Chapitre 6- Schéma fonctionnel et graphe de fluence

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 6- Schéma fonctionnel et graphe de fluence"

Transcription

1 Chptre 6 : chém fonctonnel et grphe de fluence Chptre 6 chém fonctonnel et grphe de fluence 6.. chém fonctonnel 6... Défnton Un schém fonctonnel est une représentton smplfée d un processus ms en œuvre. n d utres termes, c est un grphsme qu peut ntervenr des symboles élémentres de type sommteur, comprteur, cpteur, etc Défnton Il exste qutre schéms élémentres utlsés dns l représentton fonctonnelle des systèmes sservs qu sont : loc (p) ommteur (p) = (p) (p) (p) Comprteur (p) = (p) (p) (p) Cpteur Fgure 6. : eprésentton des schéms élémentres 6... xemple On consdère le système sserv représenté pr l fgure 6.. ot ( p) Mîtrse d lectronque 5 DJMAL dh

2 Chptre 6 : chém fonctonnel et grphe de fluence 4 (p) (p) (p) (p) (p) (p) (p) 4 (p) (p) (p) Fgure 6. : xemple de schém fonctonnel ( p). ( p) p). ( ) ( p 4. ( p) 4 ( p 5. 4 ) 6.. éducton du schém fonctonnel mplfer un schém ou le rédure revent à lu fre des trnsformtons pour mettre en évdence l foncton de trnsfert. Pour ce fre, nous utlsons un certn nombre de règles élémentres qu sont : 6... ègle : loc en cscde (en sére) (p) (p) (p) Fgure 6. : éducton de deux blocs en sére ègle : loc en prllèle (p) (p) Fgure 6.4 : éducton de deux blocs en prllèle ( ).. Mîtrse d lectronque 5 DJMAL dh

3 Chptre 6 : chém fonctonnel et grphe de fluence 6... ègle : Formule de lck (réducton de boucle) (p) (p).. Fgure 6.5 : éducton d un schém en boucle (. ) (. )., sot. représente l foncton de trnsfert de l boucle ègle 4 : Trnsformton d un comprteur en sommteur (p) (p) (p) (p) Fgure 6.6 : Trnsformton d un comprteur en sommteur ègle 5 : Déplcement d un sommteur Déplcement d un bloc d vl en mont Ce type de déplcement se trdut pr l out d un bloc fonctonnel de foncton de trnsfert égle à à l entrée du sommteur qu prend l plce du comprteur comme le montre l fgure 6.7. (p) (p) (p) / (p) Fgure 6.7 : Déplcement d un bloc d vl en mont du comprteur Mîtrse d lectronque 5 DJMAL dh

4 Chptre 6 : chém fonctonnel et grphe de fluence Déplcement d un bloc d mont en vl Pr un rsonnement nlogue u cs précédent on obtent : (p) (p) (p) (p) Fgure 6.8 : Déplcement d un bloc d vl en mont du comprteur ègle 6 : Déplcement d un cpteur Déplcement d un bloc d vl en mont (p) (p) Fgure 6.9 : Déplcement d un bloc d vl en mont du cpteur Déplcement d un bloc d mont en vl (p) (p) = / = Fgure 6.0 : Déplcement d un bloc d mont en vl du cpteur ègle 7 : Permutton des cpteurs Y Y Fgure 6. : Permutton des cpteurs ègle 8 : Permutton des sommteurs (p) (p) (p) (p) (p) (p) Fgure 6. : Permutton des sommteurs Mîtrse d lectronque 54 DJMAL dh

5 Chptre 6 : chém fonctonnel et grphe de fluence 6.. xemples 6... xemple On consdère le système sserv représenté pr le schém fonctonnel suvnt : 4 Fgure 6. : xemple de réducton du schém fonctonnel On se propose de retrouver l expresson de l foncton de trnsfert du système en utlsnt les règles de réducton fonctonnelle. On effectue les tros trnsformtons suvntes : Déplcer le sommteur d vl en mont de. 4 / Fgure 6.4 : ère trnsformton Assocer en cscde le comprteur/sommteur Permuter les sommteurs 4 / Fgure 6.5 : ère trnsformton Mîtrse d lectronque 55 DJMAL dh

6 Chptre 6 : chém fonctonnel et grphe de fluence On obtent ns l foncton de trnsfert du système pr smple clcul. ( 4 ) 4 / / Fgure 6.6 : Clcule de l foncton de trnsfert 6... xemple On consdère le montge de l fgure 6.7 dont on cherche son schém fonctonnel. e(t) v C v C C s(t) Fgure 6.7 : ème exemple d un système sserv n pssnt pr l trnsformée le Lplce, on obtent les expressons suvntes : V I I I V I I V V I V V I I Ces expressons nous condusent à l représentton du schém fonctonnel représentée pr l fgure 6.8 I I I / V / / V I / / / I V V On rppelle que : Fgure 6.8 : eprésentton du système en utlsnt les blocs élémentres / Fgure 6.9 : xemple de déplcement d un cpteur Mîtrse d lectronque 56 DJMAL dh

7 Chptre 6 : chém fonctonnel et grphe de fluence On reprend le schém de l fgure 6.8 uquel, on v effectuer des trnsformtons élémentres en vu de le rédure comme le montre l fgure 6.0. I I I / V / / V I / / / V V I / / / / / / I / / / / / I / / / /() () I / / / /() () / / /() () Fgure 6.0 : éducton du schém fonctonnel On poursut ce rsonnement usqu à l obtenton de l foncton de trnsfert Mîtrse d lectronque 57 DJMAL dh

8 Chptre 6 : chém fonctonnel et grphe de fluence 6.. Grphe de trnsfert (grphe de fluence) Les grphes de fluence trdusent l ensemble des reltons fonctonnelles entre les vrbles mses en évdence dns le système étudé. Ils ont pour but de smplfer l écrture et l mse en équton des processus lorsque le nombre de vrbles mses en œuvre ugmente Défntons Un grphe de fluence est un grphe orenté ou une pplcton d un ensemble des nœuds sur l ensemble des prtes de. Un rc est un len fonctonnel qu le les vrbles ttchées à x et à y. On ssoce à chque rc une trnsmttnce. Une brnche est un rc orenté et pondéré relnt deux nœuds. Un nœud source est nœud qu n est extrémté d ucun rc. Un nœud put est un nœud qu n est orgne d ucun rc xemples eprenons l exemple trtée précédemment et représentons le grphe de fluence d un tel système. / / / / / / xemple I V I I V I V I / / / / / Fgure 6. : xemple de grphe de fluence V I I V I I V I V V I K b(p) (p) G V(p) K G (p) G (p ) V(p) G (p ) V(p) b(p) Mîtrse d lectronque 58 DJMAL dh

9 Chptre 6 : chém fonctonnel et grphe de fluence Fgure 6. : ** x h e h. y y h. x. x' h5. e h0. y h7. y' y h. x' h. x s ' 6 9 h4. y h8. y ' e h h 9 h h 4 h0 h 5 h 6 h 8 s 6... éducton du grphe de fluence h 7 Fgure 6. : Il exste deux pproches de réducton : ot une réducton du grphe pr des règles élémentres ot pr l utlston de l formule de Msson Les règles élémentres b b.b b b c c bc b d c b d cb cd b b c c/b b 6... xemple Fgure 6.4 : b c d bc e d be d bcd be bcd d be Mîtrse d lectronque 59 DJMAL dh

10 Chptre 6 : chém fonctonnel et grphe de fluence 6... Formule de Msson Fgure 6.4 : L méthode globle ou l règle de Msson utlse drectement l structure du grphe pour en dédure l trnsmsttnce entre deux nœuds. L foncton de trnsfert d un grphe de trnsfert est donnée pr : Où s exprme pr : ( ), deux.,, k N T ( ) (, : omme des trnsmttnces de toutes les boucles. : omme des produts de trnsmttnce de boucles dsontes prses deux à k : omme des produts de trnsmttnce pour les boucles dsontes prses tros à tros. T : C est l trnsmttnce de toutes les cscdes du grphe (où un cscde représente tout chemn qu condut d un nœud source à un nœud put). C est le prcours drect de e vers s. : C est l vleur prse pr pour l porton du grphe dsonte de l ème cscde. N : Nombre de prcours es xemple de réducton de grphe de trnsfert eprenons l exemple et clculons le foncton de trnsfert en utlsnt l formule de Msson. 5 6 C P C P T N, T, et C P ),, k k Mîtrse d lectronque 60 DJMAL dh

Racines carrées d un nombre complexe

Racines carrées d un nombre complexe Rcnes crrées d un nombre complexe I Exemple Détermnons les rcnes crrées de 3 Les rcnes sont et 4 ' x x ou x On lors : (mpossble cr x ) ou x 4 On cherche les nombres complexes z tels que z 3 (E) On se grde

Plus en détail

STI2D - 1N5 - FONCTION DERIVEE ET APPLICATIONS COURS (1/5)

STI2D - 1N5 - FONCTION DERIVEE ET APPLICATIONS COURS (1/5) www.mthsenlgne.com STI2D - 1N5 - FNCTIN DERIVEE ET APPLICATINS CURS (1/5) PRGRAMMES CAPACITES ATTENDUES CMMENTAIRES Dérvton Nomre dérvé d une foncton en un pont. Le nomre dérvé est défn comme lmte du f(

Plus en détail

EXERCICES AVEC SOLUTIONS (STATIQUE)

EXERCICES AVEC SOLUTIONS (STATIQUE) EXEIES VE SLUINS (SIQUE) Eercce 1 : Détermner les tensons des câbles dns les fgures suvntes : 4 7 4N 1 Soluton : Fgure 1 : u pont nous vons : + + L projecton sur les es donne : cos 4 + cos sn 4 + sn 6Kg

Plus en détail

Calcul des primitives.

Calcul des primitives. Mth Clcul des prmtves. TABLE DES MATIÈRES Clcul des prmtves. Intégrles des fonctons élémentres et Tlor vec reste ntégrl. Tble des mtères «Rppels» trgonométre 5. snus et cosnus.......................................

Plus en détail

PHR-103 Prévention des risques physiques Session : Juin 2011

PHR-103 Prévention des risques physiques Session : Juin 2011 PHR-03 Préventon des rsques pysques Sesson : Jun 0 Prte n : Rsques termques Problème n. A quel tux (g/) dot-on trnsprer pour débrrsser le orps de 44, W de pussne termque? On supposer pour smplfer les luls

Plus en détail

Calcul du coût du MWh d électricité à la production 1

Calcul du coût du MWh d électricité à la production 1 Clcul du coût du MWh d électrcté à l producton Hervé fenecer Résumé Le coût de producton du MWh résulte de l ddton de tros contrbutons : un coût d nvestssement, un coût de fonctonnement fxe, ndépendnt

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

Principe des Travaux Virtuels

Principe des Travaux Virtuels Cours de Mécnque Chptre 7 : PTV Prncpe des Trvux Vrtuels Le prncpe fondmentl présenté dns le chptre précédent fournt des reltons vectorelles entre le torseur des efforts extéreurs pplqués u système et

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012

Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012 Ecrt CAPES Mthémtques Décomoston d un enter en rodut de cteurs remers vec TI nsre. Alcton u rolème du concours générl 0. Décomoston d un nomre enter en rodut de cteurs remers.. Créton d une lste de nomres

Plus en détail

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N.

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N. Groupe seconde chnce Feuille d exercice n 7 Exercice 1 On considère Un segment [AC] de longueur 16 cm, et le point B situé sur [AC] à 6 cm de C. P est un point du cercle de dimètre [AB] tel que AP = 8

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

1. Introduction. Les réseaux logiques programmables. Exemple. 2. Principe des portes ET utilisées. Schéma général pour réaliser une fonction logique

1. Introduction. Les réseaux logiques programmables. Exemple. 2. Principe des portes ET utilisées. Schéma général pour réaliser une fonction logique ptre 6 Les réseux logques progrmmles Introduton Prnpe des réseux progrmmles Types des réseux progrmmles omntores : POM : Progrmmle ed-only Memory PL : Progrmmle rry Log FPL : Feld Progmmle rry Log Les

Plus en détail

TS Les nombres complexes (1)

TS Les nombres complexes (1) TS Les omres complexes () Chptre d lgère I Itroducto ) ref hstorque Nomres mpossles omres mgres (Descrtes) omres complexes ) Esemles de omres x 7 0 x 7 0 x 0 L équto x ps de soluto ds ( x ou x ) x chque

Plus en détail

Configurations H C. 1. Le triangle : droites et points remarquables. 1.1 Hauteurs et orthocentre

Configurations H C. 1. Le triangle : droites et points remarquables. 1.1 Hauteurs et orthocentre onfigurtions 1. Le tringle : droites et points remrqubles 1.1 uteurs et orthocentre éf : L huteur issue d'un sommet est l droite pssnt pr ce sommet et perpendiculire u côté opposé. Prop : Les huteurs d'un

Plus en détail

EXERCICE 1 : ÉTUDE EXPÉRIMENTALE DE DIPÔLES ÉLECTRIQUES (6 points)

EXERCICE 1 : ÉTUDE EXPÉRIMENTALE DE DIPÔLES ÉLECTRIQUES (6 points) Polynése jun 2009 http://labolycee.org EXERCICE 1 : ÉTUDE EXPÉRIMENTALE DE DIPÔLES ÉLECTRIQUES (6 ponts) Les tros partes sont ndépendantes. 1. Dpôles «résstance et condensateur en sére» Pour étuder ce

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

Méthodes d étude des circuits linéaires en régime continu

Méthodes d étude des circuits linéaires en régime continu Méthodes d étude des crcuts lnéares en régme contnu Cadre d étude : n réseau électrque (ensemble de dpôles électrocnétques relés par des conducteurs flformes de résstance néglgeable) consttue un crcut

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

ASI 3. Méthodes numériques pour l ingénieur

ASI 3. Méthodes numériques pour l ingénieur SI éthodes umérques pour l géeur Résoluto de systèmes léres pr des méthodes drectes : Guss, LU, : u cs smple est ue mtrce dgole [ ],, ft jusqu'à pour Focto dgo, prolème soluto lgorthme est de forme trgulre

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

N B : les exercices sont extraits des bacs internationaux

N B : les exercices sont extraits des bacs internationaux SERIE DE MTHEMTIQUES N CLSSE :QUTRIEME SECONDIRE SECTION : SCIENCES EXPERIMENTLES THEME : NOMRES COMPLEXES LYCEE D INDEPENDNCE OUED ELLIL NNEE SCOLIRE :009-00 Prof : ellssoued mohmed Exercce QCM N : les

Plus en détail

Cours de 1ère S/ Géométrie plane. Eric Dostal

Cours de 1ère S/ Géométrie plane. Eric Dostal Cours de 1ère S/ Géométrie plne Eric Dostl Aout 015 Tble des mtières Vecteurs et repérge dns le pln.1 Rppels.......................................... Bses, Repères et Coordonnées.............................

Plus en détail

PHENOMENES DEPENDANT DU TEMPS (Régime quasi-stationnaire)

PHENOMENES DEPENDANT DU TEMPS (Régime quasi-stationnaire) Chpre 3 : Phénomènes dépendn du emps CHPTRE PHEOMEES DEPEDT DU TEMPS (Régme qus-sonnre) Le Régme Qus-Sonnre ne concerne que les phénomènes vrn vec le emps. Eemple = snω sn f E= = jω j f E e = E e. LO DE

Plus en détail

GSE 5 EXGSE050 EXGSE059

GSE 5 EXGSE050 EXGSE059 Exercices résolus de mthémtiques. GSE 5 EXGSE050 EXGSE059 http://www.mtheux.be.tf Jcques Collot Avril 04 www.mtheux.be.tf - GSE 5-1 - EXGSE050 FACSA, ULG, Liège, septembre 00. On considère le cube ACA

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Cours de mathématiques Classe de Troisième

Cours de mathématiques Classe de Troisième Clsse de Troisième CHAPITRE CALCULS ALGEBRIQUES FACTORISATION Clculs lgébriques Pge UTILISER DES LETTRES Eercice On veut connître le nombre de cubes nécessires à l construction d'escliers. Vérifier que

Plus en détail

LES AMPLIFICATEURS LINÉAIRES INTÉGRÉS : a.l.i

LES AMPLIFICATEURS LINÉAIRES INTÉGRÉS : a.l.i LE AMPLIFICATEU LINÉAIE INTÉGÉ : a.l. A Mse en stuaton : Présentaton du système : ystème de tr ac almentaton et déchargement automatque des postes de destnaton ( vor lvre de cours page ) B appels : éalser

Plus en détail

Définitions D'un point de vue fonctionnel, un amplificateur est un convertisseur tel que : v s. ; v s = a.v e ; a 1.

Définitions D'un point de vue fonctionnel, un amplificateur est un convertisseur tel que : v s. ; v s = a.v e ; a 1. G. Pinson - Physique Appliquée Fonction mplifiction - A1 / 1 A1 - Fonction mplifiction Définitions D'un point de vue fonctionnel, un mplificteur est un convertisseur tel que : ; =. ; 1. Le coefficient

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

Corrigé transformateurs triphasés Cours et exercices

Corrigé transformateurs triphasés Cours et exercices Exercice I Répondre ux questions suivntes Corrigé trnsformteurs triphsés Cours et exercices. L puissnce ctive nominle est indiquée sur l plque signlétique d un trnsformteur : vri ou fux? C'est fux, c'est

Plus en détail

: Circuit Electrique en Régime Stationnaire (Part1

: Circuit Electrique en Régime Stationnaire (Part1 CH1-EC1 : Crcut Electrque en Régme Statonnare (Part1 Part1) 1/ 1/3 ) Défntons Générales :.1) Défntons : Crcut électrque (ou réseau électrque) : Ensemble de composants relés entre eux par des fls de joncton

Plus en détail

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES HAPITRE DÉTERMINANTS ET INVERSION DE MATRIES Introduction Dns l lgèbre mtricielle, les déterminnts occupent une plce d importnce tnt en théorie qu en prtique est que l vleur numérique du déterminnt d une

Plus en détail

UV Traitement du signal. Cours n 3 : Synthèse des filtres numériques

UV Traitement du signal. Cours n 3 : Synthèse des filtres numériques UV Tritement du signl Cours n 3 : Synthèse des filtres numériques Filtre IF pr l méthode de l fenêtre ou rélistion recursive Filtre II pr une trnsformée ilinéire élistion du filtrge numérique Introduction

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Diffraction de la lumière

Diffraction de la lumière Terminle S iffrction de l lumière Objectifs : - Observer des phénomènes de diffrction. - Rechercher les fcteurs ynt une influence sur l figure de diffrction : * en déduire l lrgeur d une fente fine à l

Plus en détail

CIRCUITS LOGIQUES COMBINATOIRES

CIRCUITS LOGIQUES COMBINATOIRES Unversté Vrtuelle de Tuns Chap-V: crcuts arthmétques CIRCUITS LOGIQUES COMBINATOIRES Crcuts arthmétques TRABELSI Hchem Attenton! Ce produt pédagogque numérsé est la proprété exclusve de l'uvt. Il est strctement

Plus en détail

Chapitre 9 : Un système chimique évolue spontanément vers l état d équilibre

Chapitre 9 : Un système chimique évolue spontanément vers l état d équilibre Classe de TS Parte CChap 9 Chme PRTIE C : LE SENS «SPONTNE D EOLUTION D UN SYSTEME ESTIL PREISILE? LE SENS D EOLUTION D UN SYSTEME CIMIQUE PEUTIL ETRE INERSE? Chaptre 9 : Un système chmque évolue spontanément

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles Clôture transtve (accessblté) Problème G = (S, A) graphe (orenté) Calculer H = (S, B) où B est la clôture réflexve et transtve de A. Clôture transtve des graphes et tous les plus courts chemns Note : (s,t)

Plus en détail

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases.

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases. Exercce 5 ASSERVISSEMENT DE VITESSE CORRECTION AVEC UN P.I.D. -Détermner K 3 K = 3 t mn K = 5 t mn V 6 V - Détermner les transmttances G, T,et A, avec C(p) =, sachant que le gan en boucle ouverte est égal

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

La logique combinatoire est une technique dédiée à la représentation de diverses

La logique combinatoire est une technique dédiée à la représentation de diverses Chpitre I Logique comintoire 1 L logique comintoire est une technique dédiée à l représenttion de diverses fonctions. Elle permet de synthétiser des systèmes comportnt des étts finis. Les circuits logiques

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus :

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus : 1. Une dode est utlsée dans le montage c-dessous : 3,3 générateur + 2,5 =4,5 V V Fgure 43 Des relevés effectués sur cette dode branchée en drect sont donnés dans le tableau c-dessus : v (V) 0 0,6 0,7 0,8

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Exercice 1 : Polygones

Exercice 1 : Polygones Exercice 1 : Polygones Pour toutes les figures de cette ctivité : - ABCD est un rectngle. - AB = 10 cm et AD = 5 cm. - le point M est un point mobile sur le segment [AB]. - on nomme l distnce BM mesurée

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

Été Mathématiques 4 ème. Vers la 3 ème

Été Mathématiques 4 ème. Vers la 3 ème Cycle complémentire Clsse de ème Été 20 Mthémtiques ème Vers l ème Il est vivement conseillé u élèves des clsses de ème de profiter de leurs temps pendnt les vcnces, pour renforcer leurs cquisitions et

Plus en détail

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre.

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre. C H A P I T R E Frctions et clculs 2 Énigme du chpitre. Fleur et Florie décident d pporter un pnier rempli de fruits à mémé Hugette. Le pnier contient un tiers de mirbelles, un qurt de prune et des cerises.

Plus en détail

Déformations - méthode du travail - énergie et méthode du travail virtuel.

Déformations - méthode du travail - énergie et méthode du travail virtuel. TS CM MCANQU Page sur 9 Déformatons - méthode du traval - énerge et méthode du traval vrtuel. Problème posé : Détermner le déplacement d'un pont quelconque d'un système sostatque. ntroducton : es méthodes

Plus en détail

MECANIQUE DES STRUCTURES

MECANIQUE DES STRUCTURES IENE E GENIE IVI ET INRSTRUTURES MENIQUE ES STRUTURES Glle Glleo (dt Gllée 564-64) scors e dmostrzon mtemtche, ntorno à due nuoue scenze urent UEVIE Prémbule e polcopé est un support u cours et trvu drgés

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1)

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1) 0 septemre 016 ENSEMBLES DE NOMBRES nde 3 I ENSEMBLES DE NOMBRES 1 NOMBRES ENTIERS NATURELS Æ DÉFINITION L ensemle des entiers nturels, noté Æ = {0;1;;3;;...}. C est l ensemle des nomres positifs qui permettent

Plus en détail

1 Puissances d'une matrice

1 Puissances d'une matrice 1 Puissnces d'une mtrice Dénitions 1 On ppelle digonle ou digonle principle d'une mtrice les éléments i,i de l mtrice ynt un indice de ligne égl à l'indice de colonne 2 On ppelle mtrice digonle une mtrice

Plus en détail

Electrode. déplétée. Electrode de référence

Electrode. déplétée. Electrode de référence TP MESURE UNE INTENSITE LUMINEUSE Objectifs : - Utiliser un cpteur CC - istinguer les phénomènes de diffrction et d interférences - Mesurer de petites distnces - Etudier expérimentlement les principles

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

POURCENTAGE PROPORTION ÉVOLUTION

POURCENTAGE PROPORTION ÉVOLUTION POURCENTAGE PROPORTION ÉVOLUTION I. PROPORTION Dns une clsse de 35 élèves il y 14 filles. L proportion de filles dns cette clsse est de Dns cette clsse il y de filles. Prmi ces filles il y 42 % de demi-pensionnires,

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

aires, volumes : découpages

aires, volumes : découpages L recherche à l'école pge 25 ires, volumes : découpges pr rc reton, ric Vsset, Ludovic irr deu, mmn uel ron tin, élèv es de 2 nde du Lycée rgonrd de l'sle-dm et rbr ouet, rinne Lucs, élèves de 2 nde du

Plus en détail

CONCOURS DE RECRUTEMENT D'ELEVES PILOTE DE LIGNE ÉPREUVE DE PHYSIQUE

CONCOURS DE RECRUTEMENT D'ELEVES PILOTE DE LIGNE ÉPREUVE DE PHYSIQUE ÉCOLE NATIONALE DE LAVIATION CIVILE ANNÉE CONCOURS DE RECRUTEMENT DELEVES PILOTE DE LIGNE ÉPREUVE DE PHYSIQUE Durée: Heures Coeicient : CALCULATRICE FOURNIE (personnelle interdite) Lépreuve de phsique

Plus en détail

PLAN OBJECTIFS 1.1 SOLUTIONS : DÉFINITIONS ET CONSTITUTION. a) Définitions

PLAN OBJECTIFS 1.1 SOLUTIONS : DÉFINITIONS ET CONSTITUTION. a) Définitions 1 olutons onques PLAN BJECTIF 1.1 olutons : défntons et consttuton 1.2 Expressons de la composton d une soluton 1.3 olutons réelles et solutons déales, actvté 1.4 Phénomènes régssant l apparton d ons en

Plus en détail

Utilisation du solveur d Excel

Utilisation du solveur d Excel Cycle ICM : 1A Pôle nformatque Cours applcatons nformatques Auteur : Bertrand Jullen 22/12/04 Utlsaton du solveur d Excel Le but de ce TP est de famlarser les élèves avec la foncton Solveur d Excel, dans

Plus en détail

1. Les forces. Plan du cours: Hitorique de la biomécanique Notions de Mécanique Muscles et biomécanique articulaire Application aux pathologies

1. Les forces. Plan du cours: Hitorique de la biomécanique Notions de Mécanique Muscles et biomécanique articulaire Application aux pathologies Pln du cous: 1. Les foces I II III IV Htoque de l omécnque Notons de Mécnque Muscles et omécnque tcule pplcton u pthologes - Les foces à dstnce (gvté, chmp mgnétque) - Les foces de contct (ntecton mtèe

Plus en détail

Les Codes Convolutionnels

Les Codes Convolutionnels Les Codes Convolutonnels Code Convolutíonnel : codage à partr des bts d'nformaton de pluseurs blocs Plus smples à coder et à décoder que les codes de blocs lorsque n est élevé m m m m Codes pour applcatons

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Exercices spécialité géométrie

Exercices spécialité géométrie Termnale S Démonstratons -a : Toute smltude de rapport k (>0) est la composée d une homothéte de rapport k et d une sométre -b : Les sométres du plan sont les transformatons θ θ z' = e z+ b ou z' = e z

Plus en détail

ELECTROTECHNIQUE. Chapitre 7 Le transformateur triphasé. Électromagnétisme. Michel PIOU. Édition 03/06/2010

ELECTROTECHNIQUE. Chapitre 7 Le transformateur triphasé. Électromagnétisme. Michel PIOU. Édition 03/06/2010 ELECTOTECHNIQUE Életromgnétsme hel PIOU Chptre 7 Le trnsformteur trphsé Édton 03/06/00 Extrt de l ressoure en lgne gnelepro sur le ste Internet Tle des mtères TNSFOTEU TIPHSE EN EGIE LINEIE Le rut mgnétque

Plus en détail

. On considère les points A, B, C et D, d affixes respectives a, b, c et d :

. On considère les points A, B, C et D, d affixes respectives a, b, c et d : Nombres complexes Exercces corrgés s vous ave des remarques contacte mo EXERCICE Cet exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons,

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

Contrôle du mardi (50 minutes) TS1 H G E F. Prénom et nom :.. Note :.. / 20 D C

Contrôle du mardi (50 minutes) TS1 H G E F. Prénom et nom :.. Note :.. / 20 D C TS1 ontrôle du mrdi 18-11-014 (50 minutes) rénom et nom :.. Note :.. / 0. (6 points : points pour l construction ; 4 points pour l justifiction) Soit un tétrèdre. On note et J les milieux respectifs de

Plus en détail

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i

( c d) 6i i i(2 4i 2 2 i) 4i 2 2 4i Nombres complexes Exercces corrgés Qcm et exercce comporte quatre affrmatons repérées par les lettres a, b, c et d Vous deve ndquer pour chacune de ces affrmatons, s elle est vrae (V) où fausse (F) Une

Plus en détail

DM n o 1 Propagation d une onde

DM n o 1 Propagation d une onde DM n o 1 Propgtion d une onde 1. Étude sur une cuve à ondes. On lisse tomber une goutte d eu sur une cuve à ondes. Le fond de l cuve à ondes présente un décrochement de telle sorte que l onde créée pr

Plus en détail

Classe [ 0 ; 30 [ [ 30 ; 60 [ [ 60 ; 90 [ [ 90 ; 120 [ [ 120 ; 150 [ [ 150 ; 180 [ [ 180 ; 210 [ Effectif

Classe [ 0 ; 30 [ [ 30 ; 60 [ [ 60 ; 90 [ [ 90 ; 120 [ [ 120 ; 150 [ [ 150 ; 180 [ [ 180 ; 210 [ Effectif S Sttstques Dns ce chtre, nous étuderons des séres sttstques numérques (ou vrbles quntttves). Ces vrbles sont dtes dscrètes s les vleurs rses sont solées (nombres d élèves dns une clsse, nombre de notes

Plus en détail

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points

Terminale S Divers,QCM, France points QCM, Asie 2009, 4 points Termnale S Nombres Complexes Exercces Dvers,QCM, France 00-5 ponts QCM, se 009, 4 ponts QCM, ntlles 009, 5 ponts 4 4 QCM, Polynése rempl 005 - ponts 5 QCM, N Calédone nov 007-4 ponts 4 5 6 QCM d après

Plus en détail

Fiche d exercices 1 : puissances entières et rationnelles

Fiche d exercices 1 : puissances entières et rationnelles Document disponible à http://wwwuniv-montpfr/mip/ens/aes/xa0m/indexhtml XA0M méthodologie mthémtique Année 00 00 Fiche d exercices : puissnces entières et rtionnelles SAVOIR Puissnces entières positives

Plus en détail

et h l homothétie de centre Ω et de rapport.

et h l homothétie de centre Ω et de rapport. Termnale S Nombres Exercces Dvers,QCM, France 00 Qcm, Polynése rempl 005 QCM, N Calédone nov 007 4 QCM d après des sujets de concours GEIPI 5 Basque, ntlles 007 4 6 Basque, ntlles 006 5 7 nd degré et barycentre,

Plus en détail

LES CONSTRUCTIONS GÉOMÉTRIQUES COLLÈGE

LES CONSTRUCTIONS GÉOMÉTRIQUES COLLÈGE LES NSTRUTINS GÉMÉTRIQUES U LLÈGE pr Stéphne Roubiscoul, professeur de mthémtiques u collè)e Philippe de ommynes, omines. Tble des mtières I À l rè)le et, l'équerre L prllèle, une droite pssnt pr un point...

Plus en détail

Circuits linéaires du premier ordre

Circuits linéaires du premier ordre Électrcté - haptre 2 rcuts lnéares du premer ordre Introducton... 2 I Étude d un dpôle sére...3 1 omportements lmtes d un condensateur...3 2 harge d un condensateur : réponse d un dpôle à un échelon de

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

I] Généralités. b) Tableau de données et représentation graphique

I] Généralités. b) Tableau de données et représentation graphique Chpitre 4 Fonctions I] Générlités ) Notion de fonction Définition : Une fonction numérique est un processus qui fbrique un nombre (souvent noté y) à prtir d un nombre vrible (souvent noté x). On v noter

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Travaux Dirigés de Langages & XML - TD 6

Travaux Dirigés de Langages & XML - TD 6 TD Lngges - XML Exercices Corrigés TD 6 1 Trvux Dirigés de Lngges & XML - TD 6 1 Grmmires non-mbiguës Exercice 1 Construire l grmmire générnt tous les plindromes sur l lphbet {0, 1}. 0 1 ε 00 11 Exercice

Plus en détail

TRAITEMENT des IMAGES. VISION par MACHINE

TRAITEMENT des IMAGES. VISION par MACHINE TRAITEENT des IAGES et VISION pr ACHINE ASTER PRO INFO / Jen-rc Vézen Jen-rc.Vezen@lms.fr Jen-rc Vezen Vson pr chne IV. CORRECTION D IAGES Jen-rc Vezen Vson pr chne IV. CORRECTION D IAGES Avnt trtement

Plus en détail

Préparation à l agrégation de Mathématiques 2009 ENS Cachan Ker Lann Epreuve de modélisation, option C : algèbre et calcul formel.

Préparation à l agrégation de Mathématiques 2009 ENS Cachan Ker Lann Epreuve de modélisation, option C : algèbre et calcul formel. Préprtion à l grégtion de Mthémtiques 2009 ENS Cchn Ker Lnn Epreuve de modélistion, option C : lgèbre et clcul formel richrd.leroy@univ-rennes1.fr http://perso.univ-rennes1.fr/richrd.leroy/ Grphe n Chomp

Plus en détail

COMMANDE D ASCENSEUR

COMMANDE D ASCENSEUR CPGE / Scences Industrelles pour l Ingéneur TD6_3 COMMANDE D ASCENSEUR 1- Descrpton succncte du fonctonnement de l nstallaton étudée : L ascenseur dessert les 6 nveaux ( de à ) d un mmeuble d habtaton.

Plus en détail

Exercices de révision

Exercices de révision Université de Cen Licence de Biologie Semestre 0 04 Mthémtiques TD Groupe 4 Exercices de révision Corrigé Nombres complexes Exercice. On pose A = + i et B = + i. Clculer A B, A + B, A B, B, A + B. Clculer

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document été mis en ligne pr le Cnopé de l cdémie de Bordeux pour l Bse Ntionle des Sujets d Exmens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté, dpté ou

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

L intégrale pour présenter quelques fonctions usuelles Dans AlmaSoror

L intégrale pour présenter quelques fonctions usuelles Dans AlmaSoror L intégrle pour présenter quelques fonctions usuelles Dns AlmSoror Lurent Moonens Aspirnt u F.N.R.S. (Belgique) moonens@mth.ucl.c.be Le 2 vril 27 Pour ce numéro vril, je propose u lecteurs e l pge scientifique

Plus en détail

Chap. 7 : Le dipôle RL Exercices

Chap. 7 : Le dipôle RL Exercices Termnale S Physque Chaptre 7 : e dpôle Page 1 sur 8 xercce n 3 p170 1. a. unté d nductance est le henry de symbole H. b. e nom de cette unté provent du physcen amércan Joseph Henry : http://fr.wkpeda.org/wk/joseph_henry

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

2 Produit scalaire - Exercices

2 Produit scalaire - Exercices 6 Edton 007-008 / DELM Géométre métrqe Prodt scalare - Exercces Les exercces dont le nméro content la lettre A, par exemple -A1, sont des exercces complémentares destnés ax élèves d nvea avancé. Lens hypertextes

Plus en détail

XI. Géométrie dans l'espace.

XI. Géométrie dans l'espace. XI. Géométrie ns l'espce. 1. Rppel es notions vues en qutrième. 1.1 ositions reltives es plns et es roites onsiérons le prllélépipèe rectngle '''' ci-contre : 1.1.1 eux plns peuvent être confonus. (ex.

Plus en détail

CHAPITRE V. Utiliser l écriture fractionnaire comme expression d une proportion Taux de réussite :

CHAPITRE V. Utiliser l écriture fractionnaire comme expression d une proportion Taux de réussite : CHAPITRE V FRACTIONS COMPÉTENCES ÉVALUÉES DANS CE CHAPITRE : (T : compétences trnsversles, N : ctivités numériques, G : ctivités géométriques, F : gestion de données fonctions) Intitulé des compétences

Plus en détail