Juin 2007 (2 heures et 30 minutes)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Juin 2007 (2 heures et 30 minutes)"

Transcription

1 Juin 7 ( heures e minues) 1. a) Définir : marice inversible. (.5 p.) b) Démonrer que la ransposée de l inverse d une marice inversible A es égale à l inverse de la ransposée de cee marice. (1.5 ps.) c) La marice obenue à parir du produi de deux marices inversibles es-elle oujours inversible? Jusifier vore réponse. (Aide: uiliser les propriéés des déerminans) (1 p.). a) Enoncer la propriéé lian les soluions d un sysème linéaire aux soluions du sysème homogène associé. (ne pas démonrer) (.5 p.) b) Résoudre e discuer en foncion du paramère réel α le sysème suivan α.x +.y = 5 x y α.z = (.5 ps.). a) Définir : disance sur un ensemble E. (.5 p.) b) Définir la noion d espace vecoriel. (1 p.) c) Soien les quare veceurs de IR suivans 1-1,, e Formen-ils une base de IR? Si non, peu-on en exraire une base de IR? Jusifier soigneusemen vore réponse. ( p.) d) Soi V un vecoriel réel à produi à produi scalaire <,>. Enoncer e démonrer l inégalié de Cauchy-Schwarz. ( p.) nxn 4. a) Définir : veceur propre d une marice M de IR. (1 p.) b) Déerminer oues les valeurs propres e les veceurs propres associés de la marice suivane Cee marice es-elle diagonalisable dans IR? ( ps.)

2 5. a) Définir module e argumen d un nombre complexe. (1 p.) b) Déerminer oues les soluions dans C de l équaion Z 6.Z + 1 =. ( ps.) 6. Déerminer la soluion générale de la récurrence linéaire à coefficiens consans suivane Y +1 =.Y +5 (1.5 p.)

3 Réponse quesion 1 a) nxn nxn Soi A IR. A es inversible s il exise B,C IR elles que : A.B = C.A = I n B es alors inverse à droie e C, inverse à gauche de A. Réponse quesion 1 b) mxn nxp On sai que, si A IR e B IR : (1) (A.B) = B.A. () L inverse de la marice A es une marice noée (A ) -1 elle que (A ) -1. A = I. Par définiion de l inverse d une marice inversible A, on sai que I = A.A -1. En ransposan la relaion précédene, on obien I = (A.A -1 ) = (A -1 ).A. Comme I = I on obien la relaion : (A -1 ).A = I e donc (A -1 ) es l inverse de la marice A (voir idenificaion avec le poin ()). Réponse quesion 1 c) On sai : (1) qu une marice A es inversible de(a). () que de(a.b) = de(a).de(b). On considère deux marices inversibles noées A e B. On considère une marice C = A.B. Par () on a de(c) = de(a.b) = de(a).de(b) car, par hypohèse, A e B son inversibles (donc de(a) e de(b) ). Auremen di C es une marice inversible. Réponse quesion a) Soi AX = Bun sysème linéaire. Le sysème linéaire homogène associé au sysème linéaire AX = Bes le sysème AX =. Soi X1 soluion du sysème linéaire AX = B, alors X en es soluion ssi X1 Xes soluion du sysème linéaire homogène associé. La soluion générale du sysème linéaire non homogène es égale à la soluion générale du sysème linéaire homogène associé plus une soluion pariculière du sysème linéaire non homogène. Réponse quesion b) On a le sysème suivan : α.x +.y = 5. x y α.z = Sa marice augmenée es α α. En réduisan, on a

4 L1 L 1 1 α 1 1 α α 5 L L αl1 +α α 5 1) Si α= La marice augmenée du sysème devien On coninue la réducion 1 L L L L L La marice augmenée du sysème es sous forme échelonnée ligne réduie. Le sysème es compaible, il y a deux inconnues principales (x e z) e une inconnue secondaire (y). Le sysème possède, dans ce cas, une infinié simple de soluions (il es indéerminé) données par 5 x = + y = 5 z = 9 S (x,y,z) IR ; y IR ) Si α, on reprend la réducion de la marice augmenée du sysème 1 1 α 1 +α α 5 L L +α 1 1 α 1 α ( +α ) 5 ( +α) L1 L1 + L 1 α ( +α ) 5 ( +α) 1 α ( +α ) 5 ( +α) Cee marice es sous forme échelonnée ligne réduie. Dans ce cas, le sysème es compaible, possède deux inconnues principales (x e y) e une inconnue secondaire (z). Le sysème possède, dans ce cas, une infinié simple de soluions (il es indéerminé) données par : 5 α x = + z +α +α =. 5 α y = z +α +α S (x,y,z) IR ; z IR Réponse quesion a) La foncion d : ExE IR : (x,y) d(x,y) es une disance sur E ssi 1. d(x,y) x,y E. d(x,y) = d(y,x) x, y E. d(x,y) = x = y x,y E 4. d(x,y) d(x,z) + d(z,y) x,y,z E

5 Réponse quesion b) L ensemble V es un espace vecoriel sur K ssi : i) V (l ensemble des veceurs) es un groupe addiif commuaif. ii) K (l ensemble des scalaires) es un corps commuaif. iii) Il es en oure défini une muliplicaion scalaire qui, à ou k K e à ou v V fai correspondre un veceur k.v V, jouissan des propriéés suivanes a) 1.v = v v V b) k(k.v) 1 = (kk 1 ).v 1 k,k K, v V c) k(v1 + v ) = k.v1 + k.v k K, v 1,v V d) (k1 + k ).v = k 1.v + k.v k,k 1 K, v V Réponse quesion c) Ces 4 veceurs ne formen pas une base de Plaçons les veceurs en ligne dans une marice e réduisons-là. IR car une elle base es oujours formée de veceurs L L L1 L L+ L 1 L1 L 5 L L+ L L4 L4+ L On consae que la réduie de cee marice es de rang. Le sous-vecoriel engendré par ces veceurs es donc de dimension. Par conséquen, il n es possible d exraire plus de deux veceurs linéairemen indépendans de ces veceurs e il n es donc pas possible d exraire une base de IR à parir de ces veceurs puisqu une elle base es consiuée de veceurs. Réponse quesion d) Soi V un vecoriel réel à produi scalaire <,>. Alors < x,y > < x,x >. < y,y > Démonsraion On considère <x+ λ y, x+ λ y > : cee quanié es. Donc <x+ λ y, x+ λ y > = <x,x> + λ <x,y> + λ <y,y> x, y V, λ IR. Cee expression a la forme a λ + b λ + c e elle es oujours posiive ou nulle : le polynôme a λ + b λ + c ne peu avoir deux racines disinces (il serai parfois > e parfois < selon la posiion de λ par rappor aux racines) donc La propriéé en résule. b ac, c es-à-dire <x,y> <x,x>.<y,y>.

6 Réponse quesion 4 a) nx1 Le réel λ es une valeur propre de M ssi v IR,v el que M.v = λ.v. v es alors un veceur propre de M associé à la valeur propre λ Réponse quesion 4 b) On a M = Recherche des valeurs propres de M Les valeurs propres d une marice son les racines de son polynôme caracérisique de(m λ I). λ λ λ = λ = λ λ 1 λ 1 1 λ de 7 ( ).de ( ) ( ) M possède donc deux valeurs propres : e. Recherche des veceurs propres de M 1) veceurs propres associés à la valeur propre λ = v = x y z es un veceur propre de M associé à la valeur propre λ = ssi : x x x M. y =. y 7 1. y = z z 1 1 z Le sysème devien : 7x y = x =,z IR x y = y = L ensemble des veceurs propres associés à la valeur propre λ = es donné par l ensemble S des soluions de ce sysème. x = = = = z 1 S y IR : x y.z,z IR es une base de vecoriel des veceurs propres associés à la valeur propre λ =. 1

7 ) veceurs propres associés à la valeur propre λ = v = x y z es un veceur propre de M associé à la valeur propre λ = ssi : x x 1 x M. y =. y 7. y = z z z Le sysème devien : x = x = x y+ z = y = z L ensemble des veceurs propres associés à la valeur propre λ = es donné par l ensemble S des soluions de ce sysème. x = = = = z 1 S y IR : x,y z 1.z,z IR 1 1 es une base de vecoriel des veceurs propres associés à la valeur propre λ =. Diagonalisaion Il n es pas possible de former une base de IR à parir de veceurs propres de M (on ne peu rouver au maximum que deux veceurs propres de M qui soien linéairemen indépendans) donc M n es pas diagonalisable. Réponse quesion 5 a) Soi z = a + bi un nombre complexe non nul sous forme algébrique. La forme rigonomérique de ce nombre complexe es z = ρ.(cos θ+ isin θ ) où : - ρ es le module de z e es la disance du poin (a + ib) à l origine, - θ es l argumen de z e es l angle que fai la demi-droie d origine ( + i) e passan par (a + ib) avec la demi-droie posiive de l axe des x Réponse quesion 5 b) Posons = z. L équaion Z 6.Z + 1 = devien + 1= Donc, on doi résoudre dans C, z = 1 z = 1 +i Le module de (1+i) vau 1 e son argumen θ es défini par cosθ= 1 d'où θ= ( + k π)(k Z) sinθ= ( 1) = =1

8 Sous forme rigonomérique, z = 1.(cos() + isin()). De là, les racines cubiques de 1 dans C son données par : z = 1.(cos() + isin()) = 1 π π 1 z1 = 1.(cos( ) + isin( )) = + i 4π 4π 1 z = 1.(cos( ) + isin( )) = i Réponse quesion 6 La RLACC à résoudre es Y+ 1=.Y+ 5 On sai que SGENH = SGEH + SPENH (la soluion générale de l équaion non homogène = la soluion générale de l équaion homogène associée + une soluion pariculière de l équaion non homogène). 1) Equaion homogène associée : Y+ 1=.Y La soluion générale de l équaion homogène (SGEH) associée es Y =.C C IR ) b = 5 es de la forme P n().c avec n P(). = 5 e c = 1 a = On essaye une soluion pariculière de l équaion non homogène (SPENH) de la forme Y = Q ().c = α+β car n = 1 e c = 1. n ( ) Y =α+β Y + 1 =α+β (+ 1) On remplace la soluion pariculière dans l équaion non homogène Y+ 1=.Y+ 5 α+β ( + 1) =.( α+β ) + 5 β + ( α+β ) = (β+ 5) + (. α ) Par idenificaion des ermes de même degré : β= β+ 5 β = 5 β= 5 : α+β= α α 5 = α α = α = La soluion pariculière de l équaion non homogène (SPENH) es Y = 5 ) La soluion générale de l équaion non homogène (SGENH) es Y =.C 5 C IR

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps

MATHÉMATIQUES II. d argument --. Si z IC, on note Mz () l image de z dans ε. Si K est un souscorps MATHÉMATIQUES II Dans ou le problème, ε désigne le plan affine euclidien IR 2 rapporé à son repère orhonormé canonique ( OI ;, J) On noe i le complexe de module 1 e π d argumen -- Si z IC, on noe Mz ()

Plus en détail

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes.

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes. Corrigé de l épreuve Mah de CCP, PSI 22 Luc Verschueren, Lycée Daude à Nîmes. Parie I Cas d une marice à coefficiens consans. Quesion I.. La foncion X définie par X : e V es dérivable surre X e V (coefficien

Plus en détail

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR)

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR) Dans ou le problème, n es un enier naurel supérieur ou égal à 2 On noe l ensemble des marices carrées réelles de aille n e M n ( IC ) l ensemble des marices carrées complexes de aille n On noe A la marice

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

1. Question 1 (1) Calculs des dérivées partielles. = x 2 + y (x y)(2x) = 3x 2 + y 2 2xy 1

1. Question 1 (1) Calculs des dérivées partielles. = x 2 + y (x y)(2x) = 3x 2 + y 2 2xy 1 . Quesion () Calculs des dérivées parielles ( )( + ) = ( + ) ( ) + ( ) ( + ) = + + ( )() = 3 + ( )( + ) = ( + ) ( ) + ( ) ( + ) e leur somme = ( + ) ( ) + ( ) () = 3 + + f + f = () Le poin (, ) un poin

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

Triangularisation, jordanisation, exponentielle de matrices

Triangularisation, jordanisation, exponentielle de matrices Triangularisaion, jordanisaion, exponenielle de marices 1 Triangularisaion Soien E un espace vecoriel de dimension n e ϕ un endomorphisme de E de marice A dans une base donnée. On suppose que le polynôme

Plus en détail

Résolution de systèmes linéaires par la méthode du pivot de Gauss

Résolution de systèmes linéaires par la méthode du pivot de Gauss Lycée Pierre de Ferma 7/8 MPSI TD Résoluion de sysèmes linéaires par la méhode du pivo de Gauss Sysèmes linéaires. Conclure à parir d un sysème échelonné e riangularisé Exercice.. Sysèmes linéaires riangularisés

Plus en détail

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan Fiche de Biosaisique Exercices d'algèbre Soluions proposées par C. BAJARD e S. CHARLES Plan INDÉPENDANCE, GÉNÉRATEUR, DIMENSION, BASES... MÉTHODE DU PIVOT...4 PRODUITS SCALAIRES... 6 ORTHONORMALISATION...

Plus en détail

Chapitre 14 - Fonctions de plusieurs variables - Corrigés

Chapitre 14 - Fonctions de plusieurs variables - Corrigés Chapire 4 Foncions de plusieurs variables Exercice : Si adme une limie, alors comme y) = x, 0) = cee limie es nécessairemen nulle De plus, si adme 0 pour limie en 0), alors la oncion, ) adme 0 pour limie

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x.

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x. Universié Aboubekr Belkaïd Tlemcen A.U. 2018/2019 Faculé des Sciences / Déparemen de Mahémaiques Final : Equaions Différenielles [Licence L3 S5] 14 janvier 2019 2h00 Exercice 1: Soi l edo écrie sous la

Plus en détail

Etalonnage d une caméra

Etalonnage d une caméra Ealonnage d une caméra (on parle aussi de calibrage) Parick Héber & Denis Laurendeau (Dernière révision : juin 216) 1 Noion de plan image normalisé (parfois uilisé pour simplifier les développemens) 2

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u.

MATHÉMATIQUES II. polynômes annulateurs de u dont le coefficient de plus haut degré est égal à 1. est appelé polynôme minimal de u. MATHÉMATIQUES II Dans ou le problème, n es un enier naurel supérieur ou égal à 1 On considère un espace euclidien E de dimension n On noe ( xy) le produi scalaire de deux veceurs x e y e xa x la norme

Plus en détail

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera

Plus en détail

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles

TD1 Les vecteurs. 1. Trouver A+B, A-B, 3A, -2B dans chacun des cas suivants: 1. Déterminer les vecteurs liés PQ et AB équivalents et parallèles TD1 Les veceurs Par 1 1. Trouver A+B, A-B, 3A, -B dans chacun des cas suivans: A=(,-1), B=(-1,1) A+B = (1, 0) A=(-1,3), B=(0,4) A+B = (-1, 7) A= (,-1,5), B=(-1,1,1) A+B = (1, 0, 6) A=(π,3,-1),B=(π,-3,7)

Plus en détail

e3a PC Mathématiques 3

e3a PC Mathématiques 3 e3a PC Mahémaiques 3 Problème Le exe définissai une norme sur l espace vecoriel des marices réelles à p lignes e q colonnes, p, q e demandai d admere une inégalié sur ces normes. Si dans on considère les

Plus en détail

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p.

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p. Lycée Thiers CORRECTION DS - Enoncé ) On développe en uilisan les hypohèses : ( f a ide ) ( f b ide ) = f 2 (a + b) f + ab id E = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) = 2) On reprend le

Plus en détail

Macroéconomie - Croissance

Macroéconomie - Croissance Macroéconomie - Croissance Licence 3 Sepembre 208 Rappels sur les dérivées. Eude d une foncion Une foncion es : croissane lorsque sa dérivée es posiive ; décroissane lorsque sa dérivée es négaive ; consane

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x 3 Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D Dans

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

Autour des fonctions vectorielles

Autour des fonctions vectorielles NOTES DE COURS Chap GEO01 Auour des foncions vecorielles Cadre de ravail e/ou noaions uilisées Dans ou ce qui sui, I désignera un inervalle non vide e non rédui à un poin de R, e n désignera un enier naurel

Plus en détail

Exercices de mathématiques

Exercices de mathématiques Universié Paris Didero Année 2007-2008 MI2 Semaine du 3 mars au 4 avril feuille n 6 Exercices de mahémaiques Exercice Déerminer lesquels des ensembles E, E 2, E 3 e E 4 son des sous-espaces vecoriels de

Plus en détail

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1 Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. 1. Equaions différenielles linéaires du 1 er ordre 1.1 Présenaion Résoudre une équaion

Plus en détail

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017 Feuille Primiives e équaions diérenielles linéaires. ed Déerminer, pour les équaions diérenielles suivanes, les ensembles de soluions. y y = sin 3 y + y = e 3 y + y coan = sin 4 + y + y = + 5 y + y = sin

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque TD - corrigés Inégraion sur un inervalle quelconque. Jusifier, pour ou réel >, la convergence de l inégrale J) d Énoncés. Soi α un réel sricemen posiif. Pour quelles valeurs de α, l inégrale généralisée

Plus en détail

CORRECTION «SEMI-MARATHON»

CORRECTION «SEMI-MARATHON» Lycée Thiers CORRECTION «SEMI-MARATHON» Q- Calculer A = e ln ( IPP : u ( = ; v ( = ln ( u ( = ; v ( = Q- Calculer B = B = Q- Calculer C = π A = + + [ ] e e ln ( = e ( e = e + + + + = [ ( ] ln + + [arcan

Plus en détail

Corrigé Maths EML 2013 ECS

Corrigé Maths EML 2013 ECS Problème. Corrigé Mas EML 3 ECS Parie I.. Soi ] ; [. Soi g : [ ; [ R, e. g es coninue e posiive sur [ ; [. De plus, g () e donc g () = o ( ). Par la règle de négligeabilié des inégrales de foncions posiives,

Plus en détail

Chapitre VIII : Trigonométrie

Chapitre VIII : Trigonométrie hapire V : Trigonomérie Exrai du programme : Dans ce chapire, on muni le plan du repère orhonormé (; ;. Repérage sur le cercle rigonomérique Définiion Le cercle rigonomérique es le cercle de cenre e de

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Devoir de Mathématiques 3 : corrigé

Devoir de Mathématiques 3 : corrigé PCSI 4-5 Mahémaiques Lycée Berran de Born Devoir de Mahémaiques 3 : corrigé Exercice. Éude d une foncion en noaion puissance On considère la foncion f définie par f(x) = x x = e x ln(x) La foncion foncion

Plus en détail

Équations différentielles

Équations différentielles V. Équaions différenielles 1 Primiive d une foncion Définiion 1. On appelle primiive d une foncion f une soluion de l équaion différenielle y = f. Exercice 1. Déerminer une soluion de l équaion différenielle

Plus en détail

= ( 1) n (3α 3β + 3γ) + 2 n (4α(1 n) + 2β(2 n) + γ(3 n))

= ( 1) n (3α 3β + 3γ) + 2 n (4α(1 n) + 2β(2 n) + γ(3 n)) CORRIGE DU DST N 5 Exercice ) u n + f (u n ) avec f (x) 3 + /x qui es affine. Le poin fixe de f es l 6. On pose v n u n ( 6) u n + 6 La suie (v n ) es géomérique de raison / (le coefficien direceur de

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it)

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it) Lycée du Parc PCSI 84 15-16 Devoir surveillé corrigé Eercice 1 1 En uilisan les formules d Euler, on linéarise 4 (cos ( : ( e 4 (cos i e i 4 ( e i + e i ( = i = 1 ( e 4i 6 4e i + 6 4e i + e 4i ( e i +

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

Pour passer d un nombre à son image, on multiplie par a, puis on ajoute b.

Pour passer d un nombre à son image, on multiplie par a, puis on ajoute b. CHAPITRE 8 : FONCTIONS AFFINES COURS 30 : Foncion affine Définiion Soien a e b deux nombres quelconques «fixes». Si, à chaque nombre x, on peu associer le nombre ax + b, alors on défini une foncion affine,

Plus en détail

UE LM336 Année Feuille de TD 4

UE LM336 Année Feuille de TD 4 Universié Pierre & Marie Curie Licence de Mahémaiques L3 UE LM336 Année 2013 14 Feuille de TD 4 Exercice 1 Reprendre l exercice 2 de la feuille 1 de manière rigoureuse Concrèemen, pour chacune des équaions

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi :

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi : Jean-François COSSUTTA. Lycée Marcelin Berhelo Sain Maur 94. LYON 3 PREMIER PROBLÈME PARTIE I : Résulas généraux sur ϕ e J n. Les foncions e sin son coninues sur ], + [. Par produi ϕ es coninue sur ],

Plus en détail

Mat 805 : Compléments de mathématiques

Mat 805 : Compléments de mathématiques Ma 85 : Complémens de mahémaiques Michel Beaudin michelbeaudin@esmlca Version du -9-7 Résumé Marices e ssèmes d équaions différenielles linéaires Sabilié, ssèmes linéaires e quasi-linéaires Inroducion

Plus en détail

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7).

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7). Corrigé du TD n 4 Eercice. Nous allons calculer à chaque fois une primiive. Connaissan une primiive, les primiives son les foncions égales à la primiive calculée à une consane près (la consigne éan de

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

TD 02 : Applications linéaires

TD 02 : Applications linéaires Ex 1 Ex 2 TD 02 : Applicaions linéaires Les applicaions suivanes son-elles linéaires? x ( ) 1 f : y 2x + 4y z R4 R y 2, x 2 f : y 2x πy z R4 z + 3 R 3, x + y + z + Première approche x 3 f : y z R4 x +

Plus en détail

TS Exercices sur la géométrie dans l espace (niveau 1)

TS Exercices sur la géométrie dans l espace (niveau 1) TS Exercices sur la géomérie dans l espace (niveau ) Dans ous les exercices, l espace E es muni d un repère orhonormé O, i, j, k. Aucune figure n es demandée dans ces exercices sauf pour l exercice 5.

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J es clairemen de rang 1, donc 0 es valeur

Plus en détail

Équations différentielles linéaires

Équations différentielles linéaires UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universiaire 207 208 Licence d économie Cours de M. Desgraupes MATHÉMATIQUES DES SYSTÈMES DYNAMIQUES Corrigé du TD Équaions différenielles

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES PC Dae de créaion 006 Cours, Exercices, Aueur (s) de la ressource pédagogique : FACK Hélène [FACK Hélène], [04], INSA de Lyon, ous drois réservés. Sommaire EQUATIONS DIFFERENTIELLES

Plus en détail

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP SESSION 5 Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mahémaiques A MP Parie I 1. Les soluions de l équaion différenielle E sur l inervalle I formen un R-espace vecoriel de dimension. Les

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées

Concours National Commun d Admission aux Grandes Écoles d Ingénieurs ou Assimilées ROYAUME DU MAROC Minisère de l Éducaion Naionale, de l Enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 26 École Mohammadia d Ingénieurs

Plus en détail

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1 Eercice (Calculer les inégrales suivanes)..... 5. 6. 7. 8. e d = e d = e ] = = 5. = e e. ( + )d = d = ln ( )] = ln ( ) ln ( ) = ln(). ue u du = e u = e. e e + d = ln ( e + ) e (e + ) d = u (ln u) du =

Plus en détail

Questionnaire examen final MTH1006. Sigle du cours. Sigle et titre du cours Groupe Trimestre

Questionnaire examen final MTH1006. Sigle du cours. Sigle et titre du cours Groupe Trimestre Quesionnaire examen final MTH1006 Sigle du cours Idenificaion de l éudian(e) Nom : Prénom : Signaure : Maricule : Groupe : Sigle e ire du cours Groupe Trimesre MTH1006 Algèbre Linéaire AUTOMNE 2008 Professeur

Plus en détail

Mines Math1 PSI Un corrigé

Mines Math1 PSI Un corrigé Mines 26 - Mah PSI Un corrigé Préliminaire Le cours nous apprend que pour ou réel α, on a x ], [, ( + x α + En choisissan α /2 e en subsiuan x à x, on a donc α(α (α + x! x ], [, x + a x avec a 2, : a +

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

CALCULS DE LIMITES - CORRECTION

CALCULS DE LIMITES - CORRECTION Lycée Thiers CALCULS DE LIMITES - CORRECTION Ex 1 Pour connaîre la ie d une fracion de polynômes en ±, on fai le rappor des ermes de plus hau degré. En effe... m n Noons = a k k e Q ) = b k k avec : e

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

Rappels sur les suites.

Rappels sur les suites. UFR SFA, Licence 2 e année, MATH326 Rappels sur les suies. Dans oue la suie, K désigne R ou C. 1. Généraliés sur les suies. Définiion. Une suie à valeurs dans K es une applicaion u de N, privé évenuellemen

Plus en détail

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1 Lycée Thiers CORRECTION FX 6 E D abord, les réponses : A = ; B = 3 D = ; C = 3 9 e 8 ; E = e ; F = ln e + G = e ; H = π ; I = J = π + 3 8 ; K = 3π 8 ; L = + e π M = ln ; N = π ; P = π 8 ln 4 Q = e + ln

Plus en détail

CORRIGÉ DE L ÉPREUVE MATHS 1 CENTRALE On aura souvent besoin dans ce problème du critère continu de convergence dominée de Lebesgue :

CORRIGÉ DE L ÉPREUVE MATHS 1 CENTRALE On aura souvent besoin dans ce problème du critère continu de convergence dominée de Lebesgue : CORRIGÉ DE L ÉPREUVE MATHS CENTRALE 4 On aura souven besoin dans ce problème du crière coninu de convergence dominée de Lebesgue : si lim f(x, ) = g(), s il exise ϕ inégrable sur I elle que I, f(x, ) ϕ()

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

I. Exercice préliminaire

I. Exercice préliminaire SESSION 00 CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES I. Exercice préliaire 1. H = Γ Γ = 1 1 1 1 1 1 1 1 = 5 5 5 5. 1 1 1 1 5 5 H es une marice symérique réelle. D après le héorème specral,

Plus en détail

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur.

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur. Corrigé de l éreuve Mah C, Banque PT Nahalie Planche Préambule:. Pour ou réel, car y es soluion de ( ) e a ne s annule as sur. = On a donc bien monré que es soluion du sysème différeniel (S) :. L équaion

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

Fonctions de Bessel : comportement à l infini

Fonctions de Bessel : comportement à l infini Prépa. Agrég écri d Analyse, avril 23. Foncions de Bessel : comporemen à l infini 1. Éude au moyen de l équaion différenielle Voir Chaerji volume 3, secions 2.6 e 2.7. On suppose que n es un enier e que

Plus en détail

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction.

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction. Universié Claude Bernard Lyon I Licence roisième année : calcul différeniel Année 2004-2005 Quelques correcions. 1 Correcions d exercices sur la feuille numéro 2 : différenielle d une foncion. Correcion

Plus en détail

Mathématiques ESSEC Option Scientifique, 2016

Mathématiques ESSEC Option Scientifique, 2016 Mahémaiques ESSEC Opion Scienifique, 6 Proposiion de corrigé Parie I. Soi x R\Z. Pour ou n N, n x e on a x u n x n + n d où u x nx n + n x La série de erme général es une série de Riemann convergene. Donc

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

5. 1 Définition Propriétés

5. 1 Définition Propriétés 5 Inégraion 5.1 Définiion Propriéés 5.2 Procédés de calcul d inégrales a Reconnaîre une dérivée b Inégrer par paries c Changer de variables d Inégrer des fracions raionnelles 5. 1 Définiion Propriéés Définiion:

Plus en détail

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire Cours de mahémaiques appliquées à la nance Produi scalaire, orhogonalié Séparaion des convexes e lemme de Farkas Applicaion: évaluaion par arbirage en déerminise Caherine Bruneau Année 2009-2010 1 Produi

Plus en détail

Solutions Feuille de Travaux Dirigés semaine 12

Solutions Feuille de Travaux Dirigés semaine 12 Universié de Tours Licence de Mahémaiques Soluions Feuille de Travau Dirigés semaine 2 L3, Algèbre Semesre 6 Eercice ) Déerminer oues les marices de R 3 ayan pour polynôme minimal X + Soluion: Soi A une

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

DM de préparation au Partiel du 12 avril 2018

DM de préparation au Partiel du 12 avril 2018 Universié Paris Descares UFR Mah-Info Licence MAE 6-7 Analyse 4 - Séries de Fourier; Foncions de plusieurs variables; Inégrales à paramère DM de préparaion au Pariel du avril 8 Les calcularices e les éléphones

Plus en détail

CONCOURS D ADMISSION 2004

CONCOURS D ADMISSION 2004 A 4 Mah MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Exemple de calcul d intégrale

Exemple de calcul d intégrale . Corrigés Devoir Libre n 7 (Pr. Pae) Inégrales à paramère Eemple de calcul d inégrale MP- Blague du jour C es un ype qui se promène dans la rue, e accroché sur la pore d une enrée d un jardin, il voi

Plus en détail

2 PC. Figure 1 Tracé de quelques solutions de l équation différentielle tx 2x = t.

2 PC. Figure 1 Tracé de quelques solutions de l équation différentielle tx 2x = t. PC Équaions différenielles linéaires 1 - Chapire 11 Équaions différenielles linéaires En première année on éé éudiées les équaions différenielles linéaires du premier ordre : y + a)y = b) où a e b son

Plus en détail

Espaces préhilbertiens réels et espaces euclidiens

Espaces préhilbertiens réels et espaces euclidiens Espaces préhilberiens réels e espaces euclidiens 0 Rappels de première année 0. Produi scalaire réel, espace euclidien Définiion 0... Produi scalaire réel Ean donné un Respace vecoriel E, on appelle produi

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail