Primitive et intégrale d une fonction continue

Dimension: px
Commencer à balayer dès la page:

Download "Primitive et intégrale d une fonction continue"

Transcription

1 Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit l définition de l intégrle d une fonction continue à l ide des fonctions en esclier et non à l ide des primitives. Les deux définitions intégrle et primitive étnt posées indépendmment, on en déduit des reltions entre elles. L définition xiomtique de R peut être donnée de fçon équivlente vec l xiome des suites djcentes convergentes ou l xiome de l borne supérieure. Dns l définition de l intégrle u sens de Riemnn d une fonction continue sur un intervlle [, b] de R, cette propriété de R est essentielle. On peut utiliser l un ou l utre de ces xiomes : celui des suites djcentes convergentes. Ceci est suggéré et plus ou moins développé dns certins livres de Terminles S, progrmme 2002, [Trnsmth], [Déclic]. celui de l borne supérieure vec les sommes de Drboux. Ceci est trité dns les cours de licence et de clsses prép, [Monier], [Coste]. Pour une fonction quelconque, on sit dire si elle est intégrble u sens de Riemnn, vec une définition à l ide des sommes de Drboux. Dns le cs prticulier d une fonction continue, elle est toujours intégrble u sens de Riemnn et on peut donc définir son intégrle de Riemnn. Ici, on choisi de donner des éléments pour l démonstrtion du théorème dmis en terminles. Il est intéressnt de voir qu à prt l formultion, on y retrouve les mêmes rguments et les mêmes techniques que dns celle utilisnt l borne supérieure. Prérequis : Fonctions en esclier Théorème de Heine (uniforme continuité d une fonction continue sur un intervlle fermé borné) Théorème des vleurs intermédiires Intégrle des fonctions en esclier Pour démontrer les propriétés des fonctions en esclier, on souvent besoin du lemme suivnt. Lemme. Si f est une fonction en esclier définie à prtir d une subdivision x 0 = < x <... < x n = b et g une utre fonction en esclier définie à prtir d une subdivision y 0 = < y <... < y p = b, on peut les considérer définies sur une même subdivision, l subdivision réunion des deux précédentes z 0 = < z <... < z r = b vec r n + p, où z k = x i ou z k = y j. Définition.2 Soit f une fonction en esclier sur [, b] à vleurs dns R, définie pr une subdivision x 0 = < x <... < x n = b et telle que f(x) = c i pour tout x ]x i, x i [. On ppelle intégrle de f sur [, b] le nombre réel I(f) = c (x x 0 ) + c 2 (x 2 x ) c n (x n x n ), que l on note ussi de fçon plus précise f(t)dt.

2 2 c3 c5 c6 c x c2 x2 x3 c4 x4 x5 b.0 Interpréttion géométrique : le nombre c i (x i x i ) est égl à ± l ire du rectngle délimité pr l xe Ox, les droites verticles x = x i, x = x i et le grphe de l fonction y = f(x) sur ]x i, x i [. Donc, I(f) est l somme lgébrique des ires des rectngles comptées positivement s ils sont u-dessus de l xe Ox et négtivement s ils sont u-dessous. Propriétés : Pour toutes fonctions en esclier f, g définies sur [, b] vec < b, on les propriétés de l intégrle. Linérité : pour tous λ, µ R, on λf(t) + µg(t)dt = λ f(t)dt + µ 2. Reltion de Chsles : Si c R et f est une fonction en esclier, 3. Positivité : f(t)dt = c ) Si f 0 sur [, b], lors f(t)dt 0. b) Si f g sur [, b], lors f(t)dt g(t)dt c) On f(t)dt f(t) dt f(t)dt + c f(t)dt g(t)dt 2 Définition de l intégrle d une fonction continue Soit un intervlle fermé borné [, b] de R, vec < b. Proposition 2. Soit f une fonction continue sur [, b] à vleurs dns R.. Il existe deux suites (g n ) et (h n ) de fonctions en esclier telles que pour tout n, pout tout t [, b], g n (t) f(t) h n (t) les suites I(g n ) et I(h n ) sont convergentes et ont même limite l 2. Si (u n ) et (v n ) sont deux utres suites de fonctions en esclier ynt les deux propriétés du ), lors l limite commune de I(u n ) et I(v n ) est l même que celle de I(g n ) et I(h n ). Ainsi le nombre l est défini indépendmment des suites considérées. Définition 2.2 Soit f une fonction continue sur [, b] à vleurs dns R. On ppelle intégrle de f sur [, b] le nombre réel l défini pr l proposition ci-dessus et on note l = f(t)dt. Proposition 2.3 Si f est une fonction continue positive, l intégrle de f sur [, b] est l ire A(f) du domine délimité pr l xe Ox, les droites x =, x = b et le grphe de y = f(x). En effet, pour tout n, on I(g n ) A(f) I(h n ). Démonstrtion de l proposition 2. :

3 . Existence des deux suites. On prend une subdivision dont le ps tend vers 0, pr exemple b 2 n, on x 0 =,..., x i = + i b 2 n,..., x 2 n = b Pour une fonction monotone, pr exemple décroissnte. hn (t) = f(x On définit les deux suites i ) sur [x i, x i [ et h n (b) = f(b) g n (t) = f(x i ) sur ]x i, x i ] et g n () = f(). 3 gn hn hn en rouge gn en vert On g n (t) f(t) h n (t) et.0 I(g n ) = b 2 n (f(x ) f(b)) I(h n ) = b 2 n (f() f(x 2 n )) On vérifie les propriétés suivntes : I(g n ) I(h n ) cr pour tout i, f(x i ) f(x i ) I(h n ) I(g n ) = b (f() f(b)), qui tend vers 0 qund n tend vers l infini. 2n les deux suites sont monotones : I(g n ) est croissnte et I(h n ) est décroissnte. En effet, soit y 0 = < y <... < y 2 n+ = b l subdivision de ps b 2 n+, lors on x 0 =, x = y 2,..., x i = y 2i,..., x 2 n = y 2 n+ = b et I(g n+ ) = b 2 n+ (f(y ) + f(y 2 ) + f(y 3 ) f(b)) = b 2 n ( 2 (f(y ) + f(y 2 )) (f(y 2 n+ ) + f(b))) comme f(y 2i ) f(y 2i ) = f(x i ), on 2 (f(y 2i ) + f(y 2i )) f(x i ) I(g n+ ) b 2 n (f(x ) f(b)) I(g n+ ) I(g n ) On démontre de même que I(h n ) est décroissnte. On peut conclure que les deux suites I(g n ) et I(h n ) sont djcentes et convergent vers un même nombre réel l. Pour une fonction continue quelconque sur [, b]. On définit les deux suites : hn (t) = M h n () = g n () = f() et pour t ]x i, x i ], i = supf(t), t [x i, x i ]} g n (t) = m i = inff(t), t [x i, x i ]} On g n (t) f(t) h n (t) et I(g n ) = b 2 n (m m 2 n) I(h n ) = b 2 n (M M 2 n) On vérifie les propriétés suivntes :

4 I(g n ) I(h n ) cr, pour tout i, m i M i I(h n ) I(g n ) = b 2 n ((M m ) (M 2 n m 2 n)). Pour obtenir que l limite est nulle lorsque n tend vers l infini, il est nécessire d utiliser le théorème de Heine, qui donne l uniforme continuité de f sur [, b]. On peut détiller, on trduit l uniforme continuité pr : pour ε > 0, il existe η > 0 tel que, pour tout x, x [, b], si x x < η lors f(x) f(x ) ε. Pour ε > 0, il existe N tel que b 2 N < η et lors pour tout i =,...,2N, M i m i ε. Ainsi, pour ε > 0, il existe N tel que, pour tout n N, 0 I(h n ) I(g n ) b 2 n 2n ε = (b )ε. Donc, I(h n ) I(g n ) tend vers 0 qund n tend vers l infini. les deux suites sont monotones : I(g n ) est croissnte et I(h n ) est décroissnte. En effet, soit y 0 = < y <... < y 2 n+ = b l subdivision de ps b, on lors les 2n+ définitions : hn+ (t) = M j h n+ () = g n+ () = f() et pour t ]y j, y j ], = supf(t), t [y j, y j ]} g n+ (t) = m j = inff(t), t [y j, y j ]} Alors on x 0 =, x = y 2, x i = y 2i, x 2 n = y 2 n+ et I(g n+ ) = b 2 n+ (m + m m 2 n+) = b 2 n ( 2 (m + m 2 ) (m 2 n+ + m 2 n+)) comme m 2i m i et m 2i m i on 2 (m 2i + m 2i ) m i, insi I(g n+ ) b 2 n (m m 2 n) I(g n+ ) I(g n ) On démontre de même que I(h n ) est décroissnte. On peut conclure que les deux suites I(g n ) et I(h n ) sont djcentes et convergent vers un même nombre réel l. 2. Limite indépendnte des suites : Soient (u n ) et (v n ) deux suites vérifint les conditions du (), telles que I(u n ) et I(v n ) convergent vers une même limite l. Pour n N, soient g n et h n les fonctions définies u () sur l subdivision x 0,..., x 2 n et si les fonctions u n et v n sont définies sur une subdivision y 0, y,..., y q, on considère l subdivision réunion des deux précédentes, z,...,z r vec r 2 n +q, et les deux fonctions en esclier sur cette subdivision : s n () = t n () = f() et pour t ]z i, z i ], sn (t) = m i = inff(t), t [z i, z i ]} t n (t) = M i = supf(t), t [z i, z i ]} Pour une même fonction f, plus il y de points dns l subdivision, plus les minim sont grnds et plus les mxim sont petits sur des intervlles emboîtés. Ainsi, ces fonctions vérifient : g n (t) s n (t) f(t) t n (t) h n (t) u n (t) s n (t) f(t) t n (t) v n (t) On, d près l positivité de l intégrle des fonctions en esclier : I(g n ) I(s n ) I(t n ) I(h n ) I(u n ) I(s n ) I(t n ) I(v n ) En pssnt à l limite, on obtient l = lim n I(s n ) = lim n I(t n ) et l = lim n I(s n ) = lim n I(t n ) donc l = l. 4

5 3 Propriétés de l intégrle 5 Les propriétés de. linérité, 2. l reltion de Chsles 3. positivité, vlbles pour les fonctions en esclier, se démontrent isément pour toute fonction continue, pr pssge à l limite. Pour démontrer ces propriétés, il fut considérer les suites de fonctions en esclier définissnt l intégrle des fonctions continues sur [, b]. L technique est de montrer, pr exemple pour l dditivité, que en montrnt que pour tout ε > 0, on ε (f(t) + g(t))dt (f(t) + g(t))dt f(t)dt f(t)dt g(t)dt = 0 g(t)dt = 0 ε Ceci s obtient en considérnt les fonctions en esclier, g n, h n, φ n, ψ n telles que g n f h n φ n g ψ n lors g n + φ n f + g h n + ψ n vec I(h n ) (g n ) ε 2 et I(ψ n) I(/phi n ) ε. On obtient 2 I(g n ) I(f) I(h n ) I(φ n ) I(g) I(ψ n ) et I(g n + φ n ) I(f + g) I(h n + ψ n ) insi I(g n + φ n ) I(h n ) I(ψ n ) I(f + g) I(f) I(g) I(h n + ψ n ) I(g n ) I(φ n ) Comme l intégrle est dditive sur les fonctions en escliers, I(g n + φ n ) = I(g n ) + I(φ n ) et I(h n + ψ n ) = I(h n ) + I(ψ n ) et donc ε I(f + g) I(f) I(g) ε Proposition 3. Soit C([, b]) l espce vectoriel des fonctions continues sur [, b], l ppliction φ : C([, b]) 2 R définie pr φ(f, g) = f(t)g(t)dt est un produit sclire. Ceci résulte des trois propriétés précédentes. Proposition 3.2 (Théorème de l moyenne) Soit f une fonction continue sur [, b] à vleurs dns R. b Il existe c [, b] tel que f(t)dt = f(c). b Démonstrtion : Soient M et m les bornes de f sur [, b], lors m(b ) f(t)dt M(b ) et donc m b f(t)dt M D près le théorème des vleurs intermédiires, f([, b]) = [m, M], donc il existe c [, b] tel que b f(t)dt = f(c). b

6 4 Définition d une primitive 6 Définition 4. Soient f et F deux fonctions définies sur [, b] à vleurs dns R. On dit que F est une primitive de f sur ], b[ si F est dérivble et si F = f sur ], b[. Proposition 4.2 Soient f et F deux fonctions définies sur [, b] à vleurs dns R, telles que F soit une primitive de f, lors l ensemble des primitives de f sur ], b[ est l ensemble des fonctions définies pour chque k R et pour tout x ], b[ pr G(x) = F(x) + k Si x 0 ], b[ et y 0 R, il existe une unique fonction G telle que G soit une primitive de f et G(x 0 ) = y 0. 5 Lien entre primitive et intégrle d une fonction continue Proposition 5. (Existence) Soit f une fonction continue sur ], b[ à vleurs dns R. l fonction F définie, pour x ], b[, pr est l primitive de f telle que F() = 0. F(x) = x f(t)dt Démonstrtion : On F() = 0. On montre que F est dérivble en tout point x 0 de ], b[. F(x) F(x 0 ) = ( x x0 f(t)dt f(t)dt) = x x 0 f(t)dt D près le théorème de l moyenne, il existe c x ]x, x 0 [ (]x 0, x[ selon l ordre de x et x 0 ) tel que Comme f est continue en x 0, on F(x) F(x 0 ) = f(c x ) F(x) F(x 0 ) lim = lim f(c x ) = f(x 0 ) x x 0 x x 0 Corollire 5.2 Toute fonction continue sur [, b] dmet une infinité de primitives. 6 Applictions. Clcul prtique d une intégrle Proposition 6. Soient f et F deux fonctions définies sur [, b] à vleurs dns R, telles que F soit une primitive de f. Alors. f(t)dt = F(b) F() 2. Clcul d ires plnes dont les contours sont définis pr des grphes de fonctions continues. Soient f et g deux fonctions définies et continues sur [, b] telles que g f. Soient Alors l ire de E est Exemples E = M(x, y) x b et 0 y f(x)} F = M(x, y) x b et g(x) y f(x)} f(t)dt et l ire de F est 3. Clcul de limite de suites de l forme n n k= (f(t) g(t))dt f( k ) (sommes de Riemnn). n

7 u n = u n = n k= n k= u n = n n, lors lim n + k u n = n n + k n 2, lors lim + k2 k= n u n = k, lors lim n u n = x dx = 2 dx = ln(2) x + x + x 2 dx = π ln(2) xdx = Clcul de volumes : soient < b et un solide K de R 3 limité pr les plns z = et z = b et tel que l ire de l section de cote z est une fonction continue S(z). Soit z 0 ], b[ et V (z 0 ) le volume du solide entre les plns z = et z = z 0, montrer que V (z 0 ) = S(z 0 ). En déduire que le volume du solide est Clculer le volume d un cône de ryon R et de huteur h. S(z)dz. 5. Inéglités de Schwrz : soient f et g deux fonctions continues sur [, b], lors 7 Remrques ( f(t) g(t)dt) 2 f(t) 2 dt g(t) 2 dt Soit f définie sur un intervlle [, b] telle que F(x) = x f(t)dt soit définie pour tout x [, b]. F est-elle une fonction dérivble? Oui, si f est une fonction continue Non en générl, contre-exemple : soit f définie sur [, 2] pr F(x) = 0 sur [0, ] On obtient F(x) = x sur [, 2] l fonction F n est ps dérivble en x 0 =. f(t) = 0 sur [0, [ f(t) = sur [, 2] 7 Références [Trnsmth] Trnsmth, progrmme 2002, terminle S obligtoire, Nthn [Déclic] mths, Terminle S enseignement obligtoire et de spécilité, Hchette livre 2002 [Coste] DEUG Sciences mention MASS-MIAS, Mthémtiques 2, Notes de cours d nlyse, Michel Coste 997. Université de Rennes [Dixmier] Cours de mthémtiques, [Monier] Anlyse, ere nnée MPSI,PCSI,PTSI. Jen-Mrie Monier. Dunod, 999.

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Calcul int egral. 15 d ecembre 2008

Calcul int egral. 15 d ecembre 2008 Clcul intégrl. 15 décembre 2008 2 Tble des mtières I Intégrles multiples 5 1 Rppels sur l intégrle définie des fonctions d une vrible. 7 1.1 Motivtions................................ 7 1.1.1 Cs des fonctions

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Calcul intégral. II Intégrale d une fonction 4

Calcul intégral. II Intégrale d une fonction 4 BTS DOMOTIQUE Clcul intégrl 8- Clcul intégrl Tble des mtières I Primitives I. Définitions............................................... I. Clculs de primitives.........................................

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mthémtiques 2 première prtie : Anlyse 2 DEUG MIAS 1 e nnée, 2 e semestre. Mximilin F. Hsler Déprtement Scientifique Interfcultire B.P. 7209 F 97275 SCHOELCHER CEDEX Fx : 0596 72 73 62 e-mil :

Plus en détail

mémento de mathématiques pour les ECE1

mémento de mathématiques pour les ECE1 mémento de mthémtiques pour les ECE1 Abdellh Becht Résumé L objectif de ce mémento est de permettre ux élèves de première nnée des clsses préprtoires ux Ecoles de Commerces, option économique, d voir un

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

Intégration sur un intervalle quelconque MP

Intégration sur un intervalle quelconque MP ntégrtion sur un intervlle quelconque MP 9 décembre 22 Dns ce chpitre, on définit l notion de fonction continue pr morceu et intégrble sur un intervlle quelconque. Cel nous permettr de donner un sens à

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours

DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Deug Mis 1 Année 2002-2003 J.-F. Burnol Université Lille 1 1 DEUG MIAS 1 Année 2002-2003 Premier et deuxième semestres Feuilles de Cours Toutes les fiches de cours distribuées ux étudints pendnt l nnée

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad

Cours de Mathématiques L1. Résumé des chapitres. Hassan Emamirad Cours de Mthémtiques L1 Résumé des chpitres Hssn Emmird Université de Poitiers Version 29/21 TABLE DES MATIÈRES 3 Tble des mtières 1 Nombres complexes 5 1.1 Le corps C.....................................

Plus en détail

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution

3.8. 1 Estimation de l aire d une région curviligne. Exemple 1 Estimer l aire de la région sous une hyperbole. Solution .8 Aperçu de l intégrle.8 APERÇU DE L INTÉGRALE Estimtion de l ire d une région curviligne Erreur d pproimtion Aire ecte d une région curviligne 4 Intégrle définie 5 Intégrle définie négtive 6 Propriétés

Plus en détail

Table des matières Dénombrer et sommer Événements et Probabilités

Table des matières Dénombrer et sommer Événements et Probabilités Tble des mtières 1 Dénombrer et sommer 5 1.1 Rppels ensemblistes............................. 5 1.1.1 Opértions ensemblistes....................... 5 1.1.2 Bijections............................... 7 1.2

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant.

S il ne peut être déterminé en raison d'excavations et de remblais antérieurs, la référence est le terrain naturel environnant. Annexe A MESSAGE TYPE 8. COMMENTAIRES DES DEFINITIONS DE L ANNEXE NOTIONS ET METHODES DE MESURE 1. TERRAIN DE RÉFÉRENCE 1.1 Terrin de référence Le terrin de référence équivut u terrin nturel. S il ne peut

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mthémtiques TS Lycée Henri IV Tble des mtières I Les nombres complexes 7 Rcines n ième d un nombre complexe non nul 7. Définition.................................................... 7.2 Représenttion

Plus en détail

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145.

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145. École de technologie supérieure Service des enseignements généru Locl B-500 54-96-898 Site internet : http://www.etsmtl.c/ MAT45 CALCUL DIFFÉRENTIEL ET INTÉGRAL NOTES DE COURS e PARTIE PAR GENEVIÈVE SAVARD,

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures!

SESSION 2013 MPIN007! INFORMATIQUE. Durée : 3 heures! SESSION 2013 MPIN007 EPREUVE SPECIFIQUE - FILIERE MP " INFORMATIQUE Durée : 3 heures " N.B. : Le cndidt ttcher l plus grnde importnce à l clrté, à l précision et à l concision de l rédction. Si un cndidt

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Table des matières. Cristallographie. S.Boukaddid Cristallographie MP2

Table des matières. Cristallographie. S.Boukaddid Cristallographie MP2 S.Boukddid Cristllogrphie MP Cristllogrphie Tble des mtières 1 Bses de l cristllogrphie 1.1 Définitions....................................... 1. Crctéristiques des réseux cristllins......................

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Mécanique: chapitre 2. Forces; Moments

Mécanique: chapitre 2. Forces; Moments écnique: chpitre orces; oents INTRDUCTIN Toute ction écnique s'eerçnt sur un objet pour eet soit: de odiier son ouveent ou de le ettre en ouveent, de le intenir en équilibre, de le déorer. Toute ction

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Site web de réservations de voyages mettant en relation des clients voyageurs, des prestataires de services leur gestionnaire de

Site web de réservations de voyages mettant en relation des clients voyageurs, des prestataires de services leur gestionnaire de Usger Gérer session utilisteur Client Système comptble Client fidélisé Gérer Suivi Rés Administrteur site de réservtion Gestionnire fidélité Gérer Fidélité Gestionnire Hotels Gérer Hotels Site web de réservtions

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Cours de Mathématiques. BTS Bio-analyses et contrôles

Cours de Mathématiques. BTS Bio-analyses et contrôles Cours de Mathématiques BTS Bio-analyses et contrôles 1ère année Ph Griffiths 1 2008/2009 Lycée Alexis de Tocqueville F-06130 Grasse 1. Philippe.Griffiths@ac-nice.fr ii Lycée Alexis de Tocqueville Table

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

Calcul de la rugosité surfacique

Calcul de la rugosité surfacique VI èmes Journées d Etudes Techniques 200 The Interntionl congress for pplied mechnics L mécnique et les mtériux, moteurs du développement durble du 05 u 07 mi 200, Mrrkech Mroc Clcul de l rugosité surfcique

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

M42. Compléments d analyse (résumé).

M42. Compléments d analyse (résumé). Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Terminle S Vlère BONNET vlere.bonnet@gmil.com) 9 mi Lycée PONTUS DE TYARD rue des Gillrdons 7 CHALON SUR SAÔNE Tél. : ) 85 46 85 4 Fx : ) 85 46 85 59 FRANCE ii LYCÉE PONTUS DE TYARD

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

Analyse statique et domaines abstraits symboliques

Analyse statique et domaines abstraits symboliques Anlyse sttique et domines strits symoliques Mémoire d hilittion à diriger des recherches Lurent Muorgne Hilittion soutenue le 12 février 2007 à l Université Pris-Duphine Jury : Ptrick Cousot (rpporteur)

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Exercices Mathématiques Discrètes : Relations

Exercices Mathématiques Discrètes : Relations Exeries Mthémtiques Disrètes : Reltions Reltions inires R1 Soient A = {0, 1, 2, 3, 4} et B = {0, 1, 2, 3} deux ensemles. Erire expliitement les ouples (, ) R où (, ) R si et seulement si : =, + = 4,

Plus en détail

Automates finis. porte

Automates finis. porte utomtes finis Il s git d un modèle très souple, qui s dpte à des domines très différents en informtique. D une fçon générle, il sert à représenter les divers étts d un système (mécnique, électronique ou

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

DM2-2014_CORRIGE. «Marquage Laser»

DM2-2014_CORRIGE. «Marquage Laser» C Grin / DM-4_crrigedc (ver: 9//5) pge /6 DM-4_CRRIGE Présenttin du système : «Mrquge Lser» Sur les lignes de frictin, n utilise de plus en plus fréquemment des dispsitifs de mrquge pur identifier les

Plus en détail

Calibration absolue par la mesure du faisceau direct

Calibration absolue par la mesure du faisceau direct DNPA Clibrtion 16-01-04 1 Clibrtion bsolue pr l mesure du fisceu direct 1- Introduction Les différentes méthodes permettnt de fire des mesures bsolues en diffusion de neutrons ux petits ngles (DNPA) sont

Plus en détail

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

La notion d intégrale dans l enseignement des mathématiques au lycée : une étude comparative entre la France et le Vietnam

La notion d intégrale dans l enseignement des mathématiques au lycée : une étude comparative entre la France et le Vietnam L notion d intégrle dns l enseignement des mthémtiques u lycée : une étude comprtive entre l Frnce et le Vietnm Cong Khnh Trn Luong To cite this version: Cong Khnh Trn Luong. L notion d intégrle dns l

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY)

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY) www.coe.int/tcy Strsourg, 12 novemre 2013 (projet) T-CY (2013) 26 Comité de l Convention Cyercriminlité (T-CY) Note d orienttion n 8 du T-CY Otention, dns le cdre d une enquête pénle, de données reltives

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1

GUIDE DE POSE_Fib-Air 9/11/04 11:10 Page 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 1 GUIDE DE POSE_Fi-Air 9/11/04 11:10 Pge 2 SOMMAIRE A/ PRÉSENTATION Rélistion de conduits utoportnts pré-isolés à prtir de pnneux de l gmme Fi-Air. A/ PRÉSENTATION

Plus en détail

Systèmes de détection Exemples académiques & commerciaux

Systèmes de détection Exemples académiques & commerciaux Systèmes de détection Exemples cdémiques & commerciux Système de détection: Propgtion de logiciels mlveillnts Exemple I: MIT, ICSI & Consentry Jen-Mrc Robert, ETS Protection contre les mences - Détection

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail