Chapitre 8 Le calcul intégral
|
|
|
- Antoine Pinette
- il y a 9 ans
- Total affichages :
Transcription
1 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle I de ℝ et soit F l une de ses primitives sur l'intervlle ] ; [ vec et dns I. On ppelle intégrle de f de à et on note f ( x)dx le nomre F() F(). et sont ppelés les ornes de l intégrle. Remrques : ) Si F et G sont deux primitives de f, on ur une constnte c de ℝ telle que F = G + c, d où F() F() = G() + c (G() + c) = G() + c G() c = G() G(). Ceci justifie que l définition cidessus puisse utiliser n'importe quelle primitive de f. f ( x)dx ) est un nomre réel. On présente son clcul de l fçon suivnte : f ( x)dx = [F(x)] = F() F() 2) Exemples Clculer : 4 ) x dx 1 π ) sin( x ) dx 0 2 c) (5 x 2+ 2 x) dx 1 B) Clcul d ires 1) Unité d ire Soit un repère orthogonl (O, i, j) et A, B et C les points tels que OA= i et OB= j. On ppelle unité d ire l ire du rectngle OACB, c est à dire le produit OA x OB. Pge 1/10
2 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Si OA fit 2 cm et OB 4 cm, l unité d ire ser 2 x 4 = 8 cm² 1 u.. = 8 cm² 2) Aire délimitée pr l coure de f(x) sur l'intervlle [ ; ] ) f(x) > 0 C est l ire de l prtie ici hchurée. Théorème (dmis) : Soit f une fonction dérivle et positive sur un intervlle ] ; [ et soit Cf s coure représenttive. L ire A de l surfce délimitée pr f(x), (Ox) et les droites (x = ) et (x = ) vut, en unités d ire, A= f ( x)dx. Exemples : Reprendre les exemples du A : ) qui est un trpèze, ) une prtie de sinusoïde, et c) une portion de prole. Pge 2/10
3 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl ) f(x) 0 sur ] ; [ Soit g(x) = f(x) sur ] ; [. L ire délimitée pr g est symétrique, et donc égle à celle délimitée pr f sur [ ; ]. Donc Aire de f = g ( x ) dx = ( f ( x ))dx c) f(x) chnge de signe sur ] ; [ Pge 3/10
4 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl c L ire ser lors f ( x)dx + ( f ( x ))dx. c Π On ur A = 2Π sin( x ) dx+ ( sin( x )) dx 0 Π d) Aire délimitée pr f et g dns ] ; [ (f(x) g(x) sur ] ; [ Pge 4/10
5 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Théorème (dmis) : ( f ( x ) g ( x ))dx= f ( x) dx g ( x )dx= f ( x)dx + ( g (x )) dx Clculer l ire comprise entre f(x) = x² et g(x) = x entre 1 et 5. C) Propriétés de l intégrle 1) Propriétés élémentires De l définition, on déduit fcilement que ( f ( x )+ g ( x ))dx= f ( x) dx+ g ( x )dx k f ( x )dx=k f ( x )dx f ( x)dx = f ( x ) dx c f ( x) dx = f ( x )dx+ f ( x )dx c f(x) = x sur [0 ; 1], f(x) = 1 sur [1 ; 2] et f(x) = 3 x sur [2 ; 3]. Clculer l ire délimitée pr f sur [0 ; 3]. Vérifier que c est ien l ire du trpèze : Pge 5/10
6 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl 2) Inéglités Soit f et g dérivles sur [ ; ] : Si f(x) > 0 sur [ ; ], lors f ( x)dx 0 Si f(x) > g(x) sur [ ; ], lors f ( x)dx g ( x)dx 3π 3π 1+ cos ( x) dx= f ( x)dx Soit I = x 2π 2π Montrer que pour tout x entre 2π et 3π, on 0 f ( x ) 2 x En déduire que I [0 ; 1] B) Vleur moyenne 1) Définition Soit f dérivle sur [ ; ]. On ppelle vleur moyenne de f sur [ ; ] le nomre μ tel que μ= 1 f (x )dx Clculer l moyenne de f(t) = sin(t) sur l'intervlle [0 ; π]. 2) Propriétés Soit f dérivle sur [ ; ] et pour tout x entre et on m f(x) M. On ur lors m dx f ( x)dx M dx Alors, m( ) f ( x) dx M ( ) Donc m( ) ( )μ M ( ) Soit : m μ M Interpréttion grphique : Pge 6/10
7 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Aire A = Aire B E) Clculs de volumes 1) Unité de volume De même qu on défini l unité d ire pr rpport à un repère O, i, j ) dns le pln, on définit l unité de volume (u.v.) pr le volume du pvé droit dont OI, OJ et OK sont des rêtes, dns le repère (O, i, j, k ) vec OI = i, OJ = j, et OK = k. Pge 7/10
8 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl 2) Volume d un solide à fces prllèles Soit un solide délimité pr deux plns prllèles u pln (O, i, j ), d éqution (z = = et (z = ) : On ur V = S (z )dz (sur l figure, = 0 et = 5). En ppelnt S(z0) l ire de l intersection entre le pln (z = z0) et le solide. 3) Exemples : ) Cylindre droit ou incliné ) Cône droit ou incliné c) Volume de l sphère Pge 8/10
9 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl 4) Volume d un solide de rottion Aire du cercle en x = π (f(x))² 2 2 D où volume V = π( f ( x )) dx qui s'écrit ussi V =π ( f ( x )) dx. Clculer le volume du solide engendré pr l rottion de l prtie de l coure sin(x) comprise entre 0 et π utour de l xe Ox. Exercices : Pge 150 N0 1, (2), 3, (4), 5,6 Pge 151 N 21 Pge 157 N 50 Pge 153 N 30 Pge 156 N 44 Devoir mison : Pge 152 ex 25 et 48 pges Ou : Pges N 53 et 48 pges Pge 9/10
10 Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Le clcul intégrl Fiche de révision Définition f ( x)dx =[ F ( x )]=F () F ( ) Clculs d ires Soit f une fonction dérivle et positive sur un intervlle ] ; [ et soit Cf s coure représenttive. L ire A de l surfce délimitée pr f(x), (Ox) et les droites (x = ) et (x = ) vut, en unités d ire, A= f ( x) dx. Inéglités Si sur ] ; [ on f ( x ) g ( x), Alors on ur f ( x)dx g ( x)dx Vleur moyenne de f(x) sur [ ; ] 1 μ= f ( x) dx Et si sur ] ; [ on m f(x) M, Alors on ur m μ M Volume d un solide compris entre deux plns horizontux V = S (z )dz (vec S(z) ire de l coupe du solide u niveu z) Volume d un solide de révolution engendré pr l coure de f(x) 2 V =π ( f ( x )) dx Pge 10/10
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
COURS D ANALYSE. Licence d Informatique, première. Laurent Michel
COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
Chapitre VI Contraintes holonomiques
55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
semestre 3 des Licences MISM annnée universitaire 2004-2005
MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................
ANALYSE NUMERIQUE NON-LINEAIRE
Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre
Chapitre 1 : Fonctions analytiques - introduction
2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
Licence M.A.S.S. Cours d Analyse S4
Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet [email protected] Cours d
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE
Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 [email protected] [email protected]
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
LANGAGES - GRAMMAIRES - AUTOMATES
LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Onveutetudierl'equationdierentiellesuivante
Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+
01 / 24 0 0!( 10 10 20 20 02 / 24 20 20 30 30 40 40 Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) 03 / 24 40 40 50 50 60 60 60 60 04 / 24 70 70 80 80 80 80 Système de Repérage
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
LITE-FLOOR. Dalles de sol et marches d escalier. Information technique
LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion
Magister en : Génie Mécanique
الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Théorèmes du Point Fixe et Applications aux Equations Diérentielles
Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable
Influence du milieu d étude sur l activité (suite) Inhibition et activation
Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Annexe II. Les trois lois de Kepler
Annexe II es tois lois de Keple écnique & 4 èe - Annexe II es tois lois de Keple Johnnes Keple (57-6), pulie en 596 son peie ouge, ysteiu Cosogphicu Teize nnées plus td, en 69, il pulie Astonoi No, dns
Partie 4 : La monnaie et l'inflation
Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
CHAPITRE 10. Jacobien, changement de coordonnées.
CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2
CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances
Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits
rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse
page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?
EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
La spirale de Théodore bis, et la suite «somme=produit».
Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
Mathématiques et petites voitures
Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
f n (x) = x n e x. T k
EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
