiqus : duré 4 h Mardi 3 mars 205 Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi,la précision ds raisonnmnts

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010 Baccalauréat S obligatoir) Antills-Guyan sptmbr 00 EXERCICE Commun à tous ls candidats 7 points PARIE A - Rstitution organisé ds connaissancs Soit > 0. Considérons la fonction [ p) ] =. En dérivant cs

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycé Municipal d Adults d la vill d Paris Mardi 5 févrir 04 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Duré d l épruv : 4 HEURES Ls calculatrics sont AUTORISÉES corrction obligatoir t spé L candidat doit

Plus en détail

MTS1 A 2014 Etude de fonctions Aleth Chevalley

MTS1 A 2014 Etude de fonctions Aleth Chevalley MTS A Etud d fonctions Alth Chvally. appls.. Plan d étud d un fonction f : E E f ( ) = y... Ensmbl d définition L nsmbl d définition ou domain d définition d un fonction corrspond à l nsmbl ds valurs d

Plus en détail

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes.

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes. EXERIES 3 La duré T, n minuts, d un convrsation téléphoniqu suit un loi xponntill d moynn 4 minuts. ) alculr P(T>5) ) alculr P( < T < 8). Pour un variabl T, xprimé n minuts, qui rprésnt un duré d vi t

Plus en détail

Master1 Génie des Systèmes Industriels U.E.: Capteurs, Chaînes de mesure 1 ère session 2011-2012

Master1 Génie des Systèmes Industriels U.E.: Capteurs, Chaînes de mesure 1 ère session 2011-2012 Mastr1 Géni ds Systèms Industrils U.E.: Capturs, Chaîns d msur 1 èr sssion 211-212 Cod Unité : 172 Cod épruv : 14977 Samdi 26 Mai 8H -1H Duré : 2 hurs Documnts t Calculatric autorisés Ls partis III t IV

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé ycé François Arago Prpignan M.P.S.I. 2012-2013 TD d élctrocinétiqu n o 4 ircuits linéairs n régim sinusoïdal forcé Exrcic 1 - Détrmination ds modèls d Thévnin t d Norton. A Détrminr l modèl d Thévnin t

Plus en détail

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES Cours t rcics d mathématiqus FONCTIONS EPONENTIELLES EERCICES CORRIGES Ercic n Résoudr dans ls équations suivants + 7 9 4 4 6 + 6 + 7 ln( ln 8 9 ln Ercic n Détrminr ls racins du polynôm + P + 4 En déduir

Plus en détail

ETUDE D'UN MONOCHROMATEUR

ETUDE D'UN MONOCHROMATEUR Duré: 3H C T.P. comport 5 pags. ETUDE D'UN MONOCHROMATEUR. MATERIEL / LOGICIELS DOCUMENTATION A VOTRE DISPOSITION Monochromatur + Consol - Captur visibl - Amplificatur variabl UDT 0C - Multimètr - Cart

Plus en détail

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés Trminal ES Exrcics sur ls fonctions xponntills Fich - Corrigés Exrcic : x+ x+ x = x+ ( x+)+ x = x+ x +x = x+ Exrcic : ) Résolvons l'inéuation x+ < x+. On sait u >, donc la fonction xponntill d bas st strictmnt

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministèr d l Ensignmnt Supériur, d la Rchrch Scintifiqu Univrsité Virtull d Tunis Ls systèms assrvis linéairs échantillonnés Echantillonnag instantané d un signal Mohamd AKKARI Attntion! C produit pédagogiqu

Plus en détail

Fiabilité. F(t) est la probabilité qu un dispositif prélevé au hasard dans la population considérée ait une défaillance avant l instant t.

Fiabilité. F(t) est la probabilité qu un dispositif prélevé au hasard dans la population considérée ait une défaillance avant l instant t. I Fiabilité d un matéril Fiabilité. Introduction La fiabilité st l étud d la duré d vi d un matéril. C chapitr étudi la variabl aléatoir qui à chaqu matéril, associ son tmps d bon fonctionnmnt. Son spéranc

Plus en détail

COMPTE-RENDU DE TP DE SPECTROPHOTOMETRIE:

COMPTE-RENDU DE TP DE SPECTROPHOTOMETRIE: TEISSIER Thomas MADET Nicolas Licnc IUP SIAL Univrsié d Créil-Paris XII COMPTE-RENDU DE TP DE SPECTROPHOTOMETRIE: HPLC Anné univrsiair 003/004 I OBJECTIF. Lors d c TP nous allons dérminr opimisr ls paramèrs

Plus en détail

MQ22 TP n 4 : Flexion : coefficient de Poisson, module de Young

MQ22 TP n 4 : Flexion : coefficient de Poisson, module de Young MQ TP n 4: Flion : coicint d Poisson, modul d Young MQ TP n 4 : Flion : coicint d Poisson, modul d Young But : but d c TP st d détrminr l coicint d Poisson ( t l modul d élasticité (d Young ( Pré-rquis

Plus en détail

SERIE D EXERCICES 25 : THERMODYNAMIQUE : PREMIER PRINCIPE

SERIE D EXERCICES 25 : THERMODYNAMIQUE : PREMIER PRINCIPE Séri d xrcics 5 SERIE D EXERCICES 5 : HERMODYNAMIQUE : PREMIER PRINCIPE ravail mécaniqu ds forcs xtériurs d rssion. Exrcic : cas d un gaz. Soit un mol d gaz subissant un comrssion quasi statiqu t isothrm

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction ponntill A) Fonctions ponntills d bas q Fonction () = q, avc q > 0 Déinition : Soit q un nombr strictmnt positi donné La suit déini, pour tout ntir naturl n, par : n un q st un suit géométriqu

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

LES ERREURS DE MESURE

LES ERREURS DE MESURE Chapitr 2 LES ERREURS DE MESURE OBJECTIFS Général Fair acquérir à l apprnant ls notions d rrur t d incrtitud. Spécifiqus Connaîtr ls différnts typs d rrurs t d incrtituds, ainsi qu lurs méthods d calcul.

Plus en détail

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices Séri d rcics d Mathématiqus : Étud d fonctions à variabl réll dansr : Énoncé ds rcics Ercic Soit la fonction numériqu f défini par : f )= 3+ 5 +. a) Détrminr l nsmbl d définition D f t ls its au borns.

Plus en détail

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m Problèm : Stockag intr saisonnir d chalur. (Thèm : équation différntill du 1 r ordr, résolution xact t avc GoGbra) L résau d chalur d la vill d Marstal au Danmark utilis 33 000 m² d capturs solairs thrmiqus

Plus en détail

FICHES PHOTOCOPIABLES

FICHES PHOTOCOPIABLES FICHES PHTCPIABLES Écrir ds txts au CP Rèf. 2663 Christll Joëll Jacki Rgals Pirr Stinvill Illustrations : Christoph Piron C fichir st légalmnt photocopiabl dans l cadr d un usag pour un sul class Sommair

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation grapique 1) Taux de variation d une fonction en un point. Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

SPE PSI DEVOIR LIBRE N 10 pour le 09/01/12

SPE PSI DEVOIR LIBRE N 10 pour le 09/01/12 SPE PSI DEVOIR LIBRE N 10 pour l 09/01/1 Problè d chii: Obtntion d dihydrogèn: 1/ L rforag à la vapur d au ds hydrocarburs légrs st un sourc iportant d hydrogèn. L étap iportant t n ju l équilibr suivant:

Plus en détail

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que : Langags régulirs Ls langags régulirs sont ls langags ls plus simpls. Ils sont néanmoins très utilisés n informatiqu.. utomats finis Ils sont obtnus à partir ds langags finis n ffctuant la frmtur par ls

Plus en détail

Enrichissements graphiques d un plan de ville et automatisation dans Illustrator 8

Enrichissements graphiques d un plan de ville et automatisation dans Illustrator 8 Enrichissmnts graphiqus d un pan d vi t automatisation dans Iustrator 8 Support d xrcic Sommair Différnts stratégis pour s routs pag 1 Ls objctifs d xrcic pag 1 Rapp à propos d un rout cassiqu! pag 1 Rmpir

Plus en détail

Première L DS4 quartiles et diagrammes en boîtes 2009-2010

Première L DS4 quartiles et diagrammes en boîtes 2009-2010 Exrcic 1 : Répartition t disprsion ds salairs Soint ls salairs dans trois ntrpriss A, B t C : 1175 1400 1900 2600 2800 2100 1) Calculr dans chaqu cas l salair moyn t l salair médian 2) Qull st la part

Plus en détail

Chap-2 Théorie classique du diamagnétisme et du paramagnétisme

Chap-2 Théorie classique du diamagnétisme et du paramagnétisme Chap- Théori classiqu du agnétis t du paraagnétis INTRODUCTION Pirr Curi, dans sa thès (895), étudi Ls propriétés agnétiqus ds corps à divrss tpératurs. Il établit ls lois ds variations d l aiantation

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Franc métropolitain 03. Ensignmnt spécifiqu EXERCICE 7 points) commun à tous ls candidats) Sur l graphiqu ci-dssous, on a tracé, dans l plan muni d un rpèrorthonormé rprésntativ C d un fonction f défini

Plus en détail

- PROBLEME D ELECTRONIQUE 1 -

- PROBLEME D ELECTRONIQUE 1 - hyiqu ROBLEE - ROBLEE D ELETRONQUE - ENONE : «Etud d un ocilltur inuoïdl à qurtz». Etud d un critl iézoélctriqu n régi inuoïdl forcé Un l d qurtz tillé d fçon à utilir l roriété iézoélctriqu d c tériu

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2011 ÉPREUVE E4.1. Étude d un système technique industriel. Pré-étude et modélisation

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2011 ÉPREUVE E4.1. Étude d un système technique industriel. Pré-étude et modélisation BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 20 ÉPREUVE E4. Étud d un systèm tchniqu industril Duré : 4 Hurs Cofficint : 3 CORRIGÉ ET BARÈME Calculatric à fonctionnmnt autonom autorisé conformémnt

Plus en détail

La Filosette. Pour nous trouver : La Filosette SAINT-VICTORET (13) > 80 lits > Séjours résidentiel > Unité Alzheimer (14 places)

La Filosette. Pour nous trouver : La Filosette SAINT-VICTORET (13) > 80 lits > Séjours résidentiel > Unité Alzheimer (14 places) La résidnc «La Filostt» st un liu d vi accuilnt, sécurisant t raffiné. Résidnc pour Prsonns Agés Un équip d soignants attntifs t disponibls accompagn ls résidants. Un cuisin soigné t équilibré ravit l

Plus en détail

Théorie des machines thermiques

Théorie des machines thermiques héori ds machins thrmiqus I 7 éfrigératur trithrm, d'après concours Icar 997 ) Définir la notion d machin thrmiqu dans l langag d la thrmodynamiqu ) applr sans démonstration l théorèm d arnot régissant

Plus en détail

Atomic Absorption. Spectroscopy

Atomic Absorption. Spectroscopy Chimi Analytiqu Atomic Absorption Spctroscopy Crost Elliott - Frnandz Samul - Tissot Guillaum (Group 2) Univrsité d Gnèv, Scincs II 17 Janvir 29 Résumé L but du laboratoir consist dans un prmir tmps à

Plus en détail

Hygiène et Sécurité HS 2

Hygiène et Sécurité HS 2 Hygièn t Sécurité HS 2 Lçon N 7 : Ls Acid, ls Bass t l ph Introduction La plupart ds boissons commrcialisés sont acids. Ls solutions d acid chlorhydriqu sont par aillurs très corrosivs. Par aillurs ls

Plus en détail

( ) Correction TS Contrôle 9

( ) Correction TS Contrôle 9 Corrction TS Contrôl 9. ( oints. Pour réalisr un lotri, un organisatur disos d un sac contnant actmnt un jton blanc t 9 jtons noirs indiscrnabls au touchr t d autr art d un dé cubiqu équilibré dont ls

Plus en détail

Couleur Effectif Grise 18 Blanche 7 Bleue 5 Rouge 2 32 (total)

Couleur Effectif Grise 18 Blanche 7 Bleue 5 Rouge 2 32 (total) I. Définir t rprésntr un séri statistiqu 1. Vocabulair Population La population st un nsmbl d prsonns ou d'objts, applés individus, sur lsquls port l étud statistiqu. Par xmpl, ls élèvs d la class d scond.

Plus en détail

Cadre de la Méthode Complexe

Cadre de la Méthode Complexe Supplént XS 5 / M5 égi Sinusoïdal Forcé Fuill /3 adr d la Méthod oplx xrcic : ircuit n Sinus Forcé Soit l circuit séri suivant :. tud tporll n régi continu : On sout l circuit à un sourc d tnsion constant..

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

Mesure de la vitesse orbitale de la Terre

Mesure de la vitesse orbitale de la Terre Msur d la vitss orital d la rr I - Démarch concptull d la msur. Du fait d son mouvmnt autour du olil, la rr s approch d un étoil pndant six mois d l anné puis s n éloign pndant ls six autrs mois. Pour

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Conception et validation d un capteur de mesurage de la température extérieure équivalente d une paroi opaque d un bâtiment

Conception et validation d un capteur de mesurage de la température extérieure équivalente d une paroi opaque d un bâtiment Conférnc IBPSA Franc-Arras-2014 Concption t validation d un captur d msurag d la tmpératur xtériur équivalnt d un paroi opaqu d un bâtimnt Rémi Bouchié* 1, Stéphani Drouinau 1, Charlott Abl 1, Jan-Robrt

Plus en détail

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques

ELECTRICITE. Chapitre 11 Tensions et courants dans les lignes triphasées. Montages étoile et triangle. Analyse des signaux et des circuits électriques ELECTRICITE Analys ds signaux t ds circuits élctriqus Michl Piou Chapitr Tnsions t courants dans ls ligns triphasés Montags étoil t triangl Edition /0/04 Tabl ds matièrs POURQUOI ET COMMENT? DENOMINATION

Plus en détail

ANALYSE D UN AMPLIFICATEUR POUR ANTENNE DE TELEVISION 1 PARTIE 1 : ADAPTATION EN PUISSANCE DU SIGNAL DELIVRE PAR L ANTENNE.

ANALYSE D UN AMPLIFICATEUR POUR ANTENNE DE TELEVISION 1 PARTIE 1 : ADAPTATION EN PUISSANCE DU SIGNAL DELIVRE PAR L ANTENNE. ANALYSE D UN AMPLIFICATEUR POUR ANTENNE DE TELEVISION On s propos d analysr un monta dstiné à amplifir l sinal fourni par un antnn d télévision (fréqunc d l ordr d 500 MHz). En fft, ctt antnn st situé

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

L AMPLIFICATEUR OPÉRATIONNEL

L AMPLIFICATEUR OPÉRATIONNEL L PLIFICTEU OPÉTIONNEL I. L PLIFICTEU OPÉTIONNEL IDÉL I. Circuit intégré rpèr Un mplificatur Opérationnl (.O.) st un circuit intégré accssibl par V t V 3 + t un born d 8 borns. Il y a dux borns d ntré

Plus en détail

EXERCICE I. CONSTRUCTION D UNE MAISON PASSIVE (7 points) 1.2. Pour avoir une meilleure isolation, il faut une résistance thermique élevée.

EXERCICE I. CONSTRUCTION D UNE MAISON PASSIVE (7 points) 1.2. Pour avoir une meilleure isolation, il faut une résistance thermique élevée. Bac S 2015 Liban Corrction http://labolyc.org EXERCICE I. CONSTRUCTION D UNE MAISON PASSIVE (7 points) 1. Isolation t chauffag 1.1. D après l énoncé : Rth S Donc R th s xpri n -1-1 2 W..K. = 1 = K.W -1-1

Plus en détail

SOLUTIONS DE l EXAMEN

SOLUTIONS DE l EXAMEN Univrsité d Aix-Marsill Faculté d économi t d gstion Sit Colbrt 1 èr anné d licnc, microéconomi Mardi l 30 avril 2013 Dirctivs Pédagogiqus : Ctt épruv comprnd 15 qustions. 10 sont à choix multipls t 5

Plus en détail

Corrigé de CCP 2015 Math PC

Corrigé de CCP 2015 Math PC Corrigé d CCP 5 Math PC Problèm : Aalys t probabilités Parti I : Aalys..a. Pour N, f st dérivabl sur R + t, pour t, f (t) = t t ( t).! f st doc croissat sur [; ], décroissat sur [; + [ t f () = = lim f

Plus en détail

Condensateur. Un condensateur est constitué par deux conducteur séparé par un isolant.

Condensateur. Un condensateur est constitué par deux conducteur séparé par un isolant. I. Etud d un condnsatur plan A. ondnsation ds chargs ondnsatur On charg un élctroscop négativmnt. On approch un conductur métalliqu tnu à la main (donc rlié à la trr) initialmnt nutr. Il s charg positivmnt

Plus en détail

Premier problème : Oscillations mécaniques

Premier problème : Oscillations mécaniques usag ds calculatrics st intrdit NB : Si un candidat st amné à rpérr c qui put lui smblr êtr un rrur d énoncé, il l signalra sur sa copi t dvra poursuivr sa composition n xpliquant ls raisons ds initiativs

Plus en détail

Corrigé de CCP PC 2008 Mathématiques 2

Corrigé de CCP PC 2008 Mathématiques 2 Corrigé d CCP PC 8 Mathématiqus PARTIE I (E s ) st un équation di érntill linéair d ordr dux, à co cints continus sur l intrvall ] [ l co cint d y" n ayant. qas d racin. D arès l théorèm d Cauchy Lischitz,

Plus en détail

Physique Générale IV, solution série 3

Physique Générale IV, solution série 3 Phsiqu Général IV, solution séri 3 Ercic Du virations d mêm fréqunc, slon du as t prpndiculairs, avc un différnc d phas / : (t) = a sin (ωt) M(t) (t) = sin (ωt + /) = cos (ωt) où a t sont ls amplituds

Plus en détail

Correction du devoir sur les situations de conjectures

Correction du devoir sur les situations de conjectures Corrction du dvoir sur ls situations d conjcturs no 1. n étant un nombr ntir... a. n + 1 b. n - 1 c. n d. n + 1. (n + 1) f. 5n + (5n + 5) g. 4 possibilités : i. n + 1 t n + 11 ii. n - 1 t n + 9 iii. n

Plus en détail

.., signal (X(t),t R), ex: sinusoïde. .., tout signal est une somme de sinusoïdes. .., filtre passe-bas idéal et filtre à moyenne mobile

.., signal (X(t),t R), ex: sinusoïde. .., tout signal est une somme de sinusoïdes. .., filtre passe-bas idéal et filtre à moyenne mobile Information, Calcul t Communication Lçon 2.2: Echantillonnag d signaux (2èm parti) Information, Calcul t Communication O. Lévêqu Faculté Informatiqu t Communications Modul 2 : Information t Communication

Plus en détail

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre

1 Introduction. 2 Fonctions linéaires, fonctions affines. 2.1 Définitions. Fonctions linéaires et fonctions affines Cours. Objectifs du chapitre Fonctions linéaires et fonctions affines Cours Objectifs du chapitre Connaitre le sens de variation d une fonction affine. Connaitre le signe d une fonction affine. 1 Introduction Activité 2 Fonctions

Plus en détail

Exercices de Phénomènes de Transfert de Chaleur Laboratoire de Technologie des Poudres Prof H.Hofmann. Corrigés (1-21, Chaleur)

Exercices de Phénomènes de Transfert de Chaleur Laboratoire de Technologie des Poudres Prof H.Hofmann. Corrigés (1-21, Chaleur) Exrcics d Phénomèns d ransfrt d halur : orrigés Exrcics d Phénomèns d ransfrt d halur aboratoir d chnologi ds Poudrs Prof H.Hofmann orrigés (-, halur) Exrcic q 3 / m cm max 5 const.,? avc P q S max ( -

Plus en détail

dans un tableur multiplication, divisi - Dupliquer les calc connecter sous Linu - Checkpoint 1 : Se - Checkpoint 3 :

dans un tableur multiplication, divisi - Dupliquer les calc connecter sous Linu - Checkpoint 1 : Se - Checkpoint 3 : ls u lc a c s d r tu c ff : n io s is m Votr dans un tablur ISSION : BUTS DE LA M pnoffic Calc traction, - Crér un fichir O iqus (addition, sous at m hé at m ns io at - Insérr ds opér on) multiplication,

Plus en détail

TD3- Analyse Factorielle des Correspondances

TD3- Analyse Factorielle des Correspondances M1 AGP, EFP t SLEB TD d Analys d donnés Kadar Abdi TD3- Analys Factorill ds Corrspondancs Exrcic 1 : Donnés Conjoint Ls donnés sont à téléchargr sur votr ENT : l fichir xcl : Donnés.conjoints xls L tablau

Plus en détail

CIRCULAIRE N 3414 DU 14/01/2011

CIRCULAIRE N 3414 DU 14/01/2011 CIRCULAIRE N 3414 DU 14/01/2011 OBJET : Modalités d organisation d l nsignmnt scondair spécialisé n altrnanc. La collaboration t la coopération avc un CEFA Résaux : CF Nivaux t srvics : Scondair (Spéc)

Plus en détail

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 4 ÉTUDE DES CHAÎNES FERMÉES : DÉTERMINATION DES LOIS ENTRÉE SORTIE Trainr Solo Sport [1] Modèl CAO d un motur d modélism [2] Modélisation

Plus en détail

Concours d entrée Chimie Durée : 1 heure. Premier Exercice (6 points) Coefficient d ionisation; influence de la dilution

Concours d entrée Chimie Durée : 1 heure. Premier Exercice (6 points) Coefficient d ionisation; influence de la dilution oncours d ntré 004-005 himi Duré : hur Prmir Exrcic (6 points) officint d ionisation; influnc d la dilution I- oncntration d un solution d acid éthanoïqu )-Un litr d un solution d acid éthanoïqu, H H,

Plus en détail

Préposée ou préposé aux renseignements

Préposée ou préposé aux renseignements Pag 1 sur 5 Préposé ou préposé aux rnsignmnts Numéro 24910RS93470001 Ministèr ou organism Fonction publiqu du Québc Région Touts ls régions Corps-class d'mplois 249.10 - Préposé aux rnsignmnts Catégori

Plus en détail

Correction - TD n 19 - Phénomènes de

Correction - TD n 19 - Phénomènes de Corrction - TD n 19 - Phénomèns d diffusion 1 QCM - Diffusion thrmiqu 1. 1.a) 2. 2.a) 3. 3.c) 2 Théièr Avantags : La théièr st très bin isolé thrmiqumnt, car l sul contact avc la tabl s fait par ls trois

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I L sujt comport 8 pags numérotés d 2 à 9 Il faut choisir t réalisr sulmnt trois ds quatr xrcics proposés Parti A EXERCICE I Donnr ls réponss à ct xrcic dans l cadr prévu à la pag 3 On considèr la fonction

Plus en détail

LICENCE SCIENCES ET TECHNOLOGIES 2011-2012 Semestre 1 Q1MI1005 «Physique et Ingénieries» OPTIQUE ET IMAGES : COURS

LICENCE SCIENCES ET TECHNOLOGIES 2011-2012 Semestre 1 Q1MI1005 «Physique et Ingénieries» OPTIQUE ET IMAGES : COURS LICENCE SCIENCES ET TECHNOLOGIES 20-202 Seestre QMI005 «Physique et Ingénieries» OPTIQUE ET IMAGES : COURS PLAN U COURS PARTIE : Lois fondaentales de l optique géoétrique et systèes iageurs siples Les

Plus en détail

Terminale T08 Feuille d exercices sur le chapitre «Fonction exponentielle» Page 1 / 6. C = exp 2 5 exp 2 2. x x f x e e

Terminale T08 Feuille d exercices sur le chapitre «Fonction exponentielle» Page 1 / 6. C = exp 2 5 exp 2 2. x x f x e e Trminal T08 Fuill d rcics sur l chapitr «Fonction ponntill» Pag / 6 Ercic : Eprimr à l aid du nombr : p( 8) A = p( 4) C = p 5 p p 08 B = ( ) ( ) ( ) Ercic : Dans chacun ds cas, simpliir l écritur d ( )

Plus en détail