Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b"

Transcription

1 Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et = b. Bernhrd Riemnn, le premier, donné une définition précise de l intégrle d une fonction. L idée fondmentle est l suivnte : on découpe le grphe de l fonction pr des lignes verticles. Dns chque bnde, on considère le rectngle de huteur mimle sous le grphe et le rectngle de huteur minimle u-dessus du grphe. Si, à mesure que l on resserre les lignes verticles, l somme des ires des petits rectngles tend vers l somme des ires des grnds rectngles, on dit que l fonction est intégrble u sens de Riemnn et l limite obtenue est l vleur de l intégrle que l on note : b f() On montre que cette limite eiste si l fonction f est continue sur [, b]. Pour et b connus, b f() est ppelée intégrle définie, c est un nombre. L vrible ne sert qu à décrire l fonction f, on b f() = b f(t) dt. L vrible peut être notée, t, u, y, etc, sns que cel chnge l vleur de ce nombre; on dit que l vrible est muette. Ce nombre est positif si < b et si f est positive sur [, b], mis ce peut être un nombre négtif, en prticulier si f est négtive sur [, b]. Primitive Si f est une fonction continue sur [, b], lors pour [, b], l intégrle supérieure vrie, désigne une fonction de l vrible ici notée F () = f(t) dt L fonction dérivée de F, si elle eiste, doit être l limite qund h tend vers de F ( + h) F () h = h = h ( +h +h f(t) dt f(t) dt ) f(t) dt f(t) dt où l borne Or si h est petit, l intégrle +h f(t) dt vut h f(c) vec c entre et + h. Comme f est supposée continue sur [, b], qund h tend vers, on f(c) f() et donc: Théorème Si f est continue sur [, b], lors F est dérivble pour à l intérieur de [, b] et F () = f() Une fonction, dont l dérivée est f, est ppelée une primitive de f. Une fonction une infinité de primitives obtenues en joutnt une constnte rbitrire à une primitive prticulière. L fonction f(t) dt désigne l primitive de f qui s nnule pour =. Nelly POINT Version

2 Connissnt une primitive quelconque, encore notée F, on peut clculer l intégrle définie sur [, b] pr qui représente l ire lgébrique. b f(t) dt = F (b) F () Remrque Si f est continue sur IR et si les fonctions u et v sont dérivbles sur IR, l fonction H() = v() u() f(t)dt = F (v()) F (u()) est ussi dérivble sur IR, et on H () = v () F (v()) u () F (u()) donc : d v() u() f(t)dt = v () f(v()) u () f(u()) Remrque Pour pouvoir clculer une intégrle, l continuité de f sur [, b] n est ps nécessire, il suffit que f soit continue et bornée pr morceu. On peut lors utiliser les propriétés précédentes sur chcun des intervlles où elle est continue. Remrque 3 L recherche de primitives est donc un outil très commode pour clculer des intégrles. Mlheureusement, un très grnd nombre de fonctions ont des primitives que l on ne peut ps epliciter à l ide des fonctions usuelles. Pr eemple l fonction e, ppelée Gussienne, est continue sur IR et dmet donc des primitives mis on ne peut ps les eprimer à l ide des fonctions usuelles. Leur usge, cournt en probbilité, mène à créer l fonction erf qui est définie pr erf() = Elle est tbulée en clculnt numériquement ses vleurs pour différents. Le coefficient est choisi tel que erf( ) =. Une utre intégrle de ce type, très utilisée dns le tritement du signl, est le sinus intégrl, qui est une primitive du sinus crdinl : e t dt Si() = sin t t dt 3 Méthodes d intégrtion 3. Utilistion de l linérité trnsformtion de produits en sommes ( à l ide de formules de trigonométrie) décomposition des frctions rtionnelles en sommes de fonctions simples 3. Chngement de vribles C est un outil très utile. Si on pose = ϕ(t) où ϕ est une fonction définie sur [α, β], dérivble et bijective de [α, β] sur [, b] et telle que ϕ(α) = et ϕ(β) = b lors on b f() = β α f(ϕ(t)) ϕ (t) dt vec α = ϕ () et β = ϕ (b) Nelly POINT Version

3 3.3 Intégrtion pr prties Formule qui découle de l formule bien connue de dérivtion d un produit : Elle peut s écrire : b (uv) = u v + u v u() v () = [u() v() ] b b u () v() L nottion différentielle du = u () et dv = v () permet une écriture plus synthétique pour les primitives : udv = uv vdu A utiliser dns des cs bien spécifiques : Pour intégrer le produit d un polynôme pr une eponentielle, pr un cosinus, ou pr un sinus. (on pose lors u() = P () pour voir de proche en proche des polynômes de degré de plus en plus petit dns l intégrle à clculer, jusqu à obtenir un polynôme de degré zéro donc constnt) Pour se débrrsser des fonctions trnscendntes qui ont des dérivées de type frctions rtionnelles comme ln(), tn(), et plus générlement ln(r()) où R est une frction rtionnelle etc.. (on pose lors u() = f() où f est l fonction trnscendnte ) 3.4 Intégrtion de frctions rtionnelles Une frction rtionnelle R est le quotient de deu polynômes P et Q. L méthode d intégrtion consiste, en générl, à décomposer cette frction en éléments simples sur IR (c.f. utours des polynômes). Ainsi on se rmène u clcul d intégrles de l forme : Or ( ) α ou { ( ) α = A + B ( + p + q) β + C ( α)( ) α si α ln + C si α = Pour les intégrles du deuième type, il fut mettre le dénominteur sous forme cnonique: puis fire le chngement de vribles : + p + q = ( + p ) + r + p = rt On obtient lors Ct + D (t + ) β dt = C t (t + ) β dt + D (t + ) β dt L première intégrle est de l forme du, l seconde s intègre en posnt t = tn θ cr u β dt = ( + (tn θ) ) dθ d où dθ = = cos θ dt et +t +(tn θ) Nelly POINT 3 Version

4 3.4. Frctions rtionnelles de fonctions trigonométriques R(cos, sin, tn ) On peut toujours fire le chngement de vrible t = tn (cr dt = d(tn ) = ( + (tn ) ) d où = dt) +t et utiliser les formules de trigonométrie sin = t + t, cos = t + t, tn = t t On se rmène lors à une frction rtionnelle en t : ( ) t R(cos, sin, tn ) = R + t, t + t, t t + t dt Mis il peut être plus judicieu d essyer les chngements de vrible suivnts t = cos, ou t = sin, ou t = tn, pour ne ps voir des polynômes de degré trop élevé Frctions rtionnelles de fonctions hyperboliques R(ch, sh, th) Le chngement de vrible e = t implique = dt t et rmène à une frction rtionnelle en t Frctions rtionnelles prticulières (intégrles béliennes) R(, n +b c+d ) où R est une frction rtionnelle, on fit le chngement de vrible : n + b c + d = t R(, + b + c) où R est une frction rtionnelle, on met + b + c sous l forme cnonique puis on fit un chngement de vrible dpté. Pr eemple pour t poser t = sin θ, pour + t poser t = sh θ, pour t et t poser t = ch θ. 4 Eemples. Utilistion de l linérité ) Trnsformtion de produit ( en somme cos(3) sin() = sin 5 sin ) = cos cos 5 + C b) Utilistion de formules connues tn () = ( tn () + ) = tn + C. Dérivtion d une intégrle dépendnt de ses bornes ) Soit H() = 3 sin t t dt, s dérivée est H () = 6 sin(3 ) et elle est définie pour > 3.(Bien qu on ne puisse ps clculer nlytiquement H, on peut étudier ses vritions grâce à s dérivée). b) Soit H() = 3 ep( t ) dt, s dérivée est H () = ep( 4 ) 3 ep( 9 ) Nelly POINT 4 Version

5 3. Chngement de vrible (primitive ou intégrle définie) ) Clculons les primitives de l fonction f() = cos 5 () sin() en fisnt le chngement de vrible t = cos. Alors dt = sin et on cos 5 () sin() = t 5 dt = t6 6 + C = cos6 () 6 + C. b) Pour clculer non ps une primitive mis une intégrle définie, on évite souvent de revenir en mis lors, il fut impértivement penser à chnger les bornes d intégrtion. Pr eemple : / cos 5 () sin() = t5 dt = [ ] t 6 6 = 6 t5 dt = Il est utile de vérifier, qund c est possible, l vlidité du signe trouvé. Ici, comme f() > sur ], /[, il est clir que le résultt doit être strictement positif. c) Pour clculer une intégrle définie, connissnt déjà une primitive on écrit directement [ ] / / cos 5 () sin() = cos6 () Chngement de vrible (vlidité) Soit l intégrle définie, c est une frction rtionnelle en sin, on peut donc +sin toujours fire le chngement de vrible tn = t, mis ici on peut plus simplement poser tn = t (cr sin = cos = ) et donc = dt. Or tn s nnule en et +t +t. Si on écrit +sin = +t dt on obtient l vleur, comme l fonction +t +t +sin est strictement positive sur ], [, l intégrle doit être positive. Chercher l erreur! 5. Intégrtion pr prties ) ln() L fonction ln() pour dérivée l frction rtionnelle u = ln() et dv =, on du = et v = Il vient ln() = ln() = ln() + C. Donc en posnt b) ( ) cos() Il suffit de poser u égl u polynôme, donc ici u = et dv = cos(). On lors du = et v = sin() d où [ ( ) cos() = ( ) sin() ] sin(). = sin() On refit une intégrtion pr prties en suivnt le même principe. Soit u = et dv = sin(), d où du = et v = cos(), lors [ ] sin() = cos() + cos() = ( ( ) ) + = 4 (Rq ( ) cos() sur [, ] ). c) P ()e α vec P polynôme et d P = n. Après n + intégrtions pr prties où l on pose dv = e α, on trouve ( P ()e α = e α P () α P () α )... + ( ) n P (n) () α n+ + P () α 3 + C P (3) () α Nelly POINT 5 Version

6 d) I() = e cos et J() = e sin On I() = e cos = e cos e sin = e cos + e sin e cos = e cos + e sin I() J() = e sin = e sin e cos = e sin e cos + e sin = e sin e cos + J() d où I() = e ( cos + sin ) + C J() = e ( cos sin ) + C On urit pu ussi noter que I() + ij() = = e (cos + i sin ) = ( i) e (cos + i sin ) + C e e i = e (+i) ( + i) + C On retrouve le même résultt en regroupnt les prties réelles et les prties imginires 6. Intégrtion d éléments simples ) où β est entier, (+ ) β en posnt = tn θ lors dθ = et = = cos θ, on obtient : + + +(tn θ) pour β = ( + ) = dθ = θ + C = rctn + C pour β = Il suffit lors de linériser cos θdθ = (cos(θ) + ) dθ = Donc D une mnière générle ( + ) = ( + ) = cos θ dθ ( sin(θ) + θ) + C ( ) + + rctn + C ( + ) β = cos (β ) θ dθ Il suffit toujours de linériser mis cel devient de plus en plus fstidieu. On peut vérifier pr eemple que = 3 (+ ) 3 8 rctn C ( +) b) 7, ici les pôles sont simples et complees conjugués. ( +4+3) On écrit le dénominteur sous l forme cnonique ( ) + b = = ( + ) = ( + ) + 9 et on fit le chngement de vrible t = b = ( +4+3) = 7 (+) +9 = t 3 t + dt = ln ( t + ) 3 rctn t + C = ln ( ) 3 rctn C ; domine ], [. d) 7 ( +4+3), ici les pôles sont complees conjugués mis multiples. On lors Nelly POINT 6 Version

7 7 = t 3 dt = t dt 3 ( +4+3) 9(t +) 8(t +) 9 dt (t +) Dns l première intégrle on fit le chngement de vrible u = t + d où du u = 8u + C. t dt = 8(t +) 8 L seconde été clculée plus hut ( t ) dt = (t +) t + + rctn t + C Finlement 7 = ( +4+3) 8(t +) 3 t t + 6 rctn t + C = 8( +4+3) + ( +4+3) 6 rctn C (Rq. si on clcule une intégrle définie, on chnge les bornes u fur et à mesure et on n ps à revenir en ) 7. Chngement de vrible ) Clculons l primitive de pour [, ]. Il suffit de poser u = d où du = et = ( u / du = u ) 3 3/ 3/ + C = 3 + C b) Clculons l primitive de pour [, ]. Le chngement de vrible précédent n est ps judicieu. Posons, comme conseillé en 3.4.3, = sin θ d où = cos θ dθ. Comme = sin θ = cos θ, si on choisit θ [, ], lors cos θ et donc = cos θ,. Finlement = cos θ dθ = ( sin(θ) + θ) + C = (sin θ cos θ + θ) + C = + rcsin() + C. 8. Décomposition de frctions rtionnelles en éléments simples ) Soit l frction rtionnelle R() = 5, elle est à coefficients réels, et ( )( 4+5) pôles réels et pôles complees conjugués cr = ( ) + s nnule pour = ± i. Comme le degré du numérteur moins celui du dénominteur vut, il y une prtie entière de degré, qu on clcule en fisnt l division euclidienne. On trouve l décomposition en éléments simples suivnte = ( ) ( + ) ( 4 + 5) Pour clculer l primitive du dernier terme, il fut mettre le dénominteur sous l forme cnonique ( ) + b et fire le chngement de vrible t = b = ( 4+5) 5 rctn t + ln ( t + ) + C = 7 5 rctn( ) + ln ( ) + C On donc 5 ( )( 4+5) = = ln + ln rctn( ) + ln ( ) + C Le domine de définition de cette primitive est ], [ ], [ ], + [. b) Soit l frction rtionnelle R() = 54 4 ( 4). Elle deu pôles doubles et - cr ( 4) = ( ) ( + ). Comme le numérteur et le dénominteur ont même degré, s prtie entière est de degré donc c est une constnte qui vut 5. L décomposition en éléments simples est donc de l forme R() = 54 + ( 4) = 5 + A ( ) + B ( + ) + C ( ) + D ( + ) Nelly POINT 7 Version

8 On vu que 54 4 = ( 4) 4( ) 35 4(+) + 5 d où le clcul de l primitive : = ( ( 4) 4( ) 35 4(+) ( ) + 5, ( ) (+) (+) ) = ln 4 ln C dont le domine de définition est ], [ ], [ ], + [. 9. Eercices d entrînement Clculer les intégrles indéfinies suivntes et préciser chque fois le domine de vlidité ) Intégrer à l ide d un chngement de vrible + 4 rctn + ( + ) 3 + b) Utiliser l linérité + sin 3 + c) Intégrer pr prties rctn rctn + d) Fire un chngement de vrible t = ( + ) puis fire une division selon les puissnces croissntes puis intégrer (3 + ) ( + ) 3 e) Chnger de vrible tn 3 3 ( + ) + sin 3 f) Décomposer en éléments simples ( + ) Clculer l intégrle définie suivnte (commencer pr une intégrtion pr prties puis fire un chngement de vrible = sin(t), et enfin terminer) I = ( ) rctn. Clculer en commençnt pr une intégrtion pr prties ( ) + I = ln Nelly POINT 8 Version

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques

COURS DE MATHÉMATIQUES SEMESTRE 1. Jean-Marie De Conto Université Joseph Fourier IUT1 Département Mesures Physiques COURS DE MATHÉMATIQUES SEMESTRE Jen-Mrie De Conto Université Joseph Fourier IUT Déprtement Mesures Phsiques Me contcter: sns hésiter À l IUT Au lbortoire: Lbortoire de Phsique Subtomique et de Cosmologie

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Fiche de cours 5 - Calcul intégral.

Fiche de cours 5 - Calcul intégral. Licence de Sciences et Technologies EM - Anlyse Primitives et intégrles Fiche de cours 5 - Clcul intégrl. Définition : soit deu fonctions f, F, définies sur un intervlle I non réduit à un point. L fonction

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3. Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Compléments de trigonométrie

Compléments de trigonométrie IUT Orsay Mesures Physiques Cours du er semestre Compléments de trigonométrie A. Les outils A-I. Notion de bijection, bijection réciproque Une application de E vers F est une bijection lorsque : tout élément

Plus en détail

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION

6.1 STRUCTURES PLANES FORMEES DE POUTRES RELATIONS ENTRE CHARGES ET ELEMENTS DE REDUCTION 6.1 STRUTURES PLES FOREES DE POUTRES RELTIOS ETRE HRGES ET ELEETS DE REDUTIO Les vritions des éléments de réduction,,, lorsqu'on psse d'une section à l'utre, sont liées pr des reltions fondmentles que

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur Chpitre 21 Clcul de primitives 21.1 Clcul prtique de primitives On note f(x une primitive de l fonction f sur l intervlle I. Cette nottion désigne une fonction, à ne ps confondre vec une intégrle définie

Plus en détail

Cours Intégrales Primitives 1 / 7 A Chevalley

Cours Intégrales Primitives 1 / 7 A Chevalley A 17 Primitives Intégrles Aleth Chevlley 1. Intégrle d une fonction continue 1.1. Définition Soit C l coure représenttive de f dns un repère orthonorml. L intégrle de à de l fonction f est l ire du domine

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque

Plus en détail

Fonctions affines ; Equations et inéquations

Fonctions affines ; Equations et inéquations Fonctions ffines ; Equtions et inéqutions I. Fonctions ffines.. Définition Définition d une fonction ffine : on ppelle fonction ffine toute fonction définie sur pr f ( ) où et sont des réels tels que.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) +

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) + Eo7 Intégrtion Eercices de Jen-Louis Rouget. Retrouver ussi cette fiche sur www.mths-frnce.fr * très fcile ** fcile *** difficulté moyenne **** difficile ***** très difficile I : Incontournble Eercice

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales simples

Cours de remise à niveau Maths 2ème année. Intégrales simples Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles

Plus en détail

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli

Chapitre 6 : Fonctions affines -28-01-12- Seconde 7, 2010-2011, Y. Angeli Chpitre 6 : Fonctions ffines -8-01-1- Seconde 7, 010-011, Y. Angeli 1. Éqution réduite d une droite Théorème. Dns un repère, soient A(x A ;y A ) et B(x B ;y B ) tels que x A x B. Alors l droite (AB) est

Plus en détail

Fiche Intégration MOSE Octobre 2014

Fiche Intégration MOSE Octobre 2014 Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl................................ Intégrle d une fonction de signe quelconque...............................

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Atelier 7 : Calcul Intégral

Atelier 7 : Calcul Intégral Atelier 7 : Clcul Intégrl Wlid ZGHAL 11 jnvier 6 1 Intégrle indéfinie Définition 1.1 Une fonction F est ppelée primitive d une fonction f si F (x) = f(x). Exemple 1 F (x) = x + sec(x) + 1 est une primitive

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.

CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL. CHAPITRE : FONCTION NEPERIEN. FONCTION LOGARITHME DECIMAL.. Fonction népérien (logrithme d une fonction composée). Théorème Si u est une fonction strictement positive et dérivble sur un intervlle I ouvert,

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

Transformations géodésiques en France Métropolitaine

Transformations géodésiques en France Métropolitaine Trnsformtions géodésiques en Frnce Métropolitine 1 Processus de chngement de système... 1.1 Définitions... 1. Similitude 3D à 7 prmètres... 1.3 Modèle «à 7 prmètres»... 3 1.4 Coordonnées géogrphiques (,,h)

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Le Calcul de Primitives

Le Calcul de Primitives Le Clcul de Primitives MPSI Prytnée Ntionl Militire Pscl Delhye 25 octobre 27 ϕ(x) f(u) du = f(ϕ(t) )ϕ (t) }{{}}{{} u du Résultts préliminires Définition : Primitives Soit deux fonctions f et F définies

Plus en détail

Exercices du chapitre 7 avec corrigé succinct

Exercices du chapitre 7 avec corrigé succinct Eercices du chpitre 7 vec corrigé succinct Eercice VII. Ch7-Eercice Montrer qu une fonction constnte sur [,b] est étgée. Si f est une fonction constnte sur [,b], lors il eiste bien une subdivision de [,b],

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Rappels. CH 2 Analyse : Continuité et limites. 4 ème Maths. Continuité et limite en réel. Activités pages 6 et 7. Opérations sur les limites :

Rappels. CH 2 Analyse : Continuité et limites. 4 ème Maths. Continuité et limite en réel. Activités pages 6 et 7. Opérations sur les limites : 4 ème Mths CH Anlyse : Continuité et ites Octobre 9 A. LAATAOUI Rppels Continuité et ite en réel Activités pges 6 et 7 Opértions sur les ites : Limite d une somme Si pour ite l l l + + Si g pour ite l

Plus en détail

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile.

Plus en détail

Coniques. Plan du chapitre

Coniques. Plan du chapitre Coniques Pln du chpitre Introduction.......pge Les coniques pr foyer, directrice et excentricité......pge. Définition.... pge. Intersection d une conique vec son xe focl.... pge 3 L prbole (e = ).... pge

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque [hp://mp.cpgedupuydelome.fr] édié le ocobre 5 Enoncés Inégrion sur un inervlle quelconque Inégrbilié Eercice [ 657 ] [Correcion] Éudier l eisence des inégrles suivnes : Eercice 5 [ 66 ] [Correcion] Monrer

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne

Techniques Mathématiques de Base UCBL L1 PCSI UE TMB. Programme du cours. Partie I : Algèbre linéaire et géométrie cartesienne UCBL L PCSI UE Techniques Mthémtiques de Bse Alessndr Frbetti Institut Cmille Jordn, Déprtement de Mthémtiques http://mth.univ-lyon.fr/ frbetti// Progrmme du cours Prtie I : Algèbre linéire et géométrie

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

CALCULS DE PRIMITIVES ET D INTÉGRALES

CALCULS DE PRIMITIVES ET D INTÉGRALES Christoph Brtult Mthémtiqus n MPSI CALCULS DE PRIMITIVES ET D INTÉGRALES C chpitr vis à rnforcr votr prtiqu du clcul intégrl u moyn d révisions ciblés t grâc à du nouvutés, l intégrtion pr prtis t l chngmnt

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Analyse 1 L1-mathématiques

Analyse 1 L1-mathématiques Anlyse L-mthémtiques Renud Leplideur Année 3-4 UBO Tble des mtières Inéglités et clculs 3. Nombres..................................... 3.. Les ensembles N, Z, Q et R...................... 3.. Les intervlles

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE 1.Logrithme Définition: On ppelle fonction logrithme népérien l primitive de l fonction 1/ définie sur l intervlle ]0 ;+ [ qui s nnule en 1. ln 1 dt t Cette fonction est définie,

Plus en détail

CH 1 Analyse : Continuité et limites

CH 1 Analyse : Continuité et limites CH Anlyse : Continuité et ites 4 ème Sciences Septembre 9 A. LAATAOUI I. Rppels Notion de continuité : Grphiquement, on peut reconnître une onction continue sur un intervlle I pr le it que le trcé de l

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Quantification et échantillonnage

Quantification et échantillonnage numérique à l et échntillonnge Signl physique (onde lumineuse, onde sonore) : vrition d une grndeur physique (éclirement, pression) en temps et/ou espce Sénce 4 et échntillonnge Contrintes de l représenttion

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

Mathématiques du signal déterministe

Mathématiques du signal déterministe Conservtoire Ntionl des Arts et Métiers MAA17 Mthémtiques du signl déterministe Nelly POINT 11 octobre 211 Tble des mtières 1 Intégrtion 3 1.1 Méthodes d intégrtion : rppels........................ 3

Plus en détail

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ

ICNA - SESSION 2009 ÉPREUVE OPTIONNELLE DE PHYSIQUE CORRIGÉ ICNA - SESSION 9 ÉPREUVE OPTIONNEE DE PHYSIQUE CORRIGÉ Diffusion thermique dns un câble électrique.. puissnce volumique dissipée pr effet Joule dns le conducteur est donnée pr P. Je J J.E e γ I e vecteur

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

MT91 P2010 Médian - f(x) = α + x + βx 2.

MT91 P2010 Médian - f(x) = α + x + βx 2. MT9 P Médin - Corrigé Eercice. α et β sont deu prmètres réels tels que α >. On définit f) = α + + β. Ecrire le développement limité de f, à l ordre, en.. Utiliser l question précédente pour étudier l brnche

Plus en détail