f(t)dt = 0. On pose a = min f et b = max f x 2 dx = π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède)."

Transcription

1 #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer que 4 ( x) 4 + x dx = ) E déduire u ecadremet de (meilleur que celui d'archimède) Exercice 3 (Cocours ATS - ) x dv Soit f(x) = pour x ], [ cos v ) a) Calculer f (x) Motrer que f est impaire et strictemet croissate lim dv = + et que f est bijective x si v b) Motrer que lim f(x) = x O ote g = f x ( ) g(y) ) a) Motrer que g (y) = cos Calculer g (y) b) Motrer que g(t) est solutio de X (t) + si(x(t)) = avec t, X() = et X () = a > pour ue valeur de a à préciser t du 3) Calculer h(t) = pour t ], [ u 4) Calculer l'itégrale de f et l'exprimer e termes simples Exercice 4 Soit f réelle cotiue sur [, ], telle que admet au mois deux zéros disticts das [, ] f(x) si xdx = f(x) cos xdx = Motrer que f Exercice 5 Desité des foctios e escalier Soit f : [a, b] R cotiue telle que pour toute foctio g : [a, b] R e escalier, Démotrer que f = Exercice 6 Chagemets de sige Soit f : [a, b] R cotiue o idetiquemet ulle, telle que : k {,,, }, f(t)g(t) dt = t k f(t) dt = Démotrer, par récurrece, que f chage au mois fois de sige sur ]a, b[ (raisoer par l'absurde) Exercice 7 Formule de la moyee gééralisée Soiet f, g : [a, b] R cotiues, f positive 4 septembre 5 Thierry Sageaux

2 ) Démotrer qu'il existe c [a, b] tel que f(t)g(t) dt = g(c) f(t) dt ) Si f e s'aule pas, motrer que c ]a, b[ x 3) Applicatio : Soit f cotiue au voisiage de Détermier lim x x tf(t) dt Exercice 8 Iégalité de Jese Soit f : [a, b] ( R cotiue et g : R R cotiue covexe ) b Démotrer que g f(t) dt g(f(t)) dt b a b a Exercice 9 + f Soit f : [, ] R cotiue positive O pose A = Motrer que + A Exercice Calcul de limite Chercher lim x + x t=x Exercice Calcul de limite cos t l( + t ) si t sh t Pour < a < b, détermiez lim x + + f (t) dt + A dt x x cos u u 3 du f(t) dt Exercice f + f Soit f : [a, b] [c, d] cotiue, bijective, strictemet croissate Calculer f(t) dt + d u=c Exercice 3 Sommes de Riema ) Trouver lim k ) Trouver lim 3) Trouver lim Itégrale de Riema f (u) du (faire u dessi, et commecer par le cas où f est de classe C ) pour k etier supérieur ou égal à xé ( ( ) ) + ( ) + + ( ) ( + )( + ) ( + ) 4) Trouver lim ( l + ) k= + cos(3k/) 5) Doer u équivalet pour de k k= 6) Soit A A A u polygoe régulier iscrit das u cercle de rayo Chercher lim Exercice 4 Calcul de limite Soit f : [, ] R cotiue Chercher lim Exercice 5 Moyee géométrique i<j ( i ( j f f ) ) A A k k= Thierry Sageaux

3 exp ( Soit f : [, ] R cotiue Motrer que f(t) dt + f( (O pourra utiliser : x, x x l x x) Exercice 6 ) Motrer que : x, x x l( + x) x ( ) ) Trouver lim + k + k= ) )( + f( Exercice 7 Maximum-miimum Soiet a, b R Étudier la covergece des suites (a ), (b ) déies par : a = a, b = b, a + = x= mi(x, b ) dx, b + = Itégrale de Riema ) ) (+ f( ) ) > x= max(x, a ) dx Exercice 8 Itégrale de l x e it Pour x R, x ±, o pose I = Exercice 9 Itégrale de f Soit f : [a, b] R cotiue Pour N, o pose I = Motrer que I > l x e it dt E utilisat les sommes de Riema, calculer I f(t) dt k= ak+ k f(t) dt où a k = a + k b a Exercice Usage de symétrie t si t Soit I = dt Eectuer das + cos I le chagemet de variable u = t, et e déduire la t valeur de I Exercice Usage de symétrie t Calculer I = + si t dt Exercice Usage de symétrie Calculer /4 l( + ta t) dt O remarquera que cos t + si t = cos ( 4 t ) Exercice 3 École de l'air 94 cos x / O ote I = cos x dx, J cos x / = cos x dx, K cos x = + cos x dx Motrer que pour tout N, o a I = J + ( ) K et I + = 4I I E déduire I e foctio de Exercice 4 Calcul d'itégrale Calculer pour tout N : I = Exercice 5 arcsi et arccos x= dx + cos (x) 3 Thierry Sageaux

4 Simplier si x arcsi t dt + cos x arccos t dt Exercice 6 Approximatio des rectagles pour ue foctio lipchitziee Soit f : [a, b] R K-lipchitziee Motrer que f(t) dt b a Exercice 7 Approximatio des tagetes Soit f : [a, b] R de classe C O xe N et o ote : a k = a + k b a Soit I = b a f(a ) k+ k= ) Doer ue iterprétatio géométrique de I b ) Motrer que f(t) dt I M (b a) 3 4 Exercice 8 Approximatio des trapèzes Soit f : [a, b] R de classe C f(a) + f(b) ) Motrer que f(t) dt = (b a) ) Applicatio : Soit f : [a, b] R, I = où M = sup f [a,b] + k= ( f (t a)(t b) f (t) dt Itégrale de Riema a + k b a ) K(b a), a k+ = a k + a k+ f(t) dt, et I la valeur approchée de I obteue par la méthode des trapèzes avec itervalles Démotrer que I I sup f (b a) 3 Exercice 9 Calcul de limite Étudiez la limite de la suite déie par u = k= ( + k) Exercice 3 Aire sous ue corde Soit f : [a, b] R de classe C telle que f(a) = f(b) = O pose M = f ) E majorat f par ue foctio ae par morceaux, démotrer que f(t) dt ) Quad y a-t-il égalité? (b a) M 4 Exercice 3 Échage de décimales Soit f : [, ] [, ] déie par f(, a a a 3 ) =, a a a 3 (échage des deux décimales) ères Motrer que f est cotiue par morceaux et calculer Exercice 3 f(t) cos(t) dt f(t) dt Soit f : [, ] R covexe de classe C Quel est le sige de I = Exercice 33 Covexité Soit f : R R covexe et g(x) = x+ t=x f(t) dt Motrer que g est covexe f(t) cos t dt? Exercice 34 Expressio d'ue primitive -ème de f x (x t) Soit f : [a, b] R cotiue et g(x) = f(t) dt Motrer que g () = f ( )! 4 Thierry Sageaux

5 Exercice 35 Thm de divisio Soit f : R R de classe C +p telle que f() = f () = = f ( ) () = O pose g(x) = f(x) x pour x et g() = f () ()! ) Écrire g(x) sous forme d'ue itégrale ) E déduire que g est de classe C p et g (p) (x) Itégrale de Riema p! (p + )! sup{ f (+p) (tx) tq t } Exercice 36 Foctio absolumet mootoe Soit f : [, a[ R de classe C telle que f et toutes ses dérivées sot positives sur [, a[ ) Motrer que la foctio g : x ) (f(x) x f() x ( )! f ( ) () est croissate ) O xe r ], a[ Motrer que la série de Taylor de f coverge vers f sur [, r[ Exercice 37 ème formule de la moyee Soiet f, g : [a, b] R cotiues, f positive décroissate x { M = sup{g(x), x [a, b]} O ote G(x) = g(t) dt, et m = if{g(x), x [a, b]} ) O suppose ici que f est de classe C Démotrer que mf(a) f(t)g(t) dt Mf(a) ) Démotrer la même iégalité si f est seulemet cotiue, e admettat qu'elle est limite uiforme de foctios de classe C décroissates c 3) Démotrer e qu'il existe c [a, b] tel que f(t)g(t) dt = f(a) g(t) dt Exercice 38 Iégalité de la moyee Soiet f, g : [a, b] R cotiues, f décroissate, et g O ote G(x) = a + Démotrer que fg(t) dt G(b) f(t) dt x g(t) dt Exercice 39 Ue iégalité Soit f : [a, b] R de classe C telle que f(a) = et t [a, b], f (t) Comparer ( b b f 3 (t) dt et f(t) dt) O itroduira les foctios : F (x) = Exercice 4 Itégrales de Wallis O ote I = / cos t dt / x f(t) dt, G(x) = x f 3 (t) dt, et H = F G ) Comparer I et si t dt [ ) E coupat, ] [ e [, α] et α, ], démotrer que I > 3) Chercher ue relatio de récurrece etre I et I + E déduire I k et I k+ e foctio de k 4) Démotrer que I I = 5) Démotrer que I I et e déduire u équivalet simple de I puis de C pour Exercice 4 Norme L Soit f : [a, b] R + cotiue O pose I = f (t) dt et u = I 5 Thierry Sageaux

6 Itégrale de Riema Soit M = max{f(x) tq a x b} et c [a, b] tel que f(c) = M ) Comparer M et u ) E utilisat la cotiuité de f e c, démotrer que : ε > il existe δ > tel que I δ(m ε) 3) E déduire lim u Exercice 4 Lemme de Lebesgue Soit f : [a, b] R cotiue Motrer que ) si f est de classe C ) si f est e escalier 3) si f est cotiue f(t) cos(t) dt >, Exercice 43 Plus grade foctio covexe miorat f ) Soit (f i ) ue famille de foctios covexes sur u itervalle I O suppose que : x I, f(x) = sup(f i (x)) existe Motrer que f est covexe ) Soit f : I R miorée Motrer qu'il existe ue plus grade foctio covexe miorat f O la ote f 3) Soit f : [, ] R + croissate Motrer que où f est e escalier) f(t)dt f(t)dt (commecer par le cas Exercice 44 Cetrale PC 998 Soit f : [a, b] R + cotiue ) Motrer qu'il existe ue subdivisio de [a, b] : a = x < x < < x = b telle que : k [, ], ) Étudier lim xk+ t=x k f(x k ) k= f(t) dt = f(t) dt Exercice 45 Mies MP Soit f : R C de classe C, périodique, e s'aulat pas Motrer que I(f) = i u etier Exercice 46 Foctios aes Soit E = C([a, b]), et F = {f C ([a, b]), tq f(a) = f (a) = f(b) = f (b) = } ) Soit f E Motrer qu'il existe g F vériat g = f si et seulemet si xf(x) dx = ) Soit f E telle que f f est f(x) dx = f(x)g (x) dx = pour toute foctio g F Motrer que f est ae Exercice 47 Mies MP Soit a < < b et f cotiue sur [, ], à valeurs das [a, b] telle que f = Motrer que f ab 6 Thierry Sageaux

7 Itégrale de Riema Solutios des exercices Exercice Il sut de développer (f(t) a)(b f(t)) Exercice ) O trouve x4 ( x) 4 + x = x 6 4x 5 + 5x 4 4x x ) O trouve d'abord u ecadremet x( x) 4, ce qui doe NB L'ecadremet d'archimède est Exercice 3 ( ) ) b) Utiliser u équivalet simple de cos u = si u au voisiage de 3) Faire ue DES ( v ) 4) Poser u = ta Exercice 7 3) f() Exercice DL de cos u lim = l(b/a) Exercice 3 ) l k ) 8 et utiliser cos(v) = u + u 3) 4 e 4) 3 dt 3 + cos t = dt + cos t = 3 5) 4 3 6) 4 Exercice ( 6 ) ) exp 4 Exercice 7 b si b < si a < a + = (b ) /4 si b b + = (a + ) /4 si a si b >, a si a > Doc a + = f(a ), b + = g(b ) Poit xe : a > 8 3, b > 3 8 Exercice 4 Exercice 7 Thierry Sageaux

8 u = t I = Exercice 3 I = 3 ( 3 ) + si t dt = / t= / dt = + cos t Itégrale de Riema Exercice 4 Couper e itervalles de k/ O obtiet I = pour tout Exercice 5 f est paire, -périodique f (x) = pour x f(x) = f(/4) = 4 Exercice 9 Comparaiso etre par parties, u > 3 8 Exercice 3 [ I = f (t)( + cos t) ] dt et so approximatio des trapèzes Découper et itégrer deux fois ( + t) + Exercice 36 ) formule de Taylor-itégrale f (t)( + cos t) dt Exercice 39 H = f(f f ) = fk et K = f( f ) doc H est croissate et positive Exercice 44 x ) Soit F (x) = f(t) dt et G = F Alors f(x k ) = k= / f (t) dt f(t) dt k= f G( k ) > Exercice 45 O a f = e g avec g de classe C g() g() par le thm de relèvemet d'où I(f) = Z i Exercice 46 ) Il existe toujours ue uique foctio g de classe C telle que g = f, g(a) = g (a) = : g(x) = x (x t)f(t) dt (Taylor-Itégral) ) Soiet λ, µ R tels que f : x f(x) λ µx vérie trouve (b a)λ + (b a )/µ = (b a )/λ + (b 3 a 3 )/3µ = b f (x) dx = f(x) dx xf(x) dx xf (x) dx = O et ce système a pour détermiat (b a) 4 / doc λ, µ existet et sot uiques Soit g F telle que g = f : et f(x) = λ + µx g (x)g (x) dx = pour tout g F, e particulier pour g = g doc g = f = 8 Thierry Sageaux

9 Itégrale de Riema Exercice 47 Soit g = f a O a g b a et f = g + a g + a ab g = a d'où g (b a) g = a(b a) et 9 Thierry Sageaux

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice [ 43 ] [Correctio] O pose ) k+ s = et u = l e s ) k k= a) Éocer le théorème des séries spéciales alterées, e faire la preuve. b) Prouver

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes SUITES ET FONCTIONS. Espaces vectoriels ormés réels ou complexes.. Normes et distaces. Exercice... F Soit E l espace vectoriel des foctios de classe C sur [a, b], o pose Nf = fc + f où c [a, b], f désigat

Plus en détail

Intégrale de Riemann

Intégrale de Riemann Intégrale de Riemann Exercice 1. Primitives de fraction rationnelles Déterminer une primitive pour chacune des fonctions suivantes : 1) 1 x 1 ) 1 (x 1) ) 1 x (1 + x ) 4) x + x + 1 (x 1) 5) 1 1 + x 4 6)

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 SESSION 22 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE MP MATHEMATIQUES EXERCICE : ormes équivaletes. Soit f E. f est de classe C sur [,]. Doc la foctio f est cotiue sur le segmet [,] et par suite la foctio

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

C.C.P TSI Mathématiques 1

C.C.P TSI Mathématiques 1 CCP TSI Mathématiques Eercice -) L'éocé e dit pas que f est défiie sur IR O pourrait doc cosidérer que f est défiie sur IR πz et, das ce cas, f() et f(π) 'eisteraiet pas Si f est défiie sur IR, par imparité

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Une démonstration du théorème. fondamental des nombres premiers. Fin de Licence 3, 2006-2007, Université d'orsay, Professeur : M. Zuily.

Une démonstration du théorème. fondamental des nombres premiers. Fin de Licence 3, 2006-2007, Université d'orsay, Professeur : M. Zuily. Ue démostratio du théorème fodametal des ombres premiers Fi de Licece 3, 26-27, Uiversité d'orsay, Professeur : M. Zuily. Table des matières Itroductio 2. Quelques rappels et otatios....................................

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Cours de Mathématiques. Intégrale de Lebesgue et Probabilités H. DOSS

Cours de Mathématiques. Intégrale de Lebesgue et Probabilités H. DOSS Uiversité Paris Dauphie Départemet MIDO Cours de Mathématiques Itégrale de Lebesgue et Probabilités H. DOSS Table des matières 1 Espaces de probabilité et Itégratio 1 1.1 Présetatio..............................

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Fonctions convexes. Prologue

Fonctions convexes. Prologue Foctios covexes Prologue Ce chapître développe les propriétés des foctios covexes f C E R défiies sur ue partie covexe C d u espace de dimesio fiie E. Si, fodametalemet, la covexité est ue propriété uidimesioelle

Plus en détail

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart

Université Joseph Fourier, Grenoble. Séries numériques. Luc Rozoy, Bernard Ycart Uiversité Joseph Fourier, Greoble Maths e Lige Séries umériques Luc Rozoy, Berard Ycart Disos-le tout et, ce chapitre est pas idispesable : d ailleurs, vous e verrez pas vraimet la différece avec les suites.

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Exercices corrigés sur les séries entières

Exercices corrigés sur les séries entières Exercices corrigés sur les séries etières Eocés Exercice Détermier le rayo de covergece des séries etières a z suivates : a l, a l, a, a e /3, a +!, a arcsi + π 4. Exercice Détermier le rayo de covergece

Plus en détail

= P (X k)p (Y k) = (1 α) k (1 β) k = [(1 α)(1 β)] k.

= P (X k)p (Y k) = (1 α) k (1 β) k = [(1 α)(1 β)] k. Aée 25/26 Semaie 2 Classe de PC*, lycée Louis le Grad Exercice Soiet (Ω, F, P ) u espace probabilisé, X et Y deux variables idépedates suivat des lois géométriques (à valeurs das N) de paramètre α et β

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mpcpgedupuydelomefr] édité le 3 ovembre 07 Eocés Calcul de limites Exercice [ 054 ] [Correctio] Détermier la limite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = +

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES 1 SESSION 2005 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE MP MATHEMATIQUES PREMIER EXERCICE a. T (x + y dxdy = = ( y= (x + y dy y= x dx = ((x + 2 ( x2 + x2 2 dx = T (x + y dxdy = 4 3. [xy +

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

1 Séries trigonométriques

1 Séries trigonométriques Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, / ANALYSE Fiche de Mathématiques 9 - Séries de Fourier Séries trigoométriques Défiitio O appelle série trigoométrique toute série dot le

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Agrégation de Mathématiques 2012-2013. Intégration

Agrégation de Mathématiques 2012-2013. Intégration Agrégtio de Mthémtiques -3 CMI Uiversité d Aix-Mrseille Itégrtio. Itégrles défiies. Subdivisio. Soiet et b deux ombres réels tels que < b. O ppelle subdivisio de l itervlle [, b] toute suite fiie strictemet

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP Cocours Commus Polytechiques - Sessio 11 Corrigé de l épreuve d aalyse- Filière MP Séries etières, équatios différetielles et trasformée de Laplace Corrigé par M.TRQI http://alkedy.1.m Eercice 1 1. La

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Modélisation stochastique

Modélisation stochastique Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7

Plus en détail

IUFM de La Réunion Préparation au CAPES de mathématiques. Exercices d analyse. Dominique Tournès 2000/2001. Newton Leibniz Taylor Euler

IUFM de La Réunion Préparation au CAPES de mathématiques. Exercices d analyse. Dominique Tournès 2000/2001. Newton Leibniz Taylor Euler IUFM de La Réuio Préparatio au CAPES de mathématiques Eercices d aalyse Domiique Tourès / Newto Leibiz Taylor Euler Lagrage Legedre Fourier Gauss Cauchy Abel Dirichlet Weierstrass Riema Lipschitz Ruge

Plus en détail

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =?

1 Séries numériques COURS L2, SUITES, SÉRIES, INTÉGRALES IMPROPRES =? COURS L2, 200-20. SUITES, SÉRIES, INTÉGRALES IMPROPRES Séries umériques. série géométrique et série téléscopique + 2 + 4 + 8 + 6 +? Figure. quelle est la logueur? Soit q > 0 (das l exemple ci-dessus q

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et.

Séries numériques. n 3. 6) a n ) 1 + ( 1)n n. 1! + 2! n!. (n + 2)! 12) 15) n + ( 1) (ln n)n n ln n. 18) 1. ( 1) n + n α, ( ) a et. Séries umériques Exercice. Étude de covergece Étudier la covergece des séries de terme gééral : + e. ch α sh α. 3 l 3 + 3 l +. 4 +. 5 arccos 3 + 3. 6 a + + a. 7 +. 8 l. 9 +. 0 3.4.6.... l + siπ/3. 4 6

Plus en détail

Partie I - Suites et intégrales

Partie I - Suites et intégrales SESSION 16 Cocours commu Cetrale MATHÉMATIQUES. FILIERE MP I.A - Étude d ue itégrale à paramètres Partie I - Suites et itégrales I.A - 1 Soit φ : [, + [ ], + [ R de sorte que pour tout réel x, fx = Φx,t.

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail