Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Mécanique : dynamique. Chapitre 6 : Travail et puissance d'une force"

Transcription

1 e B et C 6 Traval et pussance d une orce 56 Mécanque : dynamque Les eets des orces et les modcatons mécanques des systèmes sont souvent décrts à l ade du concept de l énerge mécanque. Or, les transmssons d énerge mécanque provennent des travau des orces qu agssent. Chaptre 6 : Traval et pussance d'une orce. Traval d une orce constante sur un chemn rectlgne a) Force parallèle au déplacement Déplacement rectlgne : s AB Traval de F = ( F (F) F pour s=constant ) : ( F ) Fs (F) s pour F=constant L unté pour ( F ) est chose tel que la constante de proportonnalté sot égale à! Le traval de la orce F s écrt donc : ( F ) = Fs b) Force perpendculare au déplacement F n agt pas suvant le déplacement F n nluence pas le mouvement Le traval de la orce F est nul : ( F ) = 0. c) Force quelconque = angle entre F et s. On décompose F en F t (composante tangentelle au déplacement) et en F n (composante normale au déplacement). Donc : F Ft Fn (F) (F t ) (F n ). Or : ( F t ) = F t s = Fcoss et : ( F n ) = 0.

2 e B et C 6 Traval et pussance d une orce 57 Fnalement, le traval de la orce F au cours du déplacement s vaut : ( F ) = Fscos On retrouve que s = 0, alors = Fs, et s = 90, alors = 0! d) Dénton du traval d une orce F constante au cours d un déplacement rectlgne s ( F ) = Fscos = F s Eemple : F = 3 N; s = m; = 30. Traval de F : ( F ) = Fscos = 3 N mcos30 = 5, J. e) Unté S.I. : le joule (J) Pour = 0, s F = N et s = m, alors ( F ) = Nm = joule = J. ) Rappel : produt scalare de deu vecteurs u et v Soent u (u, u y ) et v (v, v y ), alors : u v = u v + u y v y = uvcos ( = angle entre u et v) g) Traval moteur et traval résstant * 0 90 cos 0 0 : traval moteur, car la orce contrbue au mouvement! * = 90 cos = 0 = 0 : la orce ne travalle pas!

3 e B et C 6 Traval et pussance d une orce 58 * cos 0 0 : traval résstant, car la orce s oppose au mouvement!. Traval d une orce constante sur un chemn quelconque Le corps se déplace de A vers B suvant chemns dérents : chemn rectlgne () et chemn curvlgne quelconque (). Il est soums (entre autres) à la orce constante F. Evaluons le traval de la orce F! * suvant le chemn () : F s * suvant le chemn () : On subdvse le chemn en un très grand nombre n de très petts déplacements (déplacements élémentares s, s, s 3,..., s n ), et on calcule pour chacun de ces déplacements le traval. Le traval de la orce F sur le chemn curvlgne de A vers B est égal à la somme de ces travau élémentares. Fs Fs... Fsn F ( s s... s n ) F s On obtent cette même epresson quelle que sot la trajectore curvlgne! Concluson Le traval d une orce F constante est ndépendant du chemn suv entre le pont de départ A et le pont d arrvée B : (F) F AB FABcos AB

4 e B et C 6 Traval et pussance d une orce Eemple : traval du pods d un corps a) Epresson mathématque * Corps transporté de A vers B vers le haut (par un opérateur, par eemple). Consdérons le repère d aes O (ae horzontal) et Oz (ae vertcal = ae des alttudes). A = pont ntal = pont de départ; B = pont nal = pont d arrvée. Le pods P est constant au cours du déplacement, donc son traval ( P ) est ndépendant du chemn suv, et : (P) P AB = PABcos. = PABcos() = PAC Or AC = z B z A = z z = z > 0. Donc : ( P ) = Pz = mgz < 0 (traval résstant) * Corps transporté de B vers A vers le bas. (P) P BA = PBAcos = PBC Or BC = z B z C = z z = z > 0. Donc : ( P ) = Pz = mgz > 0 (traval moteur). Conclusons. Quel que sot le déplacement, le traval du pods s écrt : ( P ) = Pz = mgz. ( P ) sur chemn AB = ( P ) sur chemn BA.

5 e B et C 6 Traval et pussance d une orce 60 Remarque La orce nécessare pour soulever, en lgne drote et à vtesse constante, un corps de pods P est F = P (prncpe d nerte!). Cette orce est eercée par un opérateur, par eemple. Ou ben elle est la résultante de pluseurs orces qu ont pour eet d équlbrer le pods. En tout cas : ( F ) = ( P ) = +mgz 4. Eemple : traval de la tenson d un ressort a) Force nécessare pour tendre un ressort On dént un ae O des abscsses : F : T : Orgne O : etrémté lbre du ressort non tendu; Drecton : parallèle à la drecton de la tenson T ; Orentaton tel que l allongement > 0. orce eercée par un opérateur sur le ressort, nécessare pour tendre le ressort d une longueur. tenson du ressort = orce eercée par le ressort tendu sur l opérateur = orce de rappel qu tend à ramener le ressort dans son état non tendu. Prncpe des actons récproques : F = T Intenstés : F = T Rappel de la lo de Hooe : T = où est la radeur du ressort. Untés S.I. : s F = N et = m, alors = N/m. Attenton : Tconstant, T vare au cours du déplacement (T augmente s augmente, T dmnue s dmnue).

6 e B et C 6 Traval et pussance d une orce 6 b) Epresson mathématque du traval de la tenson d un ressort étré à partr de son état non-déormé. On tend le ressort de radeur d un pont ntal A d abscsse = 0 (orgne O = pont A), jusqu à un pont nal B d abscsse > 0. An de trouver le traval T utlsons la méthode graphque : Représentons l ntensté de la orce de rappel du ressort T en oncton de l abscsse. Comme la tenson T n est pas une orce constante sur le déplacement de A vers B, la relaton (T) T AB n est pas valable. AB On subdvse alors le déplacement de A vers B en un très grand nombre n de très petts déplacements élémentares,, 3,... n, de longueur dentques. Sur chacun de ces déplacements élémentares la orce T peut être consdérée comme constante, de sorte que la ormule du traval d une orce constante peut être applquée ( (T) T s T s )! Ans sur le déplacement de (= 0) vers, on consdère que la tenson reste constante de norme (= 0). Sur ce premer déplacement élémentare, le traval élémentare eectué vaut donc = (= 0) et correspond à l are (). Sur le deuème déplacement élémentare de vers, la tenson sera de nouveau constante de norme et le traval élémentare eectué vaut donc = et correspond à l are du rectangle ().

7 e B et C 6 Traval et pussance d une orce 6 Sur le trosème déplacement élémentare 3 de vers 3, la tenson sera de nouveau constante de norme et le traval élémentare eectué vaut donc 3 = 3 et 3 correspond à l are du rectangle (3). On répète cec pour les n déplacements. Fnalement sur le derner déplacement élémentare n de n- vers n =, la tenson sera de nouveau constante de norme et le traval élémentare eectué vaut donc n = n- n et n et correspond à l are du rectangle (n). Le traval total de la tenson sur le déplacement de vers est égal à la somme de tous les travau élémentares: AB (T) 3 n. La valeur absolue de ce traval correspond donc à la somme des ares des rectangles () jusqu à (n). Pourtant ce processus n est valable que s le déplacement est très pett et, à la lmte, tend vers zéro, ce qu veut dre que n tend vers l nn. Dans ce cas, la somme des ares des rectangles tend vers l are du trangle ABC. Ans on obtent AB (T) = are du trangle ABC : AB T Comme nous addtonnons des travau élémentares résstants, le traval total de la tenson est résstant : AB T Remarque : La méthode est générale. La valeur absolue du traval d une orce correspond à l are en dessous de la courbe représentant l ntensté de la orce en oncton du déplacement parallèlement à la orce. De même : représentaton graphque du traval du pods P : On représente P = (z)! Comme P est constant, la représentaton de P = (z) ournt une drote horzontale. Le déplacement se at de z à z. (P) mg z correspond à l are en-dessous de la courbe P = (z) et l ae Oz, prse entre le pont ntal et le pont nal!

8 e B et C 6 Traval et pussance d une orce 63 c) Epresson mathématque générale du traval de la tenson d un ressort * On tend le ressort d un pont ntal d abscsse = 0 (orgne O), jusqu à un pont nal d abscsse > 0. C est la stuaton du paragraphe précédent! L are entre la courbe T = () et l ae O prs entre et est égal à T! T Or ( T ) résstant ( T ) < 0. Donc : T * On relâche le ressort d un pont ntal d abscsse 0, jusqu à un pont nal d abscsse = 0 (orgne O). T Or ( T ) moteur ( T ) > 0, donc : T * On tend le ressort d un pont ntal d abscsse 0, jusqu à un pont nal d abscsse >. T Or ( T ) résstant ( T ) < 0, donc : T

9 e B et C 6 Traval et pussance d une orce 64 * On relâche le ressort d un pont ntal d abscsse 0, jusqu à un pont nal d abscsse < ( 0). T Or ( T ) moteur ( T ) > 0, donc : T Concluson Quel sot le déplacement de l etrémté d un ressort (et donc de sa tenson), le traval de la tenson du ressort s écrt : T c) Traval de la orce nécessare pour tendre le ressort Cette orce est la orce F = T. Donc : T F

10 e B et C 6 Traval et pussance d une orce Pussance P d une orce constante a) Dénton * P = traval eectué par la orce par seconde. Donc, s une orce eectue un traval pendant la durée t, sa pussance P vaut : P Δt * S < 0, alors P < 0; mas généralement on ne s ntéresse qu à la valeur absolue de la pussance. b) Untés S.I. : le watt () S = J et t = s, alors P = watt =. c) Relaton entre pussance et vtesse de déplacement du corps Il aut que la orce F sot constante et que la vtesse v de déplacement sot constante (mouvement rectlgne unorme)! Dans ce cas : ( F ) = Fscos et : s = vt. Fs cos F v t cos La pussance P de la orce s écrt alors : P Δt t t P F vcos α F v d) Autre unté pour le traval : le lowatt-heure (h) On a : = P t. * S P = et t = h, alors = h = h. * h = s = 3,60 6 J J h 6 3,6 0

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Considérons la situation suivante où un bloc est appuyé contre un ressort comprimé:

Considérons la situation suivante où un bloc est appuyé contre un ressort comprimé: 7. Traval eectué par une orce varable Consdérons la stuaton suvante où un bloc est appuyé contre un sort comprmé: Que va-t-l se passer s nous lassons partr le bloc?? L énerge cnétque du bloc va augmenter

Plus en détail

Chapitre 4.8 L énergie, le travail et la puissance en rotation

Chapitre 4.8 L énergie, le travail et la puissance en rotation Chaptre 4.8 L énerge, le traval et la pussance en rotaton Une roue qu roule sans glsser Une roue qu roule sans glsser sur une surace de contact peret à celle-c d eectuer une translaton et une rotaton.

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. Potentiel électrique 2 e BC 2 Energe potentelle électrque. Potentel électrque 12 Chaptre 2 : Energe potentelle électrque. Potentel électrque 1. Traval de la orce électrque a) Expresson mathématque dans le cas du déplacement

Plus en détail

Cinématique Newtonienne

Cinématique Newtonienne Cnématque Newtonenne 1. Chronophotographe du mouvement d un pont moble M : 1.1. nécessté de chosr un référentel : Vor l anmaton «changement de référentel» page 10 sur le ste www.phsquepovo.com Défnr ce

Plus en détail

MECANIQUE DU POINT Enoncés 1 à 61

MECANIQUE DU POINT Enoncés 1 à 61 MEANIQUE DU INT Enoncés 1 à 61 nématque 1. our ben ntégrer soluton page 31 Une partcule se déplace dans le plan horzontal (,, ), à la vtesse constante v 0, sur une courbe dont le raon de courbure R est

Plus en détail

IX PRINCIPE FONDAMENTAL DE LA DYNAMIQUE

IX PRINCIPE FONDAMENTAL DE LA DYNAMIQUE IX PRINCIPE FONDMENTL DE L DYNMIQUE Le prncpe fondamental de la dynamque est la base de la mécanque classque. Il établt une relaton entre le mouvement d un système matérel et les actons mécanques qu lu

Plus en détail

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune!

Bac Blanc TS 2016 Physique Chimie sujet : Non spécialiste. PRENDRE UNE AUTRE FEUILLE Exercice 3 : Objectif Lune! Bac Blanc TS 6 Phsque Chme sujet : Non spécalste PRENDRE UNE AUTRE FEUILLE Exercce 3 : Objectf Lune! Dans la BD d Hergé ( 953 ), Tntn et ses compagnons s embarquent à bord d une fusée pour rejondre la

Plus en détail

M3 ÉNERGIE(S) D UN POINT

M3 ÉNERGIE(S) D UN POINT M3 ÉNERGIE(S) D UN POINT MATÉRIEL OBJECTIFS Les prncpes fondamentaux de la dynamque ou los de Newton ( Cf. Cours M2) permettent d établr les équatons dfférentelles du mouvement, leur résoluton fournt l

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

Mouvement de rotation d un corps solide indéformable autour d un axe. Un mouvement de rotation c est quoi?

Mouvement de rotation d un corps solide indéformable autour d un axe. Un mouvement de rotation c est quoi? Lycée Mohamed belhassan elouazan Saf Délégaton de Saf Mouvement de rotaton d un corps solde ndéformable autour d un axe Un mouvement de rotaton c est quo? I- Défntons Un système matérel est un objet ou

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

1 ère S Fonctions de référence

1 ère S Fonctions de référence ère S Fonctons de référence Cette méthode est dffcle à mettre en œuvre pour certanes fonctons ; nous étuderons un ben melleur moyen cette année. 4 ) Tableau de varaton (pour mémore) bectfs : - Revor et

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

8.5 Conservation de l énergie mécanique

8.5 Conservation de l énergie mécanique Prédcton du mouvement d un pendule Un pendule est consttué d une sphère de masse m relée à une corde de longueur L. S ntalement, la corde at un angle θ o avec la vertcale, A) détermnez la vtesse de la

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

MODULE:VIBRATIONS. Chapitre 1: Généralités sur les oscillations. Dr. Fouad BOUKLI HACENE ESSA- TLEMCEN

MODULE:VIBRATIONS. Chapitre 1: Généralités sur les oscillations. Dr. Fouad BOUKLI HACENE ESSA- TLEMCEN ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE:VIBRATIONS Chaptre 1: Généraltés sur les oscllatons Dr. Fouad BOUKLI HACENE ESSA- TLEMCEN ANNÉE

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

ETUDE DU VIRAGE : LA BILLE!

ETUDE DU VIRAGE : LA BILLE! ETUDE DU VIAGE : LA BILLE! La blle donne la même ndcaton que celle d'un pendule accroché c par commodté à l'extrémté du vecteur "". Cet nstrument a pour but de rensegner le plote sur la symétre du vol

Plus en détail

Exercices sur les courbes en coordonnées polaires dans le plan

Exercices sur les courbes en coordonnées polaires dans le plan Exercces sur les courbes en coordonnées polares dans le plan Dans le plan orenté P mun d un repère orthonormé drect,, polare sn. ) Détermner les symétres de ; en dédure un domane d étude. ) Etuder et tracer

Plus en détail

PHQ606 Physique Nucléaire 2

PHQ606 Physique Nucléaire 2 PHQ606 Physque Nucléare 3 décembre 008 Autwa TABLE DES MATIÈRES Table des matères 1 Proprétés générales des collsons 3 1.1 Los de conservaton....................................... 3 1.1.1 Conservaton

Plus en détail

Circuits linéaires du premier ordre

Circuits linéaires du premier ordre Électrcté - haptre 2 rcuts lnéares du premer ordre Introducton... 2 I Étude d un dpôle sére...3 1 omportements lmtes d un condensateur...3 2 harge d un condensateur : réponse d un dpôle à un échelon de

Plus en détail

E V O L U T I O N D U N S Y S T E M E C H I M I Q U E V E R S U N E T A T D E Q U I L I B R E. L O I D E L E Q U I L I B R E C H I M I Q U E

E V O L U T I O N D U N S Y S T E M E C H I M I Q U E V E R S U N E T A T D E Q U I L I B R E. L O I D E L E Q U I L I B R E C H I M I Q U E REACTIONS EN SOLUTION AQUEUSE RDuperray Lycée FBUISSON PTSI E V O L U T I O N D U N S Y S T E M E C H I M I Q U E V E R S U N E T A T D E Q U I L I B R E L O I D E L E Q U I L I B R E C H I M I Q U E Les

Plus en détail

1 Réponse d un circuit RC série à un échelon de tension

1 Réponse d un circuit RC série à un échelon de tension Lycée Naval, Sup. Sgnaux Physques.. Crcut lnéare du premer ordre Crcut lnéare du premer ordre 1 éponse d un crcut C sére à un échelon de tenson On s ntéresse à la réponse d une assocaton sére {conducteur

Plus en détail

Compléter la phrase : + IV. (6 points) On considère la fonction f : x 4x x et on note C sa courbe représentative dans le plan muni d un repère ( )

Compléter la phrase : + IV. (6 points) On considère la fonction f : x 4x x et on note C sa courbe représentative dans le plan muni d un repère ( ) 1 ère S1 ontrôle du vendred 5 décembre 01 (0 mn) ) onner, sans ustfer, la mesure en radans de l angle orenté ( u ; v) (un seul résultat) qu appartent à l ntervalle [ 10 ; ] π π Prénom : Nom : Note : /

Plus en détail

Travail - Puissance. Travail moteur, travail résistant

Travail - Puissance. Travail moteur, travail résistant Travail - Puissance -Travail : Le «travail» est la grandeur l action d une force qui déplace son point d application. Travail moteur, travail résistant travail résistant travail moteur si la force favorise

Plus en détail

Maturita de mai 2010 Corrigé et barème. Question de cours - corrigé Physique nucléaire

Maturita de mai 2010 Corrigé et barème. Question de cours - corrigé Physique nucléaire Parte I. Maturta de ma orrgé et barème Queston de cours - corrgé Phsque nucléare (s). Le noau atomque content des protons et des neutrons.. X est le nom ou smbole de l élément.,5 ponts A est le nombre

Plus en détail

MECANIQUE A UN ET DEUX DEGRES DE LIBERTE

MECANIQUE A UN ET DEUX DEGRES DE LIBERTE 13 M2 MECNIQUE UN ET DEUX DEGRES DE LIERTE I. INTRODUCTION Dans cette expérence, nous allons vérfer la lo de conservaton de la quantté de mouvement, cec même lorsque l'énerge mécanque n'est pas conservée.

Plus en détail

Détermination de la viscosité d une huile moteur

Détermination de la viscosité d une huile moteur P a g e 1 TS Chme Détermnaton de la vscosté d une hule moteur Exercce résolu Enoncé Dans les moteurs à combuston, on mnmse les frottements entre les pèces mécanques en utlsant des hules afn d'obtenr un

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

Exercice I: Effet d amortissement sur les oscillations d un pendule. Résonance.

Exercice I: Effet d amortissement sur les oscillations d un pendule. Résonance. lasse : Matère: SV Physque ercce I: ffet d aortsseent sur les oscllatons d un pendule. Résonance. On place un solde de fer (M) de asse 5g sur une table horzontale. On accroche le solde à une etrété d un

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Chapitre 2.1 Les vecteurs

Chapitre 2.1 Les vecteurs Chaptre.1 Les vecteurs Le vecteur Le vecteur représente un module (grandeur) avec une orentaton. On utlse la flèche pour le représenter graphquement. Pour dentfer une varable comme étant vectorelle, l

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

MODULE 10 La fonction tangente

MODULE 10 La fonction tangente MODULE La oncton tanente Corré, p Préparaton a) Ou, Caterne a rason Sot ABC, un tranle rectanle dont les anles correspondant au sommets sont appelés a, b et c On suppose que l anle c est l anle drot du

Plus en détail

Déformations - méthode du travail - énergie et méthode du travail virtuel.

Déformations - méthode du travail - énergie et méthode du travail virtuel. TS CM MCANQU Page sur 9 Déformatons - méthode du traval - énerge et méthode du traval vrtuel. Problème posé : Détermner le déplacement d'un pont quelconque d'un système sostatque. ntroducton : es méthodes

Plus en détail

Exercices sur le nombre dérivé d une fonction (1) 1 ère S

Exercices sur le nombre dérivé d une fonction (1) 1 ère S ère S Eercces sur le nombre dérvé d une foncton () 4 La courbe c-contre est la représentaton grapque d une foncton f dérvable en et la drote est la tangente à au pont d abscsse Reprodure le grapque c-contre

Plus en détail

Version du 7 décembre 2016 (11h53)

Version du 7 décembre 2016 (11h53) CHAPITRE 4. ÉOMÉTRIE DE MAE....................................... - 4.1-4.1. Descrpton d un système matérel.......................................... - 4.1-4.1.1. Noton de pont matérel..........................................

Plus en détail

Chapitre 8 Actions du champ magnétique

Chapitre 8 Actions du champ magnétique 8.0 Introducton Chaptre 8 Actons du champ magnétque Actons (orce) du champ magnétque : a) sur des fs parcourus par un courant ( transaton) ; baance de courant b) sur des bobnes de fs parcourus par un courant

Plus en détail

Devoil libre N 6 2ème TSI 1 Correction

Devoil libre N 6 2ème TSI 1 Correction CPGE- Lycée technque Mohammeda Devol lbre N 6 Correcton Mathématques Exercce 1 : Un compact de R est une parte bornée fermée http://mathscpge.wordpress.com 1 http://mathscpge.wordpress.com CPGE- Lycée

Plus en détail

Une voiture de masse 1200kg (considérée comme un point matériel!) monte une côte à α=5? avec une vitesse constante de v=36 km/h.

Une voiture de masse 1200kg (considérée comme un point matériel!) monte une côte à α=5? avec une vitesse constante de v=36 km/h. Exercce I : La ontée en oture Une oture de asse 00kg (consdérée coe un pont atérel!) onte une côte à α=5? aec une tesse constante de =36 k/h. a)- Calculez le traal que ournt le oteur en 5 n. b)- Quelle

Plus en détail

M5. MÉCANIQUE DU SOLIDE

M5. MÉCANIQUE DU SOLIDE (5 pages) 5. ÉANIQUE DU SLIDE 1. SLIDE PARFAIT 1.1. Défnton Un solde parfat est un système de ponts fxes les uns par rapport aux autres. 1.. entre de masse a) défnton G tel que, A pont fxe mag A. avec

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

Les Codes Convolutionnels

Les Codes Convolutionnels Les Codes Convolutonnels Code Convolutíonnel : codage à partr des bts d'nformaton de pluseurs blocs Plus smples à coder et à décoder que les codes de blocs lorsque n est élevé m m m m Codes pour applcatons

Plus en détail

BOBINE A NOYAU DE FER

BOBINE A NOYAU DE FER Cours Electrotechnque GE AMARI.Mansour CHAPITRE : 0 BOBIE A OYAU DE FER Contenu : -Rappels... 3.-Electromagnétsme... 3.-Représentaton de Fresnel... 4.Consttuton 5 3.Etude de onctonnement 5 3.-Equatons

Plus en détail

9: Le moment cinétique

9: Le moment cinétique 9: e moment cnétque Blan d énerge pendant les collsons I. Que se passe-t-l lors d une collson? Collsons nélastques II. Qu est-ce qu est conservé pendant un mouvement crculare? Energe des rotatons Conservaton

Plus en détail

Exercices d optique géométrique - correction : N.B : Pour les constructions géométriques, se reporter au cours, où tous les cas ont été inventoriés.

Exercices d optique géométrique - correction : N.B : Pour les constructions géométriques, se reporter au cours, où tous les cas ont été inventoriés. Exercces d optque géométrque - correcton : N.B : Pour les constructons géométrques, se reporter au cours, où tous les cas ont été nventorés. Ex : bre optque. ) La bre va transmettre à condton d avor une

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

Chap. 7 : Le dipôle RL Exercices

Chap. 7 : Le dipôle RL Exercices Termnale S Physque Chaptre 7 : e dpôle Page 1 sur 8 xercce n 3 p170 1. a. unté d nductance est le henry de symbole H. b. e nom de cette unté provent du physcen amércan Joseph Henry : http://fr.wkpeda.org/wk/joseph_henry

Plus en détail

Sujet de révision n 1

Sujet de révision n 1 4 ème année Secton : Scences Sujet de révson n 1 Ma 010 A. LAATAOUI Thèmes abordés : Complexes ; Probabltés ; Géométre dans l espace ; oncton exponentelle et lecture graphque. Exercce n 1 Sot θ un réel

Plus en détail

EFFORTS DE COHÉSION CHRISTIAN LA BORDERIE

EFFORTS DE COHÉSION CHRISTIAN LA BORDERIE EFFORTS DE OHÉSIO HRISTI L ORDERIE 1. Toreur de effort de cohéon: 1.1. Introducton: Le effort de cohéon jouent pour la poutre le même rôle que la contrante pour le matérau. Il repréentent, qualfent et

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

Chapitre 10 Les systèmes de particules

Chapitre 10 Les systèmes de particules 0.0 Introducton. Chaptre 0 Les systèmes de partcules Dans l expérence sur les collsons vous avez constaté que le centre de masse du système se déplace en lgne drote à vtesse constante. Pourquo? Parce que

Plus en détail

ANNEXE : Rappels sur les notions de dérivée et différentielle

ANNEXE : Rappels sur les notions de dérivée et différentielle NNEXE : Rappels sur les notons de dérvée et dfférentelle Pente d une drote Eamnons géométrquement les drotes dans le plan cartésen La prncpale caractérstque qu dstngue une drote d une autre est son nclnason,

Plus en détail

1 ère S Exercices sur les fonctions de référence

1 ère S Exercices sur les fonctions de référence ère S Eercces sur les fonctons de référence Détermner par le calcul les nombres qu sont confondus avec leur mage par la foncton «carré» Détermner par le calcul les nombres qu sont confondus avec leur mage

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

Leçon 2. LE CIRCUIT RC

Leçon 2. LE CIRCUIT RC Leçon. LE CIRCUIT RC Rappels - Les conventons en électrcté On chost un sens postf du courant (flèche de ) et on lu assoce la tenson aux bornes du dpôle D (flèche de u). Deux chox de conventon sont possbles

Plus en détail

Partie 1. Manipulations. Plan. Approche expérimentale de la tangente à une courbe. 1 ère S

Partie 1. Manipulations. Plan. Approche expérimentale de la tangente à une courbe. 1 ère S 1 ère S pproche epérmentale de la tangente à une courbe Parte 1 anpulatons Dans toute cette parte, on consdère la courbe de la foncton «carré» dans le plan mun d un repère. Plan Parte 1 anpulatons I. Tracé

Plus en détail

Equilibres chimiques et loi d action des masses

Equilibres chimiques et loi d action des masses Cnétque et thermodynamque chmques CHI305 Chaptre 8 Equlbres chmques et lo d acton des masses CHI305 Chaptre 9 : Equlbres chmques et lo d acton des masses I. Equlbres chmques II. Affnté chmque, monôme des

Plus en détail

Exemple : Translation du centre de masse et rotation autour du centre de masse. Évaluer expérimentalement la position du centre de masse

Exemple : Translation du centre de masse et rotation autour du centre de masse. Évaluer expérimentalement la position du centre de masse Chaptre 4. Le centre de asse Centre de asse Le centre de asse d un corps est un pont de référence agnare stué à la poston oenne de la asse du corps. Voc quelques caractérstques du centre de asse : Cette

Plus en détail

LYCEE ELIE CARTAN Bac Blanc 2008, classes Terminales Scientifiques

LYCEE ELIE CARTAN Bac Blanc 2008, classes Terminales Scientifiques LYCEE ELIE CARTAN Bac Blanc 8, classes Termnales Scentfques La calculatrce est autorsée. Sauf ndcaton contrare, tout résultat devra être justfé. Les élèves fasant la spécalté Mathématques ne feront pas

Plus en détail

Exercice I: Effet d amortissement sur les oscillations d un pendule. Résonance.

Exercice I: Effet d amortissement sur les oscillations d un pendule. Résonance. Classe : SG Matère: Physque Eercce I: Effet d aortsseent sur les oscllatons d un pendule. Résonance. On place un solde de fer (M) de asse 5g sur une table horzontale. On accroche le solde à une etrété

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

PRISME. section principale

PRISME. section principale 1) Défntons. PRISME Un prsme est un mleu transparent, homogène et sotrope, lmté par deux doptres plans non parallèles. base arête secton prncpale La drote d'ntersecton des deux plans (qu n'exste pas toujours

Plus en détail

... électron libre...

... électron libre... PCI CHAPITRE 4 : LOI GENERALE DAN L APPROXIMATION QUAI- TATIONNAIRE 1/6 CHAPITRE 4 : LOI GENERALE DAN L APPROXIMATION QUAI-TATIONNAIRE I INTRODUCTION Nous abordons dans ce chaptre l électrocnétque, e la

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

( ) ou en Ampère par seconde ( A.s ) -1.

( ) ou en Ampère par seconde ( A.s ) -1. ELECTROCINETIQUE R.Duperray Lycée F.BUISSON PTSI E L E C T R O C I N E T I Q U E : C O N C E P T S D E B A S E La scence des crcuts électrques est une scence jeune qu s appue fondamentalement sur les los

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Les transformations élémentaires

Les transformations élémentaires Les transformatons élémentares ransformatons Utlsatons : Déplacement d'un objet dans une scène Déplacement d'un observateur par rapport a une scène éplcaton d'un motf ou d'un objet Déformaton d'un objet

Plus en détail

Version du 15 août 2016 (11h16)

Version du 15 août 2016 (11h16) CHAPTRE. CARACTÉRSTQUES GÉOMÉTRQUES DES SECTONS PLANES........ -.1 -.1. ntroducton............................................................. -.1 -.. Moment statque et centre de gravté..........................................

Plus en détail

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction TP 6: Crcut C, charge et décharge d'un condensateur - Correcton Objectfs: Savor utlser un multmètre. Savor réalser un crcut électrque à partr d'un schéma. Connaître l'nfluence d'un condensateur dans un

Plus en détail

1 ère S Exercices sur le plan muni d un repère orthonormé

1 ère S Exercices sur le plan muni d un repère orthonormé ère S Exercces sur le plan un d un repère orthonoré ans tous les exercces, le plan est un d un repère orthonoré,,. n donne les ponts ( ; ), ( ; ) et ( ; ). n note H le proeté orthogonal de sur l axe des

Plus en détail

Loi binomiale - Echantillonnage

Loi binomiale - Echantillonnage Lo bnomale - Echantllonnage I Epreuve de Bernoull Lo de Bernoull 1. Epreuve de Bernoull Une épreuve de Bernoull est une expérence aléatore qu n'a que deux ssues : - S appelé succès avec une probablté p.

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

CH7 Géométrie : Produit scalaire et vectoriel de l espace

CH7 Géométrie : Produit scalaire et vectoriel de l espace CH7 Géométre : Prodt scalare et vectorel de l espace 3 ème Maths Mars 2010 A. LAATAOUI Rappels sr le prodt scalare dans le plan Soent et v dex vecters d plan. On appelle prodt scalare des vecters et v

Plus en détail

I. Comment caractériser un phénomène périodique? I.1. Phénomène périodique

I. Comment caractériser un phénomène périodique? I.1. Phénomène périodique Chaptre 2 : Les ondes au servce du dagnostc médcal (Physque SANTÉ) Objectfs : Connaître et utlser les défntons de pérode et de fréquence d un sgnal pérodque ; Extrare et exploter des nformatons concernant

Plus en détail

»

» Leçon 1 Nombres enters En lsant avec attenton le lvre Le calcul et la géométre au temps des pharaons de M. ROUSSELET, Thomas apprend que «Les premers nombres qu ont été écrts en Égypte datent de 5 000

Plus en détail

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1.

Trigonométrie. Or x ] 0; 2[, Le projeté orthogonal de M sur (OI) est le point C et le projeté orthogonal de M sur (OJ) est le point S. =OC car OM =1. Trgonométre Défnton du snus et cosnus d'un réel quelconque. (révson de seconde) Len avec la défnton du snus et du cosnus d'un angle agu (dans un trangle rectangle) vue au collège. S O J C I Cette généralsaton

Plus en détail

Devoir de Synthèse n 2 Sciences Physiques

Devoir de Synthèse n 2 Sciences Physiques Lycée Houmt souk Djerba Prof. : Berrche Rdha Devor de Synthèse n Scences Physques lasse : 3 ème Sc ep Date :9//1 durée : h hme : (9ponts) Eercce n 1: Etude d un tete scentfque (,5pts) Les esters ont souvent

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

FONCTION TRANSMETTRE L ÉNERGIE Aspect Physique DYNAMIQUE

FONCTION TRANSMETTRE L ÉNERGIE Aspect Physique DYNAMIQUE FONCTION TRNSMETTRE L ÉNERIE Eercces ème STM I- DÉFINITION : La dnamque est le chaptre de la mécanque qu étude les mouvements des soldes en relaton avec les forces qu les produsent. L étude et la compréhenson

Plus en détail

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M '

b) Homothéties Définition : Soir u P On appelle translation de vecteur u l'application : t u P P telle que MM '= u. M M ' Exposé 27 : homothétes et translatons ; transformaton vectorelle assocée. Invarants élémentares : effets sur les dstances, les drectons, l'algnement... Applcatons à l'acton sur les confguratons usuelles

Plus en détail

Exercices d arithmétique

Exercices d arithmétique DOMAINE : Arthmétque NIVEAU : Intermédare CONTENU : Exercces AUTEUR : Noé DE RANCOURT STAGE : Cachan 011 (junor) Exercces d arthmétque Exercce 1 - Énoncés - a) Trouver tous les enters n N qu possèdent

Plus en détail

Contrôle du lundi 14 janvier 2013 (30 min) 1 ère S1

Contrôle du lundi 14 janvier 2013 (30 min) 1 ère S1 1 ère 1 ontrôle du lund 1 anver 201 (0 mn) Prénom et nom :.. Note : /20 Dans les exercces et, on note le cercle trgonométrque dans le plan orenté mun d un repère orthonormé drect (,, ). es ponts,,, ont

Plus en détail

Table des matières. Induction électromagnétique. S.Boukaddid Eléctromagnétisme MP2

Table des matières. Induction électromagnétique. S.Boukaddid Eléctromagnétisme MP2 Inducton électromagnétque Table des matères 1 Phénomène d nducton 2 1.1 Mse en évdence du phénomène d nducton.................. 2 1.2 Los de l nducton.................................. 3 1.2.1 Lo de Lenz...................................

Plus en détail

9 PROBLÈMEÀDEUXCORPS

9 PROBLÈMEÀDEUXCORPS 9 PROBLÈMEÀDEUXCORPS Le problème à deux corps désgne la stuaton ou un système mécanque peut se ramener à deux corps ponctuels en nteracton et solé de l extéreur. C est par exemple la stuaton rencontrée

Plus en détail

Factorisation. Résolution de

Factorisation. Résolution de Factorsaton LU Pour smpl er la présentaton de l'algorthme, on ne va pas tenr compte d'éventuelles permutatons, n de l'ntalsaton des lu() de Sclab c. help lu. Note la commande permutatons, Factorsaton LU

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Statique et Cinématique Chapitre 2

Statique et Cinématique Chapitre 2 Chap.2: STATIQUE Après un rappel sur les expressons des torseurs assocés aux dfférents types d'actons mécanques, nous ntrodurons le prncpe de la statque pus les méthodes de résoluton d'un problème de statque.

Plus en détail

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α Chapitre n 3 Travail et énergie I. Travail d une force constante 1. Notion de travail Le travail est une grandeur algébrique qui permet d évaluer l effet d une force sur l énergie d un objet en mouvement.

Plus en détail

II. Exemples de référentiels

II. Exemples de référentiels bectfs : L élèe dot être capable de : - défnr la cnématque - défnr le moble - défnr un référentel - cter des eemples de référentel - défnr un repère (spatal, temporel) - cter des eemples de repère - décrre

Plus en détail

4 METHODES D ANALYSE DES RESEAUX

4 METHODES D ANALYSE DES RESEAUX V V 4 METHOES LSE ES ESEUX 4. Introducton L analyse des réseaux en régme établ ou permanent repose sur les los ntrodutes dans les chaptres précédents : - la lo des malles : la somme des dfférences de potentel

Plus en détail

1 L1 MATHÉMATIQUES FINANCIÈRES

1 L1 MATHÉMATIQUES FINANCIÈRES 1 1 L1 MATHÉMATIQUES FINANCIÈRES 2 Equvalence d effets à ntérêts composés. Deux effets sont équvalents à une date donnée, s escomptés au même taux ls ont à cette date la même valeur actuelle. Un effet

Plus en détail

: Circuit Electrique en Régime Stationnaire (Part1

: Circuit Electrique en Régime Stationnaire (Part1 CH1-EC1 : Crcut Electrque en Régme Statonnare (Part1 Part1) 1/ 1/3 ) Défntons Générales :.1) Défntons : Crcut électrque (ou réseau électrque) : Ensemble de composants relés entre eux par des fls de joncton

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

Chapitre 6 Statistiques Classe :4 SC-EXP

Chapitre 6 Statistiques Classe :4 SC-EXP L-P-Bourguba de Tuns Prof :Ben jedda chokr Chaptre 6 Statstques Classe :4 SC-EXP EXERCICES EXERCICE 1 : Le tableau c-dessous ndque le taux de départ en vacances de la populaton d un pays de 1965 à 1993

Plus en détail

BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE

BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I. Durée : 3 heures Coefficient : 2 ÉPREUVE OBLIGATOIRE BTS INFORMATIQUE DE GESTION SESSION 2002 E2 : MATHÉMATIQUES I Durée : heures Coeffcent : 2 ÉPREUVE OBLIGATOIRE Le (la) canddat (e) dot trater tous les eercces. La qualté de la rédacton, la clarté et la

Plus en détail

Géométrie des masses

Géométrie des masses Cours - éométre des masses CE M éométre des masses ommare éométre des masses... Masse et nerte d un sstème... 3. Notons d nert... 3. Masse... 3.3 Centre d'nerte centre de gravté... 4.4 Algorthme de calcul

Plus en détail