Primitive et intégrale d une fonction continue

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Primitive et intégrale d une fonction continue"

Transcription

1 Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit l définition de l intégrle d une fonction continue à l ide des fonctions en esclier et non à l ide des primitives. Les deux définitions intégrle et primitive étnt posées indépendmment, on en déduit des reltions entre elles. L définition xiomtique de R peut être donnée de fçon équivlente vec l xiome des suites djcentes convergentes ou l xiome de l borne supérieure. Dns l définition de l intégrle u sens de Riemnn d une fonction continue sur un intervlle [, b] de R, cette propriété de R est essentielle. On peut utiliser l un ou l utre de ces xiomes : celui des suites djcentes convergentes. Ceci est suggéré et plus ou moins développé dns certins livres de Terminles S, progrmme 2002, [Trnsmth], [Déclic]. celui de l borne supérieure vec les sommes de Drboux. Ceci est trité dns les cours de licence et de clsses prép, [Monier], [Coste]. Pour une fonction quelconque, on sit dire si elle est intégrble u sens de Riemnn, vec une définition à l ide des sommes de Drboux. Dns le cs prticulier d une fonction continue, elle est toujours intégrble u sens de Riemnn et on peut donc définir son intégrle de Riemnn. Ici, on choisi de donner des éléments pour l démonstrtion du théorème dmis en terminles. Il est intéressnt de voir qu à prt l formultion, on y retrouve les mêmes rguments et les mêmes techniques que dns celle utilisnt l borne supérieure. Prérequis : Fonctions en esclier Théorème de Heine (uniforme continuité d une fonction continue sur un intervlle fermé borné) Théorème des vleurs intermédiires Intégrle des fonctions en esclier Pour démontrer les propriétés des fonctions en esclier, on souvent besoin du lemme suivnt. Lemme. Si f est une fonction en esclier définie à prtir d une subdivision x 0 = < x <... < x n = b et g une utre fonction en esclier définie à prtir d une subdivision y 0 = < y <... < y p = b, on peut les considérer définies sur une même subdivision, l subdivision réunion des deux précédentes z 0 = < z <... < z r = b vec r n + p, où z k = x i ou z k = y j. Définition.2 Soit f une fonction en esclier sur [, b] à vleurs dns R, définie pr une subdivision x 0 = < x <... < x n = b et telle que f(x) = c i pour tout x ]x i, x i [. On ppelle intégrle de f sur [, b] le nombre réel I(f) = c (x x 0 ) + c 2 (x 2 x ) c n (x n x n ), que l on note ussi de fçon plus précise f(t)dt.

2 2 c3 c5 c6 c x c2 x2 x3 c4 x4 x5 b.0 Interpréttion géométrique : le nombre c i (x i x i ) est égl à ± l ire du rectngle délimité pr l xe Ox, les droites verticles x = x i, x = x i et le grphe de l fonction y = f(x) sur ]x i, x i [. Donc, I(f) est l somme lgébrique des ires des rectngles comptées positivement s ils sont u-dessus de l xe Ox et négtivement s ils sont u-dessous. Propriétés : Pour toutes fonctions en esclier f, g définies sur [, b] vec < b, on les propriétés de l intégrle. Linérité : pour tous λ, µ R, on λf(t) + µg(t)dt = λ f(t)dt + µ 2. Reltion de Chsles : Si c R et f est une fonction en esclier, 3. Positivité : f(t)dt = c ) Si f 0 sur [, b], lors f(t)dt 0. b) Si f g sur [, b], lors f(t)dt g(t)dt c) On f(t)dt f(t) dt f(t)dt + c f(t)dt g(t)dt 2 Définition de l intégrle d une fonction continue Soit un intervlle fermé borné [, b] de R, vec < b. Proposition 2. Soit f une fonction continue sur [, b] à vleurs dns R.. Il existe deux suites (g n ) et (h n ) de fonctions en esclier telles que pour tout n, pout tout t [, b], g n (t) f(t) h n (t) les suites I(g n ) et I(h n ) sont convergentes et ont même limite l 2. Si (u n ) et (v n ) sont deux utres suites de fonctions en esclier ynt les deux propriétés du ), lors l limite commune de I(u n ) et I(v n ) est l même que celle de I(g n ) et I(h n ). Ainsi le nombre l est défini indépendmment des suites considérées. Définition 2.2 Soit f une fonction continue sur [, b] à vleurs dns R. On ppelle intégrle de f sur [, b] le nombre réel l défini pr l proposition ci-dessus et on note l = f(t)dt. Proposition 2.3 Si f est une fonction continue positive, l intégrle de f sur [, b] est l ire A(f) du domine délimité pr l xe Ox, les droites x =, x = b et le grphe de y = f(x). En effet, pour tout n, on I(g n ) A(f) I(h n ). Démonstrtion de l proposition 2. :

3 . Existence des deux suites. On prend une subdivision dont le ps tend vers 0, pr exemple b 2 n, on x 0 =,..., x i = + i b 2 n,..., x 2 n = b Pour une fonction monotone, pr exemple décroissnte. hn (t) = f(x On définit les deux suites i ) sur [x i, x i [ et h n (b) = f(b) g n (t) = f(x i ) sur ]x i, x i ] et g n () = f(). 3 gn hn hn en rouge gn en vert On g n (t) f(t) h n (t) et.0 I(g n ) = b 2 n (f(x ) f(b)) I(h n ) = b 2 n (f() f(x 2 n )) On vérifie les propriétés suivntes : I(g n ) I(h n ) cr pour tout i, f(x i ) f(x i ) I(h n ) I(g n ) = b (f() f(b)), qui tend vers 0 qund n tend vers l infini. 2n les deux suites sont monotones : I(g n ) est croissnte et I(h n ) est décroissnte. En effet, soit y 0 = < y <... < y 2 n+ = b l subdivision de ps b 2 n+, lors on x 0 =, x = y 2,..., x i = y 2i,..., x 2 n = y 2 n+ = b et I(g n+ ) = b 2 n+ (f(y ) + f(y 2 ) + f(y 3 ) f(b)) = b 2 n ( 2 (f(y ) + f(y 2 )) (f(y 2 n+ ) + f(b))) comme f(y 2i ) f(y 2i ) = f(x i ), on 2 (f(y 2i ) + f(y 2i )) f(x i ) I(g n+ ) b 2 n (f(x ) f(b)) I(g n+ ) I(g n ) On démontre de même que I(h n ) est décroissnte. On peut conclure que les deux suites I(g n ) et I(h n ) sont djcentes et convergent vers un même nombre réel l. Pour une fonction continue quelconque sur [, b]. On définit les deux suites : hn (t) = M h n () = g n () = f() et pour t ]x i, x i ], i = supf(t), t [x i, x i ]} g n (t) = m i = inff(t), t [x i, x i ]} On g n (t) f(t) h n (t) et I(g n ) = b 2 n (m m 2 n) I(h n ) = b 2 n (M M 2 n) On vérifie les propriétés suivntes :

4 I(g n ) I(h n ) cr, pour tout i, m i M i I(h n ) I(g n ) = b 2 n ((M m ) (M 2 n m 2 n)). Pour obtenir que l limite est nulle lorsque n tend vers l infini, il est nécessire d utiliser le théorème de Heine, qui donne l uniforme continuité de f sur [, b]. On peut détiller, on trduit l uniforme continuité pr : pour ε > 0, il existe η > 0 tel que, pour tout x, x [, b], si x x < η lors f(x) f(x ) ε. Pour ε > 0, il existe N tel que b 2 N < η et lors pour tout i =,...,2N, M i m i ε. Ainsi, pour ε > 0, il existe N tel que, pour tout n N, 0 I(h n ) I(g n ) b 2 n 2n ε = (b )ε. Donc, I(h n ) I(g n ) tend vers 0 qund n tend vers l infini. les deux suites sont monotones : I(g n ) est croissnte et I(h n ) est décroissnte. En effet, soit y 0 = < y <... < y 2 n+ = b l subdivision de ps b, on lors les 2n+ définitions : hn+ (t) = M j h n+ () = g n+ () = f() et pour t ]y j, y j ], = supf(t), t [y j, y j ]} g n+ (t) = m j = inff(t), t [y j, y j ]} Alors on x 0 =, x = y 2, x i = y 2i, x 2 n = y 2 n+ et I(g n+ ) = b 2 n+ (m + m m 2 n+) = b 2 n ( 2 (m + m 2 ) (m 2 n+ + m 2 n+)) comme m 2i m i et m 2i m i on 2 (m 2i + m 2i ) m i, insi I(g n+ ) b 2 n (m m 2 n) I(g n+ ) I(g n ) On démontre de même que I(h n ) est décroissnte. On peut conclure que les deux suites I(g n ) et I(h n ) sont djcentes et convergent vers un même nombre réel l. 2. Limite indépendnte des suites : Soient (u n ) et (v n ) deux suites vérifint les conditions du (), telles que I(u n ) et I(v n ) convergent vers une même limite l. Pour n N, soient g n et h n les fonctions définies u () sur l subdivision x 0,..., x 2 n et si les fonctions u n et v n sont définies sur une subdivision y 0, y,..., y q, on considère l subdivision réunion des deux précédentes, z,...,z r vec r 2 n +q, et les deux fonctions en esclier sur cette subdivision : s n () = t n () = f() et pour t ]z i, z i ], sn (t) = m i = inff(t), t [z i, z i ]} t n (t) = M i = supf(t), t [z i, z i ]} Pour une même fonction f, plus il y de points dns l subdivision, plus les minim sont grnds et plus les mxim sont petits sur des intervlles emboîtés. Ainsi, ces fonctions vérifient : g n (t) s n (t) f(t) t n (t) h n (t) u n (t) s n (t) f(t) t n (t) v n (t) On, d près l positivité de l intégrle des fonctions en esclier : I(g n ) I(s n ) I(t n ) I(h n ) I(u n ) I(s n ) I(t n ) I(v n ) En pssnt à l limite, on obtient l = lim n I(s n ) = lim n I(t n ) et l = lim n I(s n ) = lim n I(t n ) donc l = l. 4

5 3 Propriétés de l intégrle 5 Les propriétés de. linérité, 2. l reltion de Chsles 3. positivité, vlbles pour les fonctions en esclier, se démontrent isément pour toute fonction continue, pr pssge à l limite. Pour démontrer ces propriétés, il fut considérer les suites de fonctions en esclier définissnt l intégrle des fonctions continues sur [, b]. L technique est de montrer, pr exemple pour l dditivité, que en montrnt que pour tout ε > 0, on ε (f(t) + g(t))dt (f(t) + g(t))dt f(t)dt f(t)dt g(t)dt = 0 g(t)dt = 0 ε Ceci s obtient en considérnt les fonctions en esclier, g n, h n, φ n, ψ n telles que g n f h n φ n g ψ n lors g n + φ n f + g h n + ψ n vec I(h n ) (g n ) ε 2 et I(ψ n) I(/phi n ) ε. On obtient 2 I(g n ) I(f) I(h n ) I(φ n ) I(g) I(ψ n ) et I(g n + φ n ) I(f + g) I(h n + ψ n ) insi I(g n + φ n ) I(h n ) I(ψ n ) I(f + g) I(f) I(g) I(h n + ψ n ) I(g n ) I(φ n ) Comme l intégrle est dditive sur les fonctions en escliers, I(g n + φ n ) = I(g n ) + I(φ n ) et I(h n + ψ n ) = I(h n ) + I(ψ n ) et donc ε I(f + g) I(f) I(g) ε Proposition 3. Soit C([, b]) l espce vectoriel des fonctions continues sur [, b], l ppliction φ : C([, b]) 2 R définie pr φ(f, g) = f(t)g(t)dt est un produit sclire. Ceci résulte des trois propriétés précédentes. Proposition 3.2 (Théorème de l moyenne) Soit f une fonction continue sur [, b] à vleurs dns R. b Il existe c [, b] tel que f(t)dt = f(c). b Démonstrtion : Soient M et m les bornes de f sur [, b], lors m(b ) f(t)dt M(b ) et donc m b f(t)dt M D près le théorème des vleurs intermédiires, f([, b]) = [m, M], donc il existe c [, b] tel que b f(t)dt = f(c). b

6 4 Définition d une primitive 6 Définition 4. Soient f et F deux fonctions définies sur [, b] à vleurs dns R. On dit que F est une primitive de f sur ], b[ si F est dérivble et si F = f sur ], b[. Proposition 4.2 Soient f et F deux fonctions définies sur [, b] à vleurs dns R, telles que F soit une primitive de f, lors l ensemble des primitives de f sur ], b[ est l ensemble des fonctions définies pour chque k R et pour tout x ], b[ pr G(x) = F(x) + k Si x 0 ], b[ et y 0 R, il existe une unique fonction G telle que G soit une primitive de f et G(x 0 ) = y 0. 5 Lien entre primitive et intégrle d une fonction continue Proposition 5. (Existence) Soit f une fonction continue sur ], b[ à vleurs dns R. l fonction F définie, pour x ], b[, pr est l primitive de f telle que F() = 0. F(x) = x f(t)dt Démonstrtion : On F() = 0. On montre que F est dérivble en tout point x 0 de ], b[. F(x) F(x 0 ) = ( x x0 f(t)dt f(t)dt) = x x 0 f(t)dt D près le théorème de l moyenne, il existe c x ]x, x 0 [ (]x 0, x[ selon l ordre de x et x 0 ) tel que Comme f est continue en x 0, on F(x) F(x 0 ) = f(c x ) F(x) F(x 0 ) lim = lim f(c x ) = f(x 0 ) x x 0 x x 0 Corollire 5.2 Toute fonction continue sur [, b] dmet une infinité de primitives. 6 Applictions. Clcul prtique d une intégrle Proposition 6. Soient f et F deux fonctions définies sur [, b] à vleurs dns R, telles que F soit une primitive de f. Alors. f(t)dt = F(b) F() 2. Clcul d ires plnes dont les contours sont définis pr des grphes de fonctions continues. Soient f et g deux fonctions définies et continues sur [, b] telles que g f. Soient Alors l ire de E est Exemples E = M(x, y) x b et 0 y f(x)} F = M(x, y) x b et g(x) y f(x)} f(t)dt et l ire de F est 3. Clcul de limite de suites de l forme n n k= (f(t) g(t))dt f( k ) (sommes de Riemnn). n

7 u n = u n = n k= n k= u n = n n, lors lim n + k u n = n n + k n 2, lors lim + k2 k= n u n = k, lors lim n u n = x dx = 2 dx = ln(2) x + x + x 2 dx = π ln(2) xdx = Clcul de volumes : soient < b et un solide K de R 3 limité pr les plns z = et z = b et tel que l ire de l section de cote z est une fonction continue S(z). Soit z 0 ], b[ et V (z 0 ) le volume du solide entre les plns z = et z = z 0, montrer que V (z 0 ) = S(z 0 ). En déduire que le volume du solide est Clculer le volume d un cône de ryon R et de huteur h. S(z)dz. 5. Inéglités de Schwrz : soient f et g deux fonctions continues sur [, b], lors 7 Remrques ( f(t) g(t)dt) 2 f(t) 2 dt g(t) 2 dt Soit f définie sur un intervlle [, b] telle que F(x) = x f(t)dt soit définie pour tout x [, b]. F est-elle une fonction dérivble? Oui, si f est une fonction continue Non en générl, contre-exemple : soit f définie sur [, 2] pr F(x) = 0 sur [0, ] On obtient F(x) = x sur [, 2] l fonction F n est ps dérivble en x 0 =. f(t) = 0 sur [0, [ f(t) = sur [, 2] 7 Références [Trnsmth] Trnsmth, progrmme 2002, terminle S obligtoire, Nthn [Déclic] mths, Terminle S enseignement obligtoire et de spécilité, Hchette livre 2002 [Coste] DEUG Sciences mention MASS-MIAS, Mthémtiques 2, Notes de cours d nlyse, Michel Coste 997. Université de Rennes [Dixmier] Cours de mthémtiques, [Monier] Anlyse, ere nnée MPSI,PCSI,PTSI. Jen-Mrie Monier. Dunod, 999.

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Lois de probabilité à densité

Lois de probabilité à densité Lois de probbilité à densité Christophe ROSSIGNOL Année scolire 0/03 Tble des mtières Loi à densité sur un intervlle I. Deux exemples pour comprendre..................................... Densité de probbilité...........................................3

Plus en détail

Séries, intégrales et probabilités

Séries, intégrales et probabilités Séries, intégrles et probbilités Thierry MEYRE Préprtion à l grégtion interne. Année 2014-2015. Université Pris Diderot. IREM. http://www.prob.jussieu.fr/pgeperso/meyre 2 BIBLIOGRAPHIE. Les ouvrges de

Plus en détail

Table des matières. Avant propos

Table des matières. Avant propos Tble des mtières Avnt propos ii 1 Intégrle de Riemnn 1 1.1 Intégrle des fonctions en esclier............ 2 1.2 Fonctions intégrbles u sens de Riemnn........ 6 1.3 Propriétés générles de l intégrle de Riemnn......

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

COMPARAISON DE FONCTIONS

COMPARAISON DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot COMPARAISON DE FONCTIONS 1 Notion de voisinge Définition 1.1 Voisinge Soit R = R {± }. On ppelle voisinge de une prtie de R contennt un intervlle de l forme :

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Fonctions : variations et extremums. Fonctions affines

Fonctions : variations et extremums. Fonctions affines Fonctions : vritions et extremums. Fonctions ffines Clsse de seconde I. Sens de vrition d'une fonction... 1) Fonctions croissntes... ) Fonctions décroissntes... II. Tbleu de vritions...3 III. Mximum, minimum...3

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

THÉORIE DE LA MESURE. Notes de cours de B.Demange

THÉORIE DE LA MESURE. Notes de cours de B.Demange THÉORIE DE LA MESURE Notes de cours de B.Demnge Cours donné en 212-213 2 INTRODUCTION Ce cours pour but de donner une bonne définition de l intégrle de fonctions d une ou plusieurs vribles réelles, qui

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Théorie des Langages Épisode 2 Automates finis

Théorie des Langages Épisode 2 Automates finis AFD AFN Opértions Lemme de pompge 1/ 36 Théorie des Lngges Épisode 2 Automtes finis Thoms Pietrzk Université Pul Verline Metz AFD AFN Opértions Lemme de pompge Reconnisseur Définition Configurtion Accepttion

Plus en détail

Synthèse de cours (Terminale S) Dérivation : rappels et compléments

Synthèse de cours (Terminale S) Dérivation : rappels et compléments Synthèse de cours (Terminle S) Dérivtion : rppels et compléments Rppels de 1ère Nombre dérivé Soit f une fonction définie sur un intervlle I et un élément de I. f ( + h) f ( ) Si l limite lim existe, on

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL

LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL Préceptort de Mécnique Quntique 1 ère nnée Florent Krzkl, PCT, Bureu F.3-14 LE PUITS DOUBLE L EXEMPLE STANDARD DE LA MOLECULE D AMMONIAC I. EXERCICE PRELIMINAIRE: EFFET TUNNEL I-1/ Soit une brrière de

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes

Chapitre 1. Dénombrer et sommer. 1.1 Rappels ensemblistes. 1.1.1 Opérations ensemblistes Chpitre 1 Dénombrer et sommer Compter des objets et fire des dditions, voilà bien les deux ctivités les plus élémentires à l bse des mthémtiques. Et pourtnt à y regrder de plus près, ce n est ps si fcile.

Plus en détail

(surface d'un cercle : S = pd2 4 )

(surface d'un cercle : S = pd2 4 ) Les cordes sont de dimètres vribles. Si on les remplce pr deux cordes de même dimètre, le dimètre moyen, le résultt devrit être le même. Ici le résultt, c est sns doute l résistnce qui est proportionnelle

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

LE RESEAU RECIPROQUE solution

LE RESEAU RECIPROQUE solution LE RESEU RECIPROQUE solution L pge 85 de votre poly de physique est conscrée à l définition du réseu réciproque, un concept initilement introduit pr J.W. Gibbs (189-190). Ce concept, plutôt bstrit, est

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane

Cours d Analyse II. Filières : SMP /SMC (Deuxième semestre, première. Notes rédigées par : M. BENELKOURCHI Slimane Déprtement de Mthémtiques Fculté des Sciences Université Ibn Tofïl Kénitr Cours d Anlyse II S2 Filières : SMP /SMC (Deuxième semestre, première nnée) Notes rédigées pr : M. BENELKOURCHI Slimne Professeur

Plus en détail

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen

Cours de DEUG Méthodes mathématiques pour les sciences de la vie I. Avner Bar-Hen Cours de DEUG Méthodes mthémtiques pour les sciences de l vie I Avner Br-Hen Université Aix-Mrseille III 3 Tble des mtières Tble des mtières i Fonctions, limites, continuité Fonction, représenttion grphique......................

Plus en détail

Intégration, cours, terminale S

Intégration, cours, terminale S Intégrtion, cours, terminle S Intégrtion, cours, terminle S F.Gudon http://mthsfg.net.free.fr 3 vril 2017 Intégrle d une fonction continue sur un intervlle Intégrle d une fonction continue sur un intervlle

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012

Marc Chemillier Master M2 Atiam (Ircam), 2011-2012 MMIM Modèles mthémtiques en informtique musicle Mrc Chemillier Mster M2 Atim (Ircm), 2011-2012 Notions théoriques sur les lngges formels - Définitions générles o Mots, lngges o Monoïdes - Notion d utomte

Plus en détail

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS

STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS CHAPITRE 1 STRUCTURE CRISTALLINE THEORIE DES RESEAUX DE BRAVAIS Objectifs Comme les liquides et les gz, les solides jouent un rôle très importnt en chimie. Or l pluprt des solides sont des solides cristllins.

Plus en détail

Résumé du cours d analyse de Sup et Spé

Résumé du cours d analyse de Sup et Spé Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x

Plus en détail

1 Projection tache Airy sur mode propre capillaire

1 Projection tache Airy sur mode propre capillaire 1 Projection tche Airy sur mode propre cpillire Dns l pproximtion prxile (petits ngles) le chmp électrique d une onde de fréquence ω polrisée rectilignement suivnt ~u x se propgent à l intérieur d un cpillire

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Chapitre I Introduction aux problèmes variationnels

Chapitre I Introduction aux problèmes variationnels Chpitre I Introduction ux problèmes vritionnels I.1. Introduction. Le clcul des vritions concerne l recherche d extrems (minimums ou mximums), et peut être considéré comme une brnche de l optimistion.

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées. Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

( 0 0 1 0 0 0 0 0 0. et A est semblable à T ; de même B est semblable. n. x

( 0 0 1 0 0 0 0 0 0. et A est semblable à T ; de même B est semblable. n. x Préprtion à l orl Mines-Ponts - MP I) Soit f de clsse C sur [, + [, à vleurs dns R, vérifint f() = et f (t) = (f(t)) + t Montrer que f dmet une limite l + π en + 4 II) Soient A et B non nulles dns M 3

Plus en détail

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel

COURS D ANALYSE. Licence de Mathématiques, première. Laurent Michel COURS D ANALYSE Licence de Mthémtiques, première nnée Lurent Michel Automne 2011 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Automates et langages: quelques algorithmes

Automates et langages: quelques algorithmes Automtes et lngges: quelques lgorithmes Eugene Asrin Sddek Benslem Avertissement Dns l étt ctuel ce document est rchi-sec et peut servir seulement d un ide-mémoire. Pour comprendre les lgorithmes ci-dessous

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Equations d'état, travail et chaleur

Equations d'état, travail et chaleur Equtions d'étt, trvil et chleur Exercice On donne R 8, SI. ) Quelle est l'éqution d'étt de n moles d'un gz prfit dns l'étt,,? En déduire l'unité de R. ) Clculer numériquement l vleur du volume molire d'un

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

1. Notion d intégrale Interprétation graphique

1. Notion d intégrale Interprétation graphique Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

3 Produit vectoriel. 3.1 Construction. Définition géométrique du produit vectoriel de deux vecteurs. Liens hypertextes

3 Produit vectoriel. 3.1 Construction. Définition géométrique du produit vectoriel de deux vecteurs. Liens hypertextes ProduitVectoriel-Determinnt.n 15 3-ème nnée, mthémtiques niveu vncé 3 Produit vectoriel Edition 2004-2005 Liens hypertextes Produit sclire 3D: http://www.deleze.nme/mrcel/sec2/cours/geom3d/produitsclire3d.pdf

Plus en détail

Dynamique des systèmes et automates à états

Dynamique des systèmes et automates à états Chpitre 8 Dynmique des systèmes et utomtes à étts L modélistion sttique s intéresse à ce qu il y dns le système, à s structure, etc. L modélistion de l dynmique trite de l évolution du système dns le temps.

Plus en détail

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2

BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE 2 MINISTERE DE L 'ENSEIGNEMENT SUPERIEUR FACULTE DES SCIENCES. DEPARTEMENT DE MATHEMATIQUES OSMANOV Hmid KHELIFATI Sddek BROCHURE D'EXERCICES D'ANALYSE MATHEMATIQUE PARTIE : INTEGRATION. INTEGRALE INDEFINIE

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord

Examen Final Corrigé rédigé par Paul Brunet et Laure Gonnord Mster Info - 2014-2015 MIF15 Complexité et Clculbilité Exmen Finl Corrigé rédigé pr Pul Brunet et Lure Gonnord Durée 1H30 Notes de cours et de TD utorisées. Livres et ppreils électroniques interdits. Le

Plus en détail

Développements limités. Motivation. Exo7

Développements limités. Motivation. Exo7 Eo7 Développements limités Vidéo prtie. Formules de Tlor Vidéo prtie 2. Développements limités u voisinge d'un point Vidéo prtie 3. Opértions sur les DL Vidéo prtie 4. Applictions Eercices Développements

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Intégrale curviligne et applications aux fonctions holomorphes

Intégrale curviligne et applications aux fonctions holomorphes Chpitre 2 Intérle curviline et pplictions ux fonctions holomorphes 2. Intérle curviline - Indice d un point pr rpport à un lcet 2.. Définitions et propriétés de bses Soit f : [, b] R! C une fonction, on

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

I. Que sont les partitions?

I. Que sont les partitions? Cours de mthémtiques frfelues LES FRACTIONS CASSÉES Prémule Voici un cours de mthémtiques qui n ur jmis s plce dns une slle de clsse un utre jour que le er vril. Son sujet : les frctions cssées, ou prtitions,

Plus en détail

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB).

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB). Vdouine Terminle S Cpitre 4 Intégrtion Définition Soit f une fonction continue et positive sur un intervlle I contennt et deu nomres tels que. L représenttion grpique est trcée dns un repère ortogonl O;;

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire

Formation et Analyse d'images. Stéreo et la Géometrie Epipolaire Formtion et Anlyse d'imges Jmes L. Crowley ENSIMAG 3 Premier Bimestre 2002/2003 Sénce 7 21 novmre 2002 Stéreo et l Géometrie Epipolire Pln de l Sénce: L Vision Stéréoscopique...2 Les Techniques d'appriement...2

Plus en détail