Chapitre 14 - Fonctions de plusieurs variables - Corrigés

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 14 - Fonctions de plusieurs variables - Corrigés"

Transcription

1 Chapire 4 Foncions de plusieurs variables Exercice : Si adme une limie, alors comme y) = x, 0) = cee limie es nécessairemen nulle De plus, si adme 0 pour limie en 0), alors la oncion, ) adme 0 pour limie en 0 Comme, ) = a+b, on obien nécessairemen que a + b > Réciproquemen, si a + b >, on a x, y) x, y) a x, y) b x, y) = x, y) a+b x,y) 0) donc par comparaison x, y) adme 0 pour limie en 0) Exercice : La oncion es coninues sur R \ { 0)} par composée de oncions coninues En l origine, on a x, y) x, y) x, y) 3/ = x, y) / 0 = 0), x,y) 0) donc la oncion es aussi coninue en 0), donc sur R La oncion es adme des dérivées parielles sur R \ { 0)} par composée de oncions de classe C En l origine, on a, 0) 0) = / +, ) 0) = donc adme une dérivée parielle par rappor à y, mais pas par rappor à x Exercice 3 : Pour on a, ) = donc n es pas coninue en 0) + = 0 = 0), 0 On uilise la déiniion des dérivées parielles On a, 0) 0) = 0 0 ) 0) donc adme des dérivées parielles en 0) e on a 0) = 0) = 0 = 0 0 Exercice 4 : La oncion es de classe C sur R \ { 0)} par composée de oncions de classe C Les dérivées parielles de sur R \{ 0)} son données par En l origine, on a, 0) 0) x, y) = x lnx + y ) + xx y ) x + y, x, y) = y lnx + y ) + yx y ) x + y = ln ) 0 ) 0) = ln ) 0 donc les dérivées parielles de en 0) exisen e son nulles Pour conclure, il au monrer que les dérivées parielles son coninues sur R On a x, y) x, y) ln x, y) ) + x, y) x,y) 0) donc la dérivée parielle de par rappor à x es coninue sur R De même, la dérivée parielle de par rappor à y es coninue sur R, donc es de classe C sur R /6

2 Exercice 5 : On uilise le changemen de variable u, v) = x + y, 3x + y) x, y) = v u, 3u v) La oncion F : R R déinie par F u, v) = v u, 3u v) es de classe C e on a On en dédui que u, v) = = x, y) u, v) + x, y) + 3 x, y) x, y) u, v) es soluion de E) = 0 = 0 Il exise donc h : R R de classe C elle que F u, v) = hv) pour ou couple u, v) R On conclu que les soluions de E) son les oncions x, y) R, x, y) = F u, v) = hv) = h3x + y) où h : R R es de classe C Exercice 6 : On uilise le changemen de variable u, v) = x + y, x + 3y) x, y) = 3u v, v u) La oncion F : R R déinie par F u, v) = 3u v, v u) es de classe C e on a On en dédui que u, v) = = 3 x, y) u, v) + x, y) x, y) x, y) u, v) es soluion de E) = F C es une équaion diérenielle d ordre en u que l on sai résoudre On en dédui qu il exise une oncion h : R R de classe C elle que u, v) R, F u, v) = hv) expu) Finalemen, les soluions de E) son les oncions x, y) R, x, y) = F u, v) = hx + 3y) expx + y) où h : R R es de classe C Exercice 7 : On uilise le changemen de variable x, y) = r cosθ), r sinθ)) La oncion F : R R déinie par F r, θ) = r cosθ), r sinθ)) es de classe C e on a θ On en dédui que r, θ) = x, y) θ = r sinθ) r, θ) + x, y) r, θ) θ x, y) + r cosθ) x, y) es soluion de E) θ = F C es une équaion diérenielle d ordre en θ que l on sai résoudre On en dédui qu il exise une oncion h : R R de classe C elle que u, v) R, F r, θ) = hr) exp θ) Finalemen, comme x > on a θ ] π, π [, les soluions de E) son les oncions ) y x, y) R, x, y) = F u, v) = h x + y exp Arcan, x)) /6

3 où h : R R es de classe C En noan g = h, on remarque que l ensemble des soluions de E) peu se réécrire x, y) = g x + y ) y exp Arcan x)) où g : R R es de classe C Exercice 8 : On uilise le changemen de variable x, y) = r cosθ), r sinθ)) La oncion F : R R déinie par F r, θ) = r cosθ), r sinθ)) es de classe C e on a r On en dédui que r, θ) = x, y) r = cosθ) r, θ) + x, y) r, θ) r x, y) + sinθ) x, y) es soluion de E) r = On en dédui qu il exise une oncion h : R R de classe C elle que u, v) R, F r, θ) = r + hθ) Finalemen, comme x > on a θ ] π, π [, les soluions de E) son les oncions y x, y) R, x, y) = F u, v) = x + y + h Arcan x)) En noan g = h Arcan, on remarque que l ensemble des soluions de E) peu se réécrire y x, y) = x + y + g x) où g : R R es de classe C Exercice 9 : On uilise le changemen de variable u + v u, v) = x + y, x y) x, y) =, u v ) La oncion F : R R déinie par F u, v) = u + v)/, u v)/) es de classe C e on a u, v) = x, y) = u, v) + ) x, y) + x, y) x, y) u, v) On dérive une seconde ois par rappor à v On obien F u, v) = v + )) x, y) u, v) v + + )) = ) 4 x, y) + x, y) 4 = ) 4 x, y) x, y) On en dédui que es soluion de E) F v = 0 x, y) u, v) v x, y) + x, y) On en dédui qu il exise deux oncions h, k : R R de classe C elles que u, v R, F u, v) = hu) + kv) Finalemen, les soluions de E) son les oncions x, y R, x, y) = hx + y) + kx y) où h : R R e k : R R son des oncions de classe C ) 3/6

4 Exercice 0 : D après le cours, on a F ) = x +, y + ) + x +, y + ) Si la oncion vériie la relaion de l énoncé, alors la oncion F es nulle, donc F 0) = ce qui donne le sens direc avec la première quesion Réciproquemen, si es soluion de l équaion aux dérivées parielles, on a d après la première quesion que F = 0 On en dédui que F es consane Comme F 0) = on obien que F es nulle, d où le résula Exercice : En dérivan par rappor à la relaion de l énoncé, on obien x, y)x + x, y)y = αα x, y), ce qui donne le résula en prenan = Réciproquemen, on ixe x, y) R e on considère la oncion ϕ : R + R, ϕ) = x, y) α x, y) La oncion ϕ es de classe C En calculan sa dérivée comme dans la quesion e en uilisan l hypohèse, on rouve que ϕ es soluion de l équaion diérenielle y = α/)y Comme y) = on en dédui par unicié de la soluion d un problème de Cauchy, que ϕ = ce qui monre la réciproque Exercice : i) Les soluions son x, y) = e xy + 3x + C avec C R ii) Les soluions son x, y) = e x y + y + C avec C R iii) Il n y a pas se soluion iv) Les soluions son x, y) = e x + sinxy) + C avec C R Exercice 3 : La oncion es coninue sur le ermé borné T, donc elle adme un maximum e un minimum global sur T On déermine les poins criiques de sur l ouver 0 y T U = {x, y) R x > y > x + y < } Après résoluion, l applicaion adme un unique poin criique en /3, /3) e on a 3, = 3) 7 Les poins de T s écriven ),, 0) e, ) avec 0 Or, 0) = ) =, ) = 0 x On conclu que le maximum de es /7 e es aein en /3, /3) Le minimum de es 0 e es aein sur les poins du bord de T 4/6

5 Exercice 4 : La oncion es coninue sur le ermé borné C = [ π/], donc elle adme un maximum e un minimum global sur C On déermine les poins criiques de sur l ouver U =] π/[ Après résoluion, l applicaion adme un unique poin criique en π/3, π/3) e on a π 3, π ) 3 = Les poins de C s écriven ),, 0),, π/), π/, ) avec 0 π/ Or, 0) = ) = 0 andis que, π ) ) ) π π =, = sin) sin + = sin) cos) = sin) On en dédui que le maximum de sur C es / e son minimum es 0 Finalemen, le maximum de es 3 3/8 e es aein en π/3, π/3) Le minimum de es 0 e es aein sur [ π ] [ {0} {0} π ] { π, π )} Exercice 5 : La oncion es coninue sur le ermé borné C = [ ], donc elle adme un maximum e un minimum global sur C On déermine les poins criiques de sur l ouver U =] [ Après résoluion, l applicaion n adme pas de poins criiques sur U Les exremums de la oncion son donc aeins sur C Les poins de C s écriven ),, 0),, ),, ) avec 0 On a, 0) =, ) = 3 +, ) = 3,, ) = 3 + En éudian ces oncions, on obien que le maximum de es e es aein en, 0) e, ) Son minimum es /3 3) e es aein en / 3) Exercice 6 : La oncion es coninue sur le ermé borné D, donc elle adme un maximum e un minimum global sur D On déermine les poins criiques de sur l ouver U = {x, y) R x + y < 4} Après résoluion, l applicaion adme un unique poin criique en 0) e on a 0) = 0 Les poins de C s écriven cos), sin)) avec 0 π On a cos), sin)) = 6 cos 4 ) + 6 sin 4 ) 8cos) sin)) = 8 sin ) + 8 sin) + 8 En posan X = sin), il au donc déerminer le maximum e le minimum de la oncion X 8X + 8X + 8 pour X Après une éude de oncion, on en dédui que le maximum de es 0 e es aein en π π cos, sin, ) )) cos 3π ) 5π cos, sin ) )), sin e 3π Le minimum de es 8 e es aein en ), e )) 5π,, cos ) ) 7π, sin )) 7π 5/6

6 Exercice 7 : La oncion es coninue sur le ermé borné D, donc elle adme un maximum e un minimum global sur D y Exercice 8 : On peu supposer qu une des sommes du riangle se rouve en, 0) Un riangle sur le cercle C peu se représener par y β α 0 D x x On déermine les poins criiques de sur l ouver U = {x, y) R x < y < x } Après résoluion, l applicaion adme un unique poin criique en 0) e on a 0) = 0 Les poins de T s écriven, ) e, ) avec Or, ) = e, ) = 4 + En éudian la seconde oncion, on conclu que le maximum de es e es aein sur {, ) R } { )} Le minimum de es 0 e es aein en 0) On inrodui donc l ensemble ermé borné T = {α, β) R 0 α β π} Le périmère du riangle dessiné ci-dessus es donné par ) ) )) α β α β α, β) = sin + sin + sin La oncion es coninue sur le ermé borné T, donc elle adme un maximum e un minimum global sur T On déermine les poins criiques de sur l ouver U = {α, β) R 0 < α < β < π} Après résoluion, l applicaion adme un unique poin criique en π/3, 4π/3) e on a π 3, 4π ) = Les poins de T s écriven, ), ), π) avec 0 π Or, ) = ) =, π) = 4 sin 4 < 3 ) 3, donc le maximum de es 3 3 e es aein en π/3, 4π/3) En revenan au problème de dépar, on rouve que les riangles inscris dans le cercle unié de périmère maximal son les riangles équilaéraux Leur périmère vau 3 3 6/6

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

CORRECTION «SEMI-MARATHON»

CORRECTION «SEMI-MARATHON» Lycée Thiers CORRECTION «SEMI-MARATHON» Q- Calculer A = e ln ( IPP : u ( = ; v ( = ln ( u ( = ; v ( = Q- Calculer B = B = Q- Calculer C = π A = + + [ ] e e ln ( = e ( e = e + + + + = [ ( ] ln + + [arcan

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

e t e itx e t e itx x (x, t) = i te t e itx. x te t

e t e itx e t e itx x (x, t) = i te t e itx. x te t Correcion ES-Analyse - ES - - 15-16 - Correcion - Analyse I Exercice 1. On remarque d abord que f es bien définie pour ou x. En effe, on a : e e ix e. Cee foncion es inégrable sur [, + [, car en elle es

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

Devoir de Mathématiques 3 : corrigé

Devoir de Mathématiques 3 : corrigé PCSI 4-5 Mahémaiques Lycée Berran de Born Devoir de Mahémaiques 3 : corrigé Exercice. Éude d une foncion en noaion puissance On considère la foncion f définie par f(x) = x x = e x ln(x) La foncion foncion

Plus en détail

Devoir Surveillé d Analyse 4

Devoir Surveillé d Analyse 4 Devoir Surveillé d Analyse 4 Jeudi 5 novembre 29 durée : h3 (8h3 h) Année universiaire 29-2 2ème année STPI **** Tous documens e appareils élecroniques inerdis **** Exercice Éudier la convergence des inégrales

Plus en détail

Mathématiques MP - Corrigé du DS 3

Mathématiques MP - Corrigé du DS 3 Mahémaiques MP - Corrigé du DS 3 Exercice a d C (R e, d ( = sin( d es donc croissane sur R On a donc, d( d( e donc >, cos( De plus pour >, cos( car cos b δ es de classe C sur R e, δ ( = sin( e δ ( = cos(

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

Intégrales fonctions des bornes

Intégrales fonctions des bornes [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Enoncés Inégrales foncions des bornes Eercice [ 987 ] [Correcion] Soi f : R R une foncion coninue. Jusier que les foncions g : R R suivanes son de classe

Plus en détail

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt Donner une primiive sur un ensemble à préciser de f : +. Corrigé : La foncion f es définie sur R, ainsi on va en déerminer une primiive sur ], [ ou sur ], + [. On a : + d + d uu + du Ceci en posan u, on

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1 Lycée Thiers CORRECTION FX 6 E D abord, les réponses : A = ; B = 3 D = ; C = 3 9 e 8 ; E = e ; F = ln e + G = e ; H = π ; I = J = π + 3 8 ; K = 3π 8 ; L = + e π M = ln ; N = π ; P = π 8 ln 4 Q = e + ln

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

Macroéconomie - Croissance

Macroéconomie - Croissance Macroéconomie - Croissance Licence 3 Sepembre 208 Rappels sur les dérivées. Eude d une foncion Une foncion es : croissane lorsque sa dérivée es posiive ; décroissane lorsque sa dérivée es négaive ; consane

Plus en détail

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p.

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p. Lycée Thiers CORRECTION DS - Enoncé ) On développe en uilisan les hypohèses : ( f a ide ) ( f b ide ) = f 2 (a + b) f + ab id E = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) = 2) On reprend le

Plus en détail

Devoir surveillé n o 5 (4

Devoir surveillé n o 5 (4 Devoir surveillé n o 5 4 heures) Ce devoir es consiué d'un eercice e de deu problèmes de concours)l'ordre des eercices ne correspond à aucun crière de diculé ou de longueur : vous pouvez les raier dans

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Juin 2007 (2 heures et 30 minutes)

Juin 2007 (2 heures et 30 minutes) Juin 7 ( heures e minues) 1. a) Définir : marice inversible. (.5 p.) b) Démonrer que la ransposée de l inverse d une marice inversible A es égale à l inverse de la ransposée de cee marice. (1.5 ps.) c)

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017 Feuille Primiives e équaions diérenielles linéaires. ed Déerminer, pour les équaions diérenielles suivanes, les ensembles de soluions. y y = sin 3 y + y = e 3 y + y coan = sin 4 + y + y = + 5 y + y = sin

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it)

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it) Lycée du Parc PCSI 84 15-16 Devoir surveillé corrigé Eercice 1 1 En uilisan les formules d Euler, on linéarise 4 (cos ( : ( e 4 (cos i e i 4 ( e i + e i ( = i = 1 ( e 4i 6 4e i + 6 4e i + e 4i ( e i +

Plus en détail

Feuille d exercices n o 19

Feuille d exercices n o 19 Mahémaiques spéciales Feuille d eercices n o 9 Eercices basiques a. Convergence e calcul d inégrales Eercice 5. ln. sin e d 4. ( e ln e Eercice. e ( cos. e + Eercice ln. + e ln ln ( d Eercice 4. Pour α,

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

e3a PC Mathématiques 3

e3a PC Mathématiques 3 e3a PC Mahémaiques 3 Problème Le exe définissai une norme sur l espace vecoriel des marices réelles à p lignes e q colonnes, p, q e demandai d admere une inégalié sur ces normes. Si dans on considère les

Plus en détail

Équations différentielles

Équations différentielles V. Équaions différenielles 1 Primiive d une foncion Définiion 1. On appelle primiive d une foncion f une soluion de l équaion différenielle y = f. Exercice 1. Déerminer une soluion de l équaion différenielle

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

1. Question 1 (1) Calculs des dérivées partielles. = x 2 + y (x y)(2x) = 3x 2 + y 2 2xy 1

1. Question 1 (1) Calculs des dérivées partielles. = x 2 + y (x y)(2x) = 3x 2 + y 2 2xy 1 . Quesion () Calculs des dérivées parielles ( )( + ) = ( + ) ( ) + ( ) ( + ) = + + ( )() = 3 + ( )( + ) = ( + ) ( ) + ( ) ( + ) e leur somme = ( + ) ( ) + ( ) () = 3 + + f + f = () Le poin (, ) un poin

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Mines Math1 PSI Un corrigé

Mines Math1 PSI Un corrigé Mines 26 - Mah PSI Un corrigé Préliminaire Le cours nous apprend que pour ou réel α, on a x ], [, ( + x α + En choisissan α /2 e en subsiuan x à x, on a donc α(α (α + x! x ], [, x + a x avec a 2, : a +

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7).

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7). Corrigé du TD n 4 Eercice. Nous allons calculer à chaque fois une primiive. Connaissan une primiive, les primiives son les foncions égales à la primiive calculée à une consane près (la consigne éan de

Plus en détail

Examen de janvier 2012

Examen de janvier 2012 Insiu Tunis-Dauphine Inégrale de Lebesgue e Probabiliés Examen de janvier 212 Deux heures. Sans documen, ni calcularice, ni éléphone, ec. Chaque quesion numéroée vau le même nombre de poins. Il es demandé

Plus en détail

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes.

Corrigé de l épreuve Math 1 de CCP, PSI 2012 Luc Verschueren, Lycée Daudet à Nîmes. Corrigé de l épreuve Mah de CCP, PSI 22 Luc Verschueren, Lycée Daude à Nîmes. Parie I Cas d une marice à coefficiens consans. Quesion I.. La foncion X définie par X : e V es dérivable surre X e V (coefficien

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

CORRIGÉ DE L ÉPREUVE MATHS 1 CENTRALE On aura souvent besoin dans ce problème du critère continu de convergence dominée de Lebesgue :

CORRIGÉ DE L ÉPREUVE MATHS 1 CENTRALE On aura souvent besoin dans ce problème du critère continu de convergence dominée de Lebesgue : CORRIGÉ DE L ÉPREUVE MATHS CENTRALE 4 On aura souven besoin dans ce problème du crière coninu de convergence dominée de Lebesgue : si lim f(x, ) = g(), s il exise ϕ inégrable sur I elle que I, f(x, ) ϕ()

Plus en détail

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé Planche n o 8. Inégraion sur un inervalle quelconque. Corrigé Eercice n o Pour, +4+ e donc la foncion f : + +4+ es coninue sur [,+ [. Quand end vers +, + 3 +4+ = ++ +4+ 3 3. Comme la foncion es posiive

Plus en détail

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP SESSION 5 Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mahémaiques A MP Parie I 1. Les soluions de l équaion différenielle E sur l inervalle I formen un R-espace vecoriel de dimension. Les

Plus en détail

DM de préparation au Partiel du 12 avril 2018

DM de préparation au Partiel du 12 avril 2018 Universié Paris Descares UFR Mah-Info Licence MAE 6-7 Analyse 4 - Séries de Fourier; Foncions de plusieurs variables; Inégrales à paramère DM de préparaion au Pariel du avril 8 Les calcularices e les éléphones

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

MATHÉMATIQUES I. Partie I - Calculs préliminaires

MATHÉMATIQUES I. Partie I - Calculs préliminaires MATHÉMATIQUES I Parie I - Calculs préliminaires Dans ou ce problème a e v désignen deux nombres réels, a es sricemen posiif IA - Monrer que la foncion ϕ définie sur IR * par ( sin( x) ) ϕ( x) = adme un

Plus en détail

UE LM336 Année Feuille de TD 4

UE LM336 Année Feuille de TD 4 Universié Pierre & Marie Curie Licence de Mahémaiques L3 UE LM336 Année 2013 14 Feuille de TD 4 Exercice 1 Reprendre l exercice 2 de la feuille 1 de manière rigoureuse Concrèemen, pour chacune des équaions

Plus en détail

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur.

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur. Corrigé de l éreuve Mah C, Banque PT Nahalie Planche Préambule:. Pour ou réel, car y es soluion de ( ) e a ne s annule as sur. = On a donc bien monré que es soluion du sysème différeniel (S) :. L équaion

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

Chapitre VIII : Trigonométrie

Chapitre VIII : Trigonométrie hapire V : Trigonomérie Exrai du programme : Dans ce chapire, on muni le plan du repère orhonormé (; ;. Repérage sur le cercle rigonomérique Définiion Le cercle rigonomérique es le cercle de cenre e de

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Les calculatrices sont autorisées. ****

Les calculatrices sont autorisées. **** Les calcularices son auorisées B Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené à repérer ce qui peu lui sembler êre une erreur

Plus en détail

I = 3 ln x ln 1 x + x2 + 1 ( )] x 1/2 I = lnx (1 + x) 2 dx On effectue une par parties. 1 + x lnx dx. = ln

I = 3 ln x ln 1 x + x2 + 1 ( )] x 1/2 I = lnx (1 + x) 2 dx On effectue une par parties. 1 + x lnx dx. = ln MATHEMATIQUES TD N 6 : INTEGRALES GENERALISEES - Corrigé. R&T Sain-Malo - ère année - 9/ I. Calculer 4. ci-dessus! 7. 8. 9.. e [ e ] + + [arcan]+ π π 4 π 4 ln [ln ] lim + ln ln ln C es le même que ( +

Plus en détail

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x.

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x. Universié Aboubekr Belkaïd Tlemcen A.U. 2018/2019 Faculé des Sciences / Déparemen de Mahémaiques Final : Equaions Différenielles [Licence L3 S5] 14 janvier 2019 2h00 Exercice 1: Soi l edo écrie sous la

Plus en détail

Corrigé TD 12 Fonctions caractéristiques

Corrigé TD 12 Fonctions caractéristiques Corrigé TD Foncions caracérisiques Eercice. Sur un espace de probabilié (Ω, F, P, on se donne (X, Y une variable aléaoire à valeurs dans.. On suppose que la loi de (X, Y es λµe λ µy + (, y d dy. Déerminer

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

ECS 2 B Correction du DM d analyse de Toussaint. I. Existence et propriétés élémentaires de l opérateur U

ECS 2 B Correction du DM d analyse de Toussaint. I. Existence et propriétés élémentaires de l opérateur U ECS 2 B Correcion du DM d analyse de Toussain I. Eisence e propriéés élémenaires de l opéraeur U. Eude de l équaion (E f a. Soi f E, y C (I, R e h : e a y(. h es dérivable sur I e pour ou I, h ( = (y (

Plus en détail

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR)

MATHÉMATIQUES II. On note A la matrice transposée d une matrice A. On note det( A) le déterminant d une matrice A appartenant à M n ( IR) Dans ou le problème, n es un enier naurel supérieur ou égal à 2 On noe l ensemble des marices carrées réelles de aille n e M n ( IC ) l ensemble des marices carrées complexes de aille n On noe A la marice

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires

MATHÉMATIQUES II. , on convient d appeler écriture de A par blocs l écriture. Partie I - Questions préliminaires MATHÉMATIQUES II Dans ou le problème, Π es un plan euclidien oriené rapporé à un repère orhonormé direc ( O; i, j) On rappelle que les déplacemens de Π son les roaions e les ranslaions de ce plan On noera

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Fonctions de Bessel : comportement à l infini

Fonctions de Bessel : comportement à l infini Prépa. Agrég écri d Analyse, avril 23. Foncions de Bessel : comporemen à l infini 1. Éude au moyen de l équaion différenielle Voir Chaerji volume 3, secions 2.6 e 2.7. On suppose que n es un enier e que

Plus en détail

********* ON SERA TRÈS VIGILANT À LA QUALITÉ DE LA RÉDACTION. *********

********* ON SERA TRÈS VIGILANT À LA QUALITÉ DE LA RÉDACTION. ********* Licence 3 Inégraion e Probabiliés Devoir surveillé du 20 juin 206 durée 3h ********* Les calcularices e les documens son inerdis. ON SERA TRÈS VIGILANT À LA QUALITÉ DE LA RÉDACTION. Eercice *********.

Plus en détail

Série n 2 : Résolution numériques des EDO.

Série n 2 : Résolution numériques des EDO. Universié Claude Bernard, Lyon I Licence Sciences & Tecnologies 43, boulevard 11 novembre 1918 Spécialié Maémaiques 696 Villeurbanne cedex, France Opion: MAO 007-008 Série n : Résoluion numériques des

Plus en détail

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année

Techniques Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Techniques ahémaiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 1 1 Exercice 1 1.a Rappel sur les coniques Les coniques inerviennen dans un nombre d applicaions

Plus en détail

Examen du cours MOPSI 11 février 2011, 08h30-12h00.

Examen du cours MOPSI 11 février 2011, 08h30-12h00. Examen du cours MOPSI février, 8h3-h. Corrigé. Exercice : un principe de réflexion pour la marche aléaoire sur Z. Soi x,..., x n Z n+. PΣ = x,..., Σ n = x n = { n si x = e i {,..., n}, x i+ x i =, sinon.

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1

Exemple fondamental: par définition, la fonction exponentielle est l unique solution sur l équation différentielle y = y et y(0) = 1 Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. 1. Equaions différenielles linéaires du 1 er ordre 1.1 Présenaion Résoudre une équaion

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

FICHE TD 1 Corrigé de l exercice 2

FICHE TD 1 Corrigé de l exercice 2 Universié Lyon PCSI L Année 3/4 Mahémaiques 4 Prinemps 4 I = FICHE TD Corrigé de l exercice Disribuions e d. La foncion e es coninue sur (l inervalle fermé en [, [, donc il fau éudier l inégrabilié vers

Plus en détail

Équations différentielles linéaires

Équations différentielles linéaires UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universiaire 207 208 Licence d économie Cours de M. Desgraupes MATHÉMATIQUES DES SYSTÈMES DYNAMIQUES Corrigé du TD Équaions différenielles

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

Lycée Pierre de Fermat 2018/2019. Calcul intégral

Lycée Pierre de Fermat 2018/2019. Calcul intégral Lycée Pierre de Ferma 8/9 MPSI TD Calcul inégral Calculs d inégrales par primiivaion direce Exercice Calcul d inégrales primiives usuelles Calculer les inégrales ci-dessous en déerminan direcemen une primiive

Plus en détail

Intégrales paramétrées

Intégrales paramétrées Lycée Faidherbe, Lille PC* 8 9 Feuille d eercices du chapire Inégrales paramérées Cenrale PC 7 ) ln + n Limie de n + ) d. X 6 Soi f coninue e bornée de [; [ vers. Prouver l eisence nf ) de I n = d e calculer

Plus en détail

1. a) Le débit étant constant, sa représentation graphique est une droite horizontale.

1. a) Le débit étant constant, sa représentation graphique est une droite horizontale. Chapire Inégraion : une inroducion CHAPITRE EXERCICES.. a) Le débi éan consan, sa représenaion graphique es une droie horizonale. Débi (L/min) 7 00 00 D() b) Le volume de liquide es représené par l aire

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I.

Résoudre ou intégrer (E) sur I c est trouver toutes les fonctions f solutions de (E) sur I. Chapire 7: Equaions différenielles-résumé de cours Dans ce chapire I désigne un inervalle non rivial e désigne ou. Inroducion : Noion d équaions différenielles : Une équaion différenielle (E) es une équaion

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

PARTIE I - Exemple 1

PARTIE I - Exemple 1 PRELIMINAIRES ² On noera qu'il es di dans la roisiµeme parie que N (f ) N (f ), ce qui donne un conr^ole (rµes pariel) des calculs des deux premiµeres paries. ² Dans ou le problµeme je noe Á les foncions

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Eude mérique des courbes Exercices de Jean-Louis ouge erouver aussi cee fiche sur wwwmahs-francefr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

TS1 - Contrôle n 6 de mathématiques

TS1 - Contrôle n 6 de mathématiques TS1 - Conrôle n 6 de mahémaiques Eercice 1 Le plan es rapporé à un repère orhogonal (O ; i ; j ). 1) Eude d'une foncion f On considère la foncion f définie sur l'inervalle ]0 ; + [ par f() = ln ( ) i ;

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

Analyse dimensionnelle et similitude. Plan du chapitre 5

Analyse dimensionnelle et similitude. Plan du chapitre 5 Chapire 5 ( heures) Analse dimensionnelle e similiude Plan du chapire 5 Inroducion e définiions Analse dimensionnelle des équaions de bilan: - orme adimensionnelle des équaions de coninuié e de Navier-Sokes.

Plus en détail

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt.

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt. Parie A ) Prouver que pour ou réel >, ln. ) En déduire que la foncion f :, e elle que f() =, es définie sur [;+ [. ln 3) a) Eudier la foncion f. En pariculier, f es-elle dérivable en zéro? Sa courbe représenaive,

Plus en détail

CCP MP maths 1

CCP MP maths 1 Psi 945 4/5 hp://blog.psi945.fr DM - corrigé CCP MP - mahs. (a) Supposons f posiive : il y a équivalence enre les deu proposiions ; c es une conséquence assez direce de la définiion de l inégrabilié, via

Plus en détail