Plan Granulométrie par diffusion de lumière

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Plan Granulométrie par diffusion de lumière"

Transcription

1 Pla Graulométrie par diffusio de lumière Structure des systèmes colloïdaux Diffusio de lumière par ue particule. Diffusio Rayleigh. Diffractio de Frauhofer.3 Diffusio de Mie 3 Applicatio : graulométrie laser 3. Pricipe / Appareillage 3. Iterprétatio des doées 3.3 Pratique 3.4 Performaces et limites (4 Applicatio : spectroscopie de photocorrélatio) 5 Autres méthodes de graulométrie

2 Gééralités. Structure des systèmes colloïdaux Défiitio : "u système colloïdal est u système composite qui présete au mois ue taille caractéristique das le domaie mésoscopique (de qq m à qq dizaies de µm)". Dispersat Gaz Liquide Solide Dispersé Gaz Liquide Solide - Aérosols, brouillards Fumées, poussières Mousses Émulsios Suspesios Iclusios, cavités, solides poreux Émulsios solides (sable pétrolifère) Composites Frittés La structure à l échelle mésoscopique iflue sur de ombreuses propriétés du matériau : mécaiques, optiques, électriques, thermiques, physico-chimiques, écoulemet,

3 Gééralités. Structure des systèmes colloïdaux Systèmes colloïdaux : particulaire bi-cotiu Caractérisé par : - la forme des particules - leur distributio e taille - la desité de particules - leur arragemet structural Caractérisé par : - la forme des domaies (pores, ) - les fractios volumiques Φ, Φ - la surface spécifique S spé - l arragemet structural des phases

4 Gééralités. Structure des systèmes colloïdaux Cocept de particule Défiitio : ue particule u domaie de phase dispersée etouré par la phase cotiue Forme d ue particule

5 Gééralités. Structure des systèmes colloïdaux Commet défiir la taille d ue particule? Das l idéal dimesio qui la caractérise le mieux E pratique dimesio accessible par l expériece Diamètre logueur d u segmet oigat deux poits de la surface et iterceptat le cetre de gravité - particule sphérique : u seul diamètre - particule quelcoque : ue ifiité de diamètres compris etre ue valeur mii et ue valeur maxi Nécessité de choisir ue dimesio caractéristique ou de calculer ue taille équivalete pour ue particule plus symétrique. Exemples : rayo de giratio, rayo hydrodyamique, diamètre de la sphère équivalete e volume ou e surface

6 Gééralités. Structure des systèmes colloïdaux Distributios de taille % Volume % Volume diamètre Distributio moomodale ou homogèe diamètre Distributio multimodale ou hétérogèe Ue seule populatio caractérisée par ue taille moyee uique Plusieurs populatios avec différetes tailles moyees

7 Gééralités. Structure des systèmes colloïdaux Distributio e volume : attetio! Volume de 000 particules de µm Volume de particule de 0 µm % Particle Diameter (µm.) Distributio e volume de particule de 0µm et de 000 particules de µm.

8 Tailles moyees d u esemble de particules q p q p d d q p D ), ( (4,3) D d d d d V d V + π π (,0) 0 D d d d Diamètre moye e ombre : Diamètre moye pour ue distributio volume / diamètre V (d ) : De maière géérale :. Structure des systèmes colloïdaux Gééralités

9 Gééralités. Structure des systèmes colloïdaux Foctios de distributio de taille Loi gaussiee (ormale) : f ( d) Loi log-ormale : exp σ π ( d d ) σ d : diametremoye ; σ : ecart type f ( d) exp (logd k logd σ ) La loi log-ormale est fréquemmet utilisée pour décrire des distributios e ombre ou e volume.

10 Diffusio de lumière Diffusio de lumière par u atome Ode électromagétique icidete Noyau (+) Barycetre du uage électroique (-) Ode électromagétique diffusée L ode é.m. icidete met le dipôle atomique e oscillatio forcée. Le dipôle réémet lui-même u champ électromagétique das toutes les directios.

11 . Diffusio de lumière Diffusio de lumière par u atome : diffusio Rayleigh I XZ I XY a m I0 cos 4 r λ m + I 0 π 4 6π a 4 r λ 6 m m + θ Agle de diffusio Détecteur m m p / m d Ode diffusée a rayo de l obet diffusat Lumière icidete polarisée selo Z Profil de diffusio La théorie de Rayleigh est valable pour les particules de taille petite devat la logueur d ode. L itesité diffusée est isotrope das XY et varie e cos θ das XZ pas d extrema marqués.

12 . Diffusio de lumière Diffusio de lumière par ue particule Particule esemble de dipôles Ode é.m. icidete Iterféreces costructives Phase ϕ Phase ϕ+π Iterféreces destructives La directio des iterféreces costructives et destructives déped de la positio des dipôles, doc de la taille et de la forme de la particule. Lumière icidete Particule de 0 µm Particule de 300 m

13 . Diffusio de lumière Diffusio de lumière par ue particule : théorie de Mie Résolutio des équatios de Maxwell das u milieu hétérogèe avec comme hypothèses : ) lumière icidete moochromatique ) particule sphérique, rayo a, homogèe, isotrope, idice m p p + i p 3) milieu de dispersio o absorbat d'idice m d d 4) cocetratio faible (diffusio simple). λ I( θ, a, m) S( θ, a, m) 4π r où S est ue foctio complexe de θ, a et m. das le pla XY La théorie de Mie est valable pour toutes les tailles de particules. Elle motre que, das le cas gééral, la figure de diffractio déped de la taille de la particule et des idices de réfractio des deux milieux.

14 . Diffusio de lumière Exemples de simulatio des itesités diffusées par la théorie de Mie m α α m,55 sphères de rayo a α πa/λ das le pla XY das le pla XZ

15 . Diffusio de lumière Approximatio de Frauhofer Pour des particules de taille grade devat λ (> 50 µm), l absorptio est importate. O peut cosidérer que l itesité diffusée proviet uiquemet de la surface. Diffractio d ue ode plae par ue ouverture circulaire de diamètre grad devat λ. I ( α siθ ) ( θ ) 4I 0 J α siθ J : foctio de Bessel d ordre Ode icidete θ Ouverture circulaire Pla d observatio L approximatio de Frauhofer est valable que pour les particules de taille grade devat λ (> 50 µm). Das ce domaie, l ifluece des idices de réfractio sur la figure de diffractio est égligeable.

16 Graulométrie laser 3.. Schéma de pricipe Laser Suspesio de particules e circulatio Détecteur pla multi-zoes das le pla focal Letilles d élargissemet du faisceau Letille de focalisatio

17 Graulométrie laser 3.. Iterprétatio des doées Le graulomètre laser mesure l itesité I e foctio de l agle θ. La positio agulaire des extrema permet de détermier le diamètre des particules par comparaiso avec les clichés de diffractio calculés par la théorie de Mie. L itesité déped du volume des particules diffusates elle doe le volume cumulé des particules pour chaque classe graulométrique. %V à détermier I f(θ) par uité de volume calculé par Mie I f(θ) expérimetal? Oui OK No itératio

18 Graulométrie laser 3.. Iterprétatio des doées Le graulomètre laser doe directemet le volume cumulé pour chaque classe graulométrique. % Volume Attetio! La taille calculée est le diamètre des particules sphériques diffusat de maière équivalete (hypothèse de Mie). diamètre Quel diamètre moye peut-o calculer? V V d Diamètre moye de type D(4,3)

19 Graulométrie laser 3.3. Graulométrie pratique Mise e suspesio utilisatio d u o-solvat comme dispersat utilisatio de tesioactifs ou d ultrasos pour préveir l agrégatio des particules Diffusio simple des photos (hypothèse de Mie) La diffusio multiple egedre u élargissemet des pics de distributio calculés. suspesios pas trop cocetrées (cotrôle du taux d obscuratio) Idices de réfractio Pour les particules de taille proche de la logueur d ode, l ifluece des idices de réfractio est pas égligeable (résultats de Mie). la coaissace des idices est écessaire pour le calcul des distributios das ce domaie de taille.

20 Graulométrie laser 3.4. Performaces Limites de taille - taille miimum : m (diffusio isotrope pour les particules de taille petite λ) - taille maximum : quelques mm (résolutio agulaire du détecteur aux petits agles) Résolutio e taille : le ombre de classes graulométriques est liée à la desité surfacique de détecteurs das l appareil. Typiquemet de l ordre de 00 classes graulométriques (échelle logarithmique) Avatages par rapport aux autres techiques de graulométrie : - rapidité des mesures - reproductibilité - ustesse (étaloage de l appareil avec des échatillos témois)

21 5. Autres techiques de graulométrie 0 m 50 m Diffractio laser (Mie) 3500 µ 6 Ä Photocorrélatio 6 µ Diffractio Rayos X 0 à 40µ Tamisage Plusieurs cm 0 m Sédimetatio 00 µ 0.5 µ Aalyse d image Plusieurs cm 0.5 µ Comptage particulaire x00 µ Autres techiques: MEB, MET, AFM,...

22 Aexe Foctios de Bessel + 0 )!!( ) ( ) ( p p p p x p p x x J...!3! ) / (!! ) / ( ) ( x x x x J

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE Thème : PHENOMENES VIBRATOIRES hap : REFLEXION ET REFRATION DE LA LUMIERE 1) Itroductio : La lumière est de l éergie qui se propage sous forme de rayoemet. Das u milieu homogèe, liéaire, isotrope (mêmes

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

MERODAS:MEsuRe automatique de DAS sans robot. Remplacer le robot par une matrice de capteurs distribués

MERODAS:MEsuRe automatique de DAS sans robot. Remplacer le robot par une matrice de capteurs distribués Mesure du DAS avec des cristaux lectro-optiques Sébastie UPHRASI, Shuo ZHANG, Pascal VAIRAC, Berard CRTIN ANR MRODAS DAS avec cristaux O ov 9 Problématique MRODAS:MsuRe automatique de DAS sas robot Remplacer

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Utilisation de lentilles dans les conditions de Gauss

Utilisation de lentilles dans les conditions de Gauss IUT Sait Nazaire Départemet Mesures Physiques MP Semestre Utilisatio de letilles das les coditios de Gauss - Système optique cetré e coditios de Gauss Du fait de l étude préalable de la réfractio (letilles,

Plus en détail

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS

SERIE D EXERCICES N 21 : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Nathalie Va de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice Série d exercices SERIE D EXERCICES N : FORMATION DES IMAGES DANS LES CONDITIONS DE GAUSS Propagatio rectilige. Exercice. Das le cas

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Travaux dirigés de transports et transferts thermiques

Travaux dirigés de transports et transferts thermiques Travaux dirigés de trasports et trasferts thermiques Aée 015-016 Araud LE PADELLEC alepadellec@irap.omp.eu page page 3 P r é s e t a t i o Tous les exercices de trasports et de trasferts thermiques qui

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Fiche de synthèse ONDES

Fiche de synthèse ONDES Fiche de sythèse ONDES A) Sigaux temporels ) Valeur moyee et valeur efficace valeur moyee : v( t) v( t) dt, o vérifie la dimesio, c'est aussi la partie sigal cotiu du sigal. alt crete La partie variable

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

ACRYLIC SHEET. Altuglas EI. Plaques extrudées choc

ACRYLIC SHEET. Altuglas EI. Plaques extrudées choc ACRYLIC SHEET Altuglas EI Plaques extrudées choc Altuglas EI est la gamme de plaques acryliques extrudées (PMMA) développée par Altuglas Iteratioal pour répodre à des applicatios exigeat ue importate résistate

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède). #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer

Plus en détail

TECHNIQUE: Distillation

TECHNIQUE: Distillation TECHNIQUE: Distillatio 1 Utilité La distillatio est u procédé permettat la séparatio de différetes substaces liquides à partir d u mélage. Les applicatios usuelles de la distillatio sot : l élimiatio d

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Introduction. Courte introduction historique

Introduction. Courte introduction historique Itroductio L optique est la brache de la physique qui s itéresse aux phéomèes lumieux. Elle apporte des réposes aux questios suivates : Qu est-ce que la lumière? Commet décrire sa propagatio? Commet cotrôler

Plus en détail

Brice Bognet, Francisco Chinesta, Adrien Leygue, Arnaud Poitou. HAL Id: hal-00592684 https://hal.archives-ouvertes.fr/hal-00592684

Brice Bognet, Francisco Chinesta, Adrien Leygue, Arnaud Poitou. HAL Id: hal-00592684 https://hal.archives-ouvertes.fr/hal-00592684 Proper Geeralized Decompositio (PGD) et séparatio de variables spatiales pour la résolutio e thermoélasticité liéaire appliquée à des plaques composites Brice Boget, Fracisco Chiesta, Adrie Leygue, Araud

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Réduction des pertes de puissance dans un réseau de distribution alimenté par un générateur d énergie nouvelle et renouvelable

Réduction des pertes de puissance dans un réseau de distribution alimenté par un générateur d énergie nouvelle et renouvelable Revue des Eergies Reouvelables Vol. 14 N 3 (2011) 449 459 Réductio des pertes de puissace das u réseau de distributio alimeté par u géérateur d éergie ouvelle et reouvelable R. Tchuidja *, O. Hamadjoda

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Chapitre 1 : Les notions de base

Chapitre 1 : Les notions de base Chapitre : Les otios de base Itroductio I Comparer des gradeurs A) Les pourcetages B) Taux de variatio, coefficiet multiplicateur, idice C) Importace du ses de la comparaiso ) Raisoemet sur les taux de

Plus en détail

Cours de Mathématiques. Intégrale de Lebesgue et Probabilités H. DOSS

Cours de Mathématiques. Intégrale de Lebesgue et Probabilités H. DOSS Uiversité Paris Dauphie Départemet MIDO Cours de Mathématiques Itégrale de Lebesgue et Probabilités H. DOSS Table des matières 1 Espaces de probabilité et Itégratio 1 1.1 Présetatio..............................

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

sommaire page 2 1.3.2 ) Erreur de décalage,de gain, de linéarité page 3 1.4 ) VALEUR MAXIMALE DE V CONVERTIBLE page 4

sommaire page 2 1.3.2 ) Erreur de décalage,de gain, de linéarité page 3 1.4 ) VALEUR MAXIMALE DE V CONVERTIBLE page 4 LS CONRTISSURS CAN 1 sommaire 1 ) PRINCIPALS CARACTRISTIQUS DU CAN page 1.1 ) NOMBR D BITS DU CAN page 1. ) COURB D TRANSFRT IDAL DU CAN page 1.3 ) COURB D TRANSFRT RLL page 1.3.1 ) rreur de quatificatio

Plus en détail

de matériaux hétérogènes

de matériaux hétérogènes Caractérisation et modélisation thermique multi-échelle de matériaux hétérogènes Denis ROCHAIS CEA / Le Ripault Caractérisation et modélisation thermique multi-échelle Point commun à de nombreuses études:

Plus en détail

MATHÉMATIQUES. Aux futurs étudiants de SUP du lycée naval.

MATHÉMATIQUES. Aux futurs étudiants de SUP du lycée naval. LYCÉE NAVAL 5-6 SUP MPSI / PCSI MATHÉMATIQUES Au futurs étudiats de SUP du lycée aval Vous veez d être admis au lycée aval e classe de SUP, PCSI ou MPSI, et ous vous e félicitos Pour bie préparer votre

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Fonctions convexes. Prologue

Fonctions convexes. Prologue Foctios covexes Prologue Ce chapître développe les propriétés des foctios covexes f C E R défiies sur ue partie covexe C d u espace de dimesio fiie E. Si, fodametalemet, la covexité est ue propriété uidimesioelle

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Modélisation stochastique

Modélisation stochastique Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7

Plus en détail

Chapitre 2 systèmes optiques simples : Miroirs et dioptres. A. MIROIRS Miroir plan Miroirs sphériques B. DIOPTRES Dioptre plan Dioptres sphériques

Chapitre 2 systèmes optiques simples : Miroirs et dioptres. A. MIROIRS Miroir plan Miroirs sphériques B. DIOPTRES Dioptre plan Dioptres sphériques Chapitre 2 systèmes optiques simples : Miroirs et dioptres A. MIROIRS Miroir pla Miroirs sphériques B. DIOPTRES Dioptre pla Dioptres sphériques 1 Rappel : Système optique / cetré Système optique : Esemble

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

EVALUATION DE L INCERTITUDE DE MESURE D UN CAPTEUR OPTIQUE DE NUMERISATION 3D

EVALUATION DE L INCERTITUDE DE MESURE D UN CAPTEUR OPTIQUE DE NUMERISATION 3D EVALUATION DE L INCERTITUDE DE MESURE D UN CAPTEUR OPTIQUE DE NUMERISATION 3D J.P.Chambard, S.Jamiio Holo3 7 rue du gééral Cassagou F-68300-Sait-Louis Résumé Cette étude porte sur l évaluatio de l icertitude

Plus en détail

Chapitre 1 : Statistique descriptive univariée

Chapitre 1 : Statistique descriptive univariée Biostatistiques Licece Chapitre : Statistique descriptive uivariée Itroductio Statistique : esemble de méthodes scietifiques destiées à la collecte, la présetatio et l aalyse de doées. Jeux de doées Applicatio

Plus en détail

Physique - électricité : TC1

Physique - électricité : TC1 Miistère de l Eseigemet Supérieur, de la echerche Scietifique et de la Techologie Uiversité Virtuelle de Tuis électricité : TC Cocepteur du cours: Jilai LAMLOUM & Mogia EN AÏEK Attetio! Ce produit pédagogique

Plus en détail

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres

Utilisation du bootstrap pour les problèmes statistiques liés à l estimation des paramètres B A S E Biotechol Agro Soc Eviro 00 6 (3) 43 53 Utilisatio du bootstrap pour les problèmes statistiques liés à l estimatio des paramètres Rudy Palm Uité de Statistique et Iformatique Faculté uiversitaire

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

LENTILLES SYSTEME CENTRE

LENTILLES SYSTEME CENTRE LENTILLES SYSTEME CENTRE. Letilles mices Parmi toutes les letilles, il e existe u certai ombre qui peuvet être décrites par u modèle simple : il s agit des letilles mices. Ue letille mice est ue letille

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

IUT Lannion Optique instrumentale

IUT Lannion Optique instrumentale IUT Laio Optique istrumetale Pla du cours Notios de base et défiitios Photométrie / Sources de lumière Les bases de l optique géométrique Gééralités sur les systèmes optiques Elémets à faces plaes Dioptres

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

Vélocimétrie laser à effet Doppler

Vélocimétrie laser à effet Doppler N 782 BULLETIN DE L UNION DES PHYSICIENS 571 par Laurence PONCET Lycée A. de Tocqueville - 50100 Cherbourg 1. PRINCIPE La vélocimétrie laser à effet Doppler est basée sur le décalage de la fréquence de

Plus en détail

LSM 3.053 Informatique - Statistique : TP n 1 et 2

LSM 3.053 Informatique - Statistique : TP n 1 et 2 LSM.05 Iformatique - Statistique : TP et Ce TP couple les otios de statistiques descriptives abordées e cours avec l'utilisatio avatageuse du tableur Excel. Le tableur est utilisé pour effectué les calculs

Plus en détail

Simulation des Grandes Échelles du développement spatial d une couche de mélange plane 3D : comparaison avec des résultats expérimentaux détaillés.

Simulation des Grandes Échelles du développement spatial d une couche de mélange plane 3D : comparaison avec des résultats expérimentaux détaillés. Simulatio des Grades Échelles du déeloppemet spatial d ue couche de mélage plae 3D : comparaiso aec des résultats expérimetaux détaillés. C. Teaud S. Pelleri A. Dulieu (LIMSI - UPR CNRS 3251) L. Cordier

Plus en détail

Partie I. Les données qualitatives

Partie I. Les données qualitatives Variables qualitatives : aalyse des corresodaces Jea-Marc Lasgouttes htt://www-rocqiriafr/~lasgoutt/aa-doees L aalyse factorielle des corresodaces But O cherche à décrire la liaiso etre deux variables

Plus en détail

Physique des Solides, des Semiconducteurs et Dispositifs

Physique des Solides, des Semiconducteurs et Dispositifs Physique des Solides, des Semicoducteurs et isositifs Professeur Olivier Boaud Acie élève de l NS Cacha Professeur des Uiversités Professeur à l Uiversité de Rees Professeur à SUPLC Camus de Rees Si Si

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Un témoignage intéressant représentation dans l'espace intégrale Suites géométriques et arithmétiques.

Un témoignage intéressant représentation dans l'espace intégrale Suites géométriques et arithmétiques. U témoigage itéressat L'oral se déroule e 5 phases : 15 mi pour écouter ue présetatio et choisir le sujet, 2h de préparatio, 15 mi pour photocopier la feuille à redre au jury, 30 mi d'exposé et 45 mi de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice [ 43 ] [Correctio] O pose ) k+ s = et u = l e s ) k k= a) Éocer le théorème des séries spéciales alterées, e faire la preuve. b) Prouver

Plus en détail

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS Idice de Révisio Date de mise e applicatio B 01/09/2014 Cahier Techique 1 ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS 4, aveue du Recteur-Poicarré, 75782 Paris Cedex 16 Tel. 33.(0)1.64.68.84.97

Plus en détail

x k, 2 : x k 1 n x x 1

x k, 2 : x k 1 n x x 1 SMIA/S3 ANALYSE 3 AALAMI IDRISSI et EZEROUALI Chapitre 5 FONCTIONS DE IR DANS IR p I) NOTIONS DE TOPOLOGIE SUR IR 1) Normes sur IR : a) Défiitio: O appelle orme sur toute applicatio x x de das telle que

Plus en détail

Chapitre 3. L optique géométrique et les faisceaux gaussiens

Chapitre 3. L optique géométrique et les faisceaux gaussiens Uiversité de Mocto Phys-63 Chapitre 3. Nous allos maiteat délaisser le cas où le champ trasverse u subit au cours de sa propagatio des pertes par trocature à quelque edroit das le résoateur et ous itéresser

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Lois de Snell - Descartes

Lois de Snell - Descartes Lois de ell - Descartes 1 - BUT DE LA MANPULATON La maipulatio cosiste à vérifier les lois de la réflexio et de la réfractio de ell-descartes (voir aexe, à la fi de ce chapitre) et à les utiliser pour

Plus en détail

Optique non linéaire et applications

Optique non linéaire et applications Optique non linéaire et applications Plan Origine des non linéarités Conjugaison de phase Bistabilité optique Optique "linéaire" I in, ω I out = I in e -αl, ω Même fréquence de sortie αne dépend pas de

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

Document ressource. Les états de surface

Document ressource. Les états de surface Lycée Vaucaso Tours Documet ressource Les états de surface PTSI Objectifs : Coaître les élémets caractéristiques d u état de surface, savoir lire les spécificatios ormalisées associées et coaître les moyes

Plus en détail

LO12. Chap 5. 5. Le fenêtrage. x r x w. y r y w. 5.1 Introduction. OpenGL. 1 x. Transformation de cadrage. glviewport();

LO12. Chap 5. 5. Le fenêtrage. x r x w. y r y w. 5.1 Introduction. OpenGL. 1 x. Transformation de cadrage. glviewport(); LO 5. Le feêtrage 5. Itroductio L affichage d u modèle implique la mise e correspodace des coordoées des poits et des liges du modèle avec les coordoées appropriées du dispositif où l image doit être visualisée.

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Système constructif avec isolation par l extérieur

Système constructif avec isolation par l extérieur Le bloc de costructio isolat mois d éergie, plus de bie-être! Système costructif avec isolatio par l extérieur Eco-costruire e Bloc Moomur Isolat HERMIBLOC Bloc à bacher Avec isolatio par l extérieur itégrée

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Claire Grosset-Grange

Claire Grosset-Grange Mesure de la turbulence dans le transport de la Ligne d Intégration Laser (LIL) et estimation de sa contribution aux performances des installations LIL et Laser Mégajoule Claire Grosset-Grange Commissariat

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Analyse spatiale : formes et processus (M1) Cours 2 : DISTRIBUTION STATISTIQUE ET DISTRIBUTION SPATIALE

Analyse spatiale : formes et processus (M1) Cours 2 : DISTRIBUTION STATISTIQUE ET DISTRIBUTION SPATIALE Analyse spatiale : formes et processus (M1) Cours : DISTRIBUTIO STATISTIQUE ET DISTRIBUTIO SPATIALE Claude GRASLAD Professeur de Géographie - Université Paris 7 Objectifs 1- Méthodes statistiques élémentaires

Plus en détail

III. REFLEXION, REFRACTION

III. REFLEXION, REFRACTION Chapitre page -. EFLEXO, EFACO Das le chapitre précédet, ous avos vu que la lumière se propage e lige droite das u milieu trasparet, homogèe et isotrope. Maiteat, que se passe-t-il quad u rayo lumieux

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté CTU, Licece de Mathématiques Statistique Iféretielle Jea-Yves DAUXOIS Uiversité de Frache-Comté Aée scolaire 2011-2012 Ce polycopié cotiet le cours, les sujets d exercice et leurs corrigés aisi que les

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES

L ANALYSE EN COMPOSANTES PRINCIPALES L ANALYSE EN COMPOSANTES PRINCIPALES A.C.P. Remarque: Les aspects mathématiques et les démostratios serot développés e cours Pierre-Louis Gozalez INTRODUCTION Doées : idividus observés sur p variables

Plus en détail

Cellule photoconductrice. Cellule photoconductrice

Cellule photoconductrice. Cellule photoconductrice Ceue photocouctrice Pricipe Crétio es photoporteurs Distributio es photoporteurs Vritio e couctce Gi e ceue Reemet qutique Répose u photoétecteur Répose temporee Ceues photocouctrices usuees Les photoétecteurs

Plus en détail