Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS"

Transcription

1 Exercices d oraux de la baque CCP Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages se fot avec remise sot effectuées chaque expériece a deux issues : «la boule tirée est blache» avec ue probabilité p = 2 0 = est pas blache» avec ue probabilité p = 4 La variable aléatoire X est régie par ue loi biomiale de paramètres = et p = O sait alors que ( X(Ω = 0, et 0,, p(x = = Plus explicitemet, ( 4 p(x = 0 = = = 0,32768 p(x = = ( 4 4 = = 0,4096 ( 2 ( 3 4 p(x = 2 = 0 = = 0,2048 ( 3 ( 2 4 p(x = 3 = 0 = = 0,02 ( 4 p(x = 4 = 4 = 4 62 = 0,0064 ( p(x = = = 32 = 0,00032 ( ( 4 L espérace de X est E(X = p = = et la variace de X est V(X = p( p = 4 = 4 = 0,8 (b Y = 2X 3( X = X Par suite, Y(Ω = {, 0, } = {, 0,,0,,0} Esuite, 0,, p(y = = p(x = = ( ( ( 4 Esuite, E(Y = E(X = = 0 et V(Y = V(X = 2 V(X = 2 4 = 20 et «la boule tirée 2 (a X(Ω = {0,,2} La loi de probabilité e chage pas( si o suppose les tirages simultaés 0 Le ombre de tirages simultaés de boules parmi 0 est Soit 0,2 Au cours d u tirage de boules, o obtiet ( boules ( blaches si et seulemet si o tire boules parmi les blaches et boules parmi les 8 oires Il y a doc tirages où o obtiet boules blaches Doc, ( ( 2 8 0,2, p(x = = ( 0 Plus explicitemet, p(x = 0 = p(x = = = = 2 9 = = 9 http ://wwwmaths-fracefr c Jea-Louis Rouget, 204 Tous droits réservés

2 p(x = 2 = = = 2 9 L espérace de X est E(X = = et la variace de X est 9 V(X = E ( X 2 (E(X 2 = = 4 9 (b Comme à la questio, Y(Ω = {, 0,2 } = {, 0, } et ( 2 0,2, p(y = = p(x = = Esuite, E(Y = E(X = 0 et V(Y = 2 E(X = 00 9 EXERCICE 0 X pred les valeurs 0, ou 2 ( 8 ( 0 2 (a X = 2 est l évéemet «toutes les boules vot das le même compartimet» Il y a 3 répartitios possibles des boules das les 3 compartimets (pour chacue des boules, il y a 3 possibilités de compartimet Parmi ces répartitios, il y e a ue et ue seule pour laquelle toutes les boules sot das le compartimet o, ue et ue seule pour laquelle toutes les boules sot das le compartimet o 2 et ue et ue seule pour laquelle toutes les boules sot das le compartimet o 3 Doc p(x = 2 = 3 3 = 3 (b Soit E l évéemet : «le troisième compartimet est vide et les deux premiers e le sot pas» O a alors p(x = = 3 p(e Soit, Soit E l évéemet «boules sot das le compartimet o et sot das le compartimet o 2» E = E et les E,, sot deux à deux disjoits Doc, p(x = = 3p(E = 3 p(e Soit, Le ombre de répartitios des boules telles que d etre elles soiet das le compartimet ( o et soiet das le compartimet o 2 est ecore le ombre de tirages simultaés de boules parmi les à savoir ( = Doc p(e = Efi, Par suite, 3 p(e = 3 = ( 3 = p(x = 0 = p(x = p(x = 2 = = p(x = 0 = 3, p(x = = et p(x = 2 = http ://wwwmaths-fracefr 2 c Jea-Louis Rouget, 204 Tous droits réservés

3 3 (a E(X = ( = = 3 3 = 0 Aisi, s il y a u grad ombre de boules, il y a peu de chaces qu u compartimet (b lim E(X = lim + reste vide EXERCICE Formule de Bayes ( 2 3 Soit (Ω, P u espace probabilisé Soit (A i i u système complet d évéemets de cet espace tel que pour tout i,, P(A i 0 Soit B u évéemet tel que P(B 0 Alors, Démostratio Soit i, Puisque P(B 0, i,, P B (A i = P(A i P Ai (B P(A j P Aj (B P B (A i = P(A i B P(B j= = P(A i P Ai (B P(B Puisque (A j j u système complet d évéemets de cet espace tel que pour tout j,, P(A j 0, o a Doc, P(B = P(A j B = P(A j P Aj (B j= j= P B (A i = P(A i P Ai (B P(A j P Aj (B j= 2 (a Notos A l évéemet «le dé est pipé» et B l évéemet «o obtiet le chiffre 6» La probabilité demadée est P B (A ( A,A est u système complet d évéemets O a P(A = 2 00 = 4 0 et P( A = 4 = 3 4 Esuite P A(B = 2 et P A (B = 6 Doc, D après la formule de Bayes, P(B = P(A P A (B+P ( A P A (B = = 4 0 P B (A = La probabilité que ce dé soit pipé est 2 P(A P A (B P(A P A (B+P ( A P A (B = (b Notos A l évéemet «le dé est pipé» et B l évéemet «o obtiet fois le chiffre 6» La probabilité demadée est P B (A ( A,A est u système complet d évéemets O a toujours P(A = 4 0 et P( A = 3 4 Esuite P A(B = 2 et P A (B = 6 Doc, P(B = P(A PA(B+P ( A PA (B = D après la formule de Bayes, = 2 http ://wwwmaths-fracefr 3 c Jea-Louis Rouget, 204 Tous droits réservés

4 P B (A = P(A P A (B P(A P A (B+P ( A P A (B = = La probabilité que ce dé soit pipé est + 3 (c lim = 0 et doc lim + 3 p = Ceci sigifie que si au bout d u grad ombre de lacers, o a obteu à + chaque fois le 6, il est quasimet sûr que le dé est pipé EXERCICE 08 Pour N, otos A l évéemet «au -ème tirage, la boule proviet de l ure U» (l évéemet A est doc l évéemet «au -ème tirage, la boule proviet de l ure U 2» ( A,A est u système complet d évéemets et P(A = P ( A = 0 D après la formule des probabilités totales, 2 p = P(B = P(A P A (B +P ( A PA (B = = 7 3 La probabilité p que la première boule tirée soit blache est Soit N ( B,B est u système complet d évéemets D après la formule des probabilités totales, P(B + = P(B P B (B + +P ( B PB (B + = p 2 +( p 4 7 = 6 3 p La suite (p N est arithmético-géométrique La foctio affie x 6 3 x+ 4 admet u poit fixe et u seul : 7 x = 6 3 x x = 4 7 x = 20 4 O sait alors que pour tout etier aturel o ul, p + 20 ( 4 = 6 p 20 4 ul, et doc puis que pour tout etier aturel o p 20 ( 4 = 6 ( p 20 ( = 6 ( = 3 ( , Pour tout etier aturel o ul, p = EXERCICE 0 p = ( ( 6 3 Ω est l esemble des tirages successifs sas remise des +2 boules ou ecore l esemble des permutatios des +2 boules Le ombre de tirages successifs et sas remise des + 2 boules est ( + 2! ou ecore card(ω = ( + 2! L ure cotiet +2 boules La première boule blache peut apparaître au premier, deuxième ou troisième tirage ou ecore X(Ω =,3 X = est l évéemet : «la première boule tirée est blache» O a possibilités de tirer la première boule parmi les blaches puis pour chacue de ces possibilités, o a (+! possibilités de tirer les + boules restates Doc http ://wwwmaths-fracefr 4 c Jea-Louis Rouget, 204 Tous droits réservés

5 p(x = = (+! = (+2! +2 X = 3 est l évéemet : «les deux premières boules tirées sot oires» O a 2! = 2 possibilités de tirer les deux premières boules puis pour chacue de ces deux possibilités, o a! possibilités de tirer les boules restates Doc, Efi p(x = 3 = 2! (+2! = 2 (+(+2 p(x = 2 = p(x = p(x = 3 = +2 2 (+(+2 = (+(+2 (+ 2 (+(+2 2 = (+(+2 X(Ω =,3 et p(x = = +2, p(x = 2 = 2 (+(+2 et p(x = 3 = 2 (+(+2 2 La première boule umérotée peut sortir au premier, deuxième,, (+-ème tirage ou ecore Y(Ω =,+ Soit 2,+ L évéemet Y = est l évéemet «les premières boules e portet pas le uméro et la -ème! porte le uméro» Pour les premières boules, o a ( ( +2 = tirages possibles puis ( +!! pour chacu des ces tirages o a 2 possibilités pour la -ème boule et doc 2 tirages possibles pour les ( +! premières boules Pour chacu de ces tirages, o a (+2! tirages possibles des +2 boules restates Fialemet, p(y = =! ( +! 2 (+2! (+2! = 2(+2 (+(+2 L évéemet Y = est l évéemet «la première boule porte le uméro» Il y a 2 tirages possibles pour la première boule puis pour chacu de ces deux tirages, il y a (+! tirages possibles des + boules restates Doc Fialemet p(y = = 2 (+! (+2! = 2(+ (+(+2 = 2(+2 (+(+2 Y(Ω =,+ et,+, p(y = = 2(+2 (+(+2 EXERCICE 3 ère solutio Soit 0, Soit A ue partie fixée à élémets Le ombre de couples (A,B tels que A B est ecore le ombre de parties B telles que A B Ue partie B coteat A est la réuio de A et d ue partie de A Le ombre de parties B coteat A est doc ecore le ombre de parties de A Il y e a card ( P ( A = 2 ( ( Esuite, il y a parties à élémets et doc 2 couples (A,B tels que card(a = et A B E faisat varier, o obtiet a = =0 ( 2 = (2+ = 3 2ème solutio Notos F l esemble des couples (A,B tels que A B http ://wwwmaths-fracefr c Jea-Louis Rouget, 204 Tous droits réservés

6 Pour (A,B F, défiissos ϕ (A,B : E {0,,2} ϕ (A,B est ue applicatio de E das {0,,2} 0 si x A x si x B\A 2 si x / B Soit alors ϕ : F {0,,2} E ϕ est bie sûr ue bijectio Démotros-le (A,B ϕ (A,B - ϕ est ue applicatio de F vers {0,,2} E - Soit ((A,B,(A,B F 2 tel que ϕ (A,B = ϕ (A,B Soit x E x A ϕ (A,B (x = 0 ϕ (A,B (x = 0 x A Doc, A = A Soit x E x B\A ϕ (A,B (x = ϕ (A,B (x = x B \A Doc, B\A = B \A puis B = B car A B, A B et A = A Fialemet, (A,B = (A,B O a motré que ϕ est ijective - Soit f {0,,2} E Soiet A l esemble des x de E tels que f(x = 0 puis B la réuio de A et de l esemble des x de E tels que f(x = Alors A B puis ϕ((a,b = f O a motré que ϕ est surjective et fialemet que ϕ est bijective Puisque ϕ est ue bijectio, card(f = card ( {0,,2} E = 3 a = 3 2 Le ombre de couples (A,B tels que A B = est ecore le ombre de couples (A,A B tels que A B = C est aussi le ombre de couples (A,B tels que A B Il y e a b = a = 3 3 Pour chaque couple (A,B tels que A B =, il y a exactemet u triplet (A,B,C (P(E 3 tels que A, B et C soiet deux à deux disjoits et vérifiet A B C = E à savoir le triplet (A,B,C E (A B Réciproquemet, chaque triplet (A,B,C (P(E 3 tels que A, B et C soiet deux à deux disjoits et vérifiet A B C = E fourit u et u seul couple (A,B (P(E 2 tel que A B = Doc, c = b = a = 3 http ://wwwmaths-fracefr 6 c Jea-Louis Rouget, 204 Tous droits réservés

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal chapitre VIII eercices et problèmes de sythèse algorithmique et turbo-pascal Algèbre liéaire et probabilités : Chaîes de Marov (esco 93) Partie A 4 3 O cosidère la matrice M = 8 6 ) a) Détermier les valeurs

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Exercices. de mathématiques de Math Spé. Archive complète. Lycée Henri-Poincaré, Nancy. Walter Appel. 58 rue Notre-Dame des Anges 54000Nancy

Exercices. de mathématiques de Math Spé. Archive complète. Lycée Henri-Poincaré, Nancy. Walter Appel. 58 rue Notre-Dame des Anges 54000Nancy Eercices de mathématiques de Math Spé Archive complète Voici quelques 35 eercices que j utilise das mes eseigemets e prépa U certai ombre d etre eu vieet directemet des orau de cocours ; sot alors otés

Plus en détail

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier Mathématiques Méthodes et eercices ECS e aée Cécile Lardo Professeur e classe préparatoire au lycée du Parc à Lyo Jea-Marie Moier Professeur e classe préparatoire au lycée La Martiière-Moplaisir à Lyo

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée gééral et techologique Ressources pour la classe termiale géérale et techologique Probabilités et statistique Ces documets peuvet être utilisés et modifiés libremet das

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles

Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Cours de Probabilités 1. Dénombrement 2. Probabilités 3. Variables aléatoires réelles Pour BCPST 1 Année scolaire : 2004/2005 16 juin 2005 Mohamed TARQI Table des matières 1 Dénombrement 3 1.1 Généralités.

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

AVRIL 2007 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES. ISE Option Mathématiques. ORDRE GÉNÉRAL (Durée de l épreuve : 4 heures)

AVRIL 2007 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES. ISE Option Mathématiques. ORDRE GÉNÉRAL (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ISSEA YAOUNDÉ AVRIL 27 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

Plus en détail

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13, LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC

Kaizen & Kanban. Réalisé par : ELBARAKA Abdelkader Club industrielle AIAC Kaize & Réalisé par : ELBARAKA Abdelkader Club idustrielle AIAC Itroducti o Itroductio: vidéo Kai ze coclusio 1 Itroducti o Kai ze La méthode du coclusio 2 Itroducti o Kai ze A- Les types d étiquettes

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités

MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités MESURES ET ANALYSES STATISTIQUES DE DONNÉES Probabilités Master Génie des Systèmes Industriels, mentions ACCIE et RIM Université du Littoral - Côte d Opale, La Citadelle Laurent SMOCH (smoch@lmpa.univ-littoral.fr)

Plus en détail

Accueil chez l assistante maternelle

Accueil chez l assistante maternelle Accueil chez l assistate materelle 2 Ce livret a été réalisé par u groupe d assistates materelles idépedates qui se réuisset régulièremet pour réfléchir à leurs pratiques professioelles. Ce groupe est

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

eduscol Ressources pour le lycée général et technologique

eduscol Ressources pour le lycée général et technologique eduscol Ressources pour le lycée gééral et techologique Ressources pour la classe de secode géérale et techologique Méthodes et pratiques scietifiques Thème sciece et prévetio des risques d'origie humaie

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Les symboles Σ et Π. Le binôme de Newton

Les symboles Σ et Π. Le binôme de Newton Les symboles Σ et Π Le biôme de Newto Nous cosacros ici u log chaitre au symbole Σ et au symbole Π A terme, la maîtrise de ce symbole est ue cométece essetielle à acquérir et ous esos qu il faut y cosacrer

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail