T.P. Le redressement commandé : le pont mixte.

Dimension: px
Commencer à balayer dès la page:

Download "T.P. Le redressement commandé : le pont mixte."

Transcription

1 I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton d'n pont tot dodes. La tenson moyenne à la sorte d pont tot dodes a por valer = 2 U MAX avec U MAX =U 2. Ce q sgnfe qe la tenson moyenne ax bornes de la charge a ne valer fxe. S nos volons obtenr ne tenson moyenne varable ax bornes de la charge, l fat tlser n atre type de pont redresser : le pont mxte. Cela permet, entre atre, de povor fare varer la vtesse de rotaton des moters à corant contn de façon assez smple, jste en joant sr la valer moyenne de la tenson ax bornes d moter. Ce pont est constté de dex thyrstors (nterrpter ndrectonnel commandé à la fermetre) et et de dex dodes (nterrpter ndrectonnel) et d'où le nom de pont mxte.. II Fonctonnement d'n thyrstor : II.1 Présentaton : AK K A G TH Por q'n thyrstor se bloqe (nterrpter overt), l sfft qe le corant s'annle o d'applqer ne tenson v AK fortement négatve. On appelle, l'angle d'amorçage d thyrstor. t 0, l'nstant d'amorçage d thyrstor. L'angle o l'nstant d'amorçage est repéré par rapport a passage par zéro de la tenson d'almentaton d pont. Rappel : ne tenson alternatve snsoïdale a por pérode temporelle T pérode anglare 2π rad ( 360 ) G Un thyrstor possède ne anode A et ne cathode K ans q'ne gâchette G. Por q'n thyrstor condse ( nterrpter fermé) : l fat qe la tenson AK 0. et envoyer n corant G dans la gâchette por amorcer le thyrstor. Dès qe ces dex condtons sont remples, le thyrstor condt tant qe le corant q crcle dans le thyrstor de l'anode vers la cathode reste postf. Dès qe le thyrstor entre en condcton, l n'est pls nécessare de fare crcler n corant G dans la gâchette. t 0 π 2π T/2 T ωt (rad) t (s) Yannck MOREL Le pont mxte Page 1/9

2 II.2 Fonctonnement d'n thyrstor sr ne charge résstve : On tlse le montage c-dessos. La charge est ne résstance R. (t) AK (t) G Commande R (t) Le crct de commande permet d'envoyer n corant G dans la gâchette d thyrstor. De 0 à, le thyrstor n'est pas amorcé, l se comporte comme n nterrpter overt et donc, le crct est overt ( (t) =0 ) La tenson ax bornes de la charge est nlle. π 2π On amorce le thyrstor, la tenson AK à ses bornes est postve, l pet entrer en condcton (nterrpter fermé) et le corant (t) pet crcler. G (t) AK (t) La tenson ax bornes de la charge est égale à la tenson d'almentaton. La tenson ax bornes de la charge (t) devent nlle, l'ntensté (t) devent nlle ass. Le thyrstor cesse natrellement de condre et se comporte comme n nterrpter overt. (t) Tant q'on envoe pas de corant dans la gâchette G, le thyrstor contne de se comporter comme n nterrpter overt. La tenson ax bornes de la charge reste nlle par conséqent. Lorsqe la tenson passe par zéro, on envoe n corant dans la gâchette G d thyrstor. La tenson AK ax bornes d thyrstor est postve ; le thyrstor pet entrer en condcton : l se comporte comme n nterrpter fermé et la tenson ax bornes de la résstance R (t) est égale à la tenson d'almentaton. Le thyrstor restera passant tant qe le corant sera postf. Yannck MOREL Le pont mxte Page 2/9

3 II.3 Fonctonnement d'n thyrstor sr ne charge ndctve : On tlse le montage c-dessos. La charge est ne résstance R en sére avec n ndctance L.. (t) AK (t) G Commande L R (t) Le crct de commande permet d'envoyer n corant G dans la gâchette d thyrstor. π 2π (t) CH (t) π ψ Por ωt = : > 0 et v AK > 0 le thyrstor entre en condcton et v AK = 0. La tenson a bornes de la charge RL est (t) =. L'ntensté (t) commence à s'établr svant l'éqaton t L t d R dt Por ωt = π : < 0 et v AK < 0 le thyrstor contne de condre car (t) > 0 et v AK = 0. Por ωt = ψ : (t) s'annle et le thyrstor cesse de condre natrellement. = U R 2sn t Yannck MOREL Le pont mxte Page 3/9

4 III Le pont mxte : III.1 Présentaton d montage : Y 1 TH1 L TH1 TH2 Y 2 D1 D2 R = R. CH D1 D2 Le pont mxte est composé de : dex thyrstors TH1 et TH2 à commnes et de dex dodes D1 et D2 à commnes. Ce pont almente ne charge R,L. L'ndctance L sert à le corant. La voe 1 de l'osclloscope permet de vsalser. La voe 2 de l'osclloscope permet de vsalser. Por tote la ste d TP, on consdère qe les dodes et les thyrstors sont parfats et qe le corant dans la charge est parfatement lssé. Le prncpe de fonctonnement d pont mxte est le svant : Por les thyrstors, dès q'n des dex thyrstors entre en condcton, l bloqe l'atre. Por les dodes, dès q'ne dode entre en condcton, elle bloqe l'atre. Por les thyrstors à commnes, cel q est ssceptble de condre a moment de l'amorçage est cel q à la potentel à le pls élevé. Por les dodes à commnes, celle q est ssceptble de condre est celle q à le potentel à le pls fable. III.2 Observaton des dfférentes tensons et ntenstés dans le montage : Compléter les oscllogrammes de la page 7 / 8. Yannck MOREL Le pont mxte Page 4/9

5 III.3 Analyse d fonctonnement : Por 0 t : Les éléments passant sont. Les éléments bloqés sont. Le pont devent (remplacer les éléments par lers nterrpters correspondants ) et tracer en roge sr le montage le parcors de l'ntensté CH. CH Établr les expressons des tensons : = TH1 TH1 = et TH1 = TH1 TH2 D1 = et D1 = = et TH2 = D1 D2 D2 = et D2 = D1 D2 = Pendant cette phase, c'est la (grâce à l'ndctance L) q almente le pont, on dt qe c'est ne phase de o de. Por t : Les éléments passant sont. Les éléments bloqés sont. Le pont devent (remplacer les éléments par lers nterrpters correspondants ) et tracer en roge sr le montage le parcors de l'ntensté CH. CH Établr les expressons des tensons : = TH1 TH1 = et TH1 = TH1 TH2 D1 = et D1 = = et TH2 = D1 D2 D2 = et D2 = D1 D2 = Pendant cette phase, c'est la q almente le pont, on dt qe c'est ne phase d'. Yannck MOREL Le pont mxte Page 5/9

6 Por t : Les éléments passant sont. Les éléments bloqés sont. Le pont devent (remplacer les éléments par lers nterrpters correspondants ) et tracer en roge sr le montage le parcors de l'ntensté CH. CH Établr les expressons des tensons : = TH1 TH1 = et TH1 = TH1 TH2 D1 = et D1 = = et TH2 = D1 D2 D2 = et D2 = D1 D2 = Pendant cette phase, c'est la (grâce à l'ndctance L) q almente le pont, on dt qe c'est ne phase de o de. Por t 2 : Les éléments passant sont. Les éléments bloqés sont. Le pont devent (remplacer les éléments par lers nterrpters correspondants ) et tracer en roge sr le montage le parcors de l'ntensté CH. CH Établr les expressons des tensons : = TH1 TH1 = et TH1 = TH1 TH2 D1 = et D1 = = et TH2 = D1 D2 D2 = et D2 = D1 D2 = Pendant cette phase, c'est la q almente le pont, on dt qe c'est ne phase d'. Yannck MOREL Le pont mxte Page 6/9

7 III.4 Granders caractérstqes d pont mxte : On consdère qe le corant CH est parfatement lssé ce q permet d'écrre qe < CH > = I CH. On pet mesrer l'ntensté moyenne < CH > avec n poston. On pet mesrer l'ntensté effcace I CH avec n poston. On mesre la tenson moyenne < > avec n poston. On mesre la tenson effcace U CH avec n poston. Por le pont mxte, l'angle d'amorçage est comprs entre et a maxmm. La tenson almentaton a por expresson : t =U 2sn t. La tenson maxmale U MAX = La fréqence f = Por la charge : la tenson moyenne ax bornes de la charge = U MAX 1 cos. Qelqe sot la valer de, la tenson ax bornes de la charge est tojors o. La pssance P reçe par la charge est P= CH. Lorsqe la tenson a bornes de la charge est égale à la tenson d'almentaton, c'est ne phase. Lorsqe la tenson ax bornes de la charge est, c'est ne phase de. Por la tenson d'almentaton : On remarqe qe l'ntensté (t) à l'entrée d pont est de forme q a por valer moyenne <> =. La pssance apparente à l'entrée d pont est S=U. I et le facter de pssance k= P S. Intérêt d pont mxte : Le pont mxte est sovent tlsé por agr sr la vtesse de rotaton des machnes tornantes à corant contn. En fasant varer la tenson ax bornes d moter, on fat varer la vtesse de rotaton. Ce qe je dos savor à la fn de ce TP : Représenter la tenson ax bornes de la charge por n angle qelconqe. Savor calcler la tenson moyenne en tlsant la formle donnée. Savor qels sont les éléments passants et bloqés por les dfférents nstants de la tenson. Savor reconnaître ne phase d'almentaton et ne phase de roe lbre. Yannck MOREL Le pont mxte Page 7/9

8 OSCILLOGRAMMES EN CONCORDANCE DES TEMPS = 60 :, (t) C (t), CH (t) TH1 (t), TH1 (t) D1 (t), D1 (t) Colorer les dfférentes phases de condcton des dfférents éléments. TH1 D1 TH2 D2 RL : roe lbre ; A : alm. Yannck MOREL Le pont mxte Page 8/9

9 IV Exercces : Exercce n 1 : On tlse n pont mxte por almenter ne charge R = 12 Ω en sére avec ne ndctance L sffsamment mportante por consdérer qe l'ntensté CH dans la charge sot parfatement lssée. 1- On règle l'angle d'amorçage =40. Représenter en concordance des temps la tenson ax bornes de la charge et l'ntensté CH q crcle dans la charge. 2- Calcler la tenson < >. 3- Montrez qe < > = R.< CH >. Et en dédre la valer de < CH >. 4- Calcler la pssance P reçe par la charge. Exercce n 2: On tlse n pont mxte por almenté ne charge R en sére avec ne ndctance L sffsamment mportante por consdérer qe l'ntensté CH dans la charge sot parfatement lssée. 1- Qelle dot être la valer de l'angle d'amorçage s on vet qe < > = 100 V Représenter en concordance des temps la tenson ax bornes de la charge et l'ntensté CH q crcle dans la charge. 3- Montrez qe < > = R.< CH >. Qelle dotêtre la valer de R por avor ne ntensté de I CH = 10 A? 4- Calcler la pssance P reçe par la charge. Yannck MOREL Le pont mxte Page 9/9

TRANSFORMATEUR MONOPHASE

TRANSFORMATEUR MONOPHASE - ROLE ET NTERET. Rôle TRANSFORMATER MONOHASE n transformater est ne machne électrqe statqe permettant n changement de tenson alternatve avec n excellent rendement. l pet être tlsé en abasser de tenson

Plus en détail

Premier semestre de première année de BTS

Premier semestre de première année de BTS M. HOLST Florent 1BTS Electrotechnqe 1 Premer semestre premère année BTS Septembre Octobre Novembre Décembre Janver Péro préve por le dérolement ce TP : Ttre d TP Econome d énerge sr n ste solé Rapport

Plus en détail

Physique appliquée. 1 re STI. Génie électronique

Physique appliquée. 1 re STI. Génie électronique Physqe applqée 1 re STI Géne électronqe Mare-Clade Dder Lycée les Irs, Lormont Jacqes Lafarge Lycée Gstave ffel, Bordeax Therry Lecorex Lycée Rchele, Rel-Malmason Gérard Montaster Lycée Doran, Pars Sos

Plus en détail

Série 1 : Convertisseurs statiques

Série 1 : Convertisseurs statiques Sére 1 : Convertssers statqes X1 : Montage redresser en pont. U=48V- 50Hz 1) Précser les condctons des dodes et la relaton entre c et dans chaqe ntervalle. racer c(t) 2) Donner les expressons de la valer

Plus en détail

ONDULEUR I. PRINCIPE DES ONDULEURS AUTONOMES II. ONDULEUR DE TENSION MONOPHASÉE À 2 INTERRUPTEURS. 1. Débit sur charge résistive

ONDULEUR I. PRINCIPE DES ONDULEURS AUTONOMES II. ONDULEUR DE TENSION MONOPHASÉE À 2 INTERRUPTEURS. 1. Débit sur charge résistive le SI G Ondler ODULUR I. PRICIP DS ODULURS AUOOMS On appelle ondler, n convertsser statqe contn-alternatf q permet d'obtenr ne tenson alternatve de valer effcace fxe o réglable à partr d'ne sorce de tenson

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

CH06 : Les cellules de commutation

CH06 : Les cellules de commutation BTS électrotechnqe 2 ème année - Scences physqes applqées H06 : Les cellles de commtaton Enje : converson de l énerge électrqe Problématqe : Entre l électrotechnqe et l électronqe, s est développée a cors

Plus en détail

RAPPELS DE COURS SUR L'ALTERNATIF

RAPPELS DE COURS SUR L'ALTERNATIF RAPPELS DE CORS SR L'ALERNAF - DÉFNON D CORAN ALERNAF SNSOÏDAL Les varatons e l'ntensté nstantanée, notée, e ce type e corant en foncton temps sont représentés par ne snsoïe. 0 0 3 4 - Le temps qe met

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou ELECTCTE Analyse des sgnax et des crcts électrqes Mchel Po Chaptre Los générales de l électrcté en régme contn Los de Krchhoff Baselecpro Edton /03/04 Table des matères POUQUO ET COMMENT? DEFNTONS, OCABULAE

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 11/03/2014 Table des matères 1 POUQUOI T

Plus en détail

SERIE D EXERCICES N 9 : ELECTROCINETIQUE : CIRCUITS NON LINEAIRES

SERIE D EXERCICES N 9 : ELECTROCINETIQUE : CIRCUITS NON LINEAIRES Nathale Van de Wele - Physqe Sp PCSI - Lycée les Ecalypts - Nce Sére d exercces 9 SEIE D EXECICES N 9 : ELECTOCINETIQUE : CICUITS NON LINEIES 1 Caractérstqes, pont de fonctonnement : électrolyser, dode,

Plus en détail

C.P.G.E-TSI-SAFI Redressement non commandé 2006/2007

C.P.G.E-TSI-SAFI Redressement non commandé 2006/2007 C.P.G.E-TSI-SAFI edressement non commandé 2006/2007 edressement non commandé Introducton : es réseaux et les récepteurs électrques absorbent de l énerge sous deux formes, en contnus ou en alternatfs. Pour

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 23/05/2005 nméro d'enregstrement de

Plus en détail

Chapitre 13 : redressement commandé

Chapitre 13 : redressement commandé Cors 13 Chaptre 13 : redressement commandé le Thyrstor 1. défnton 2. retard à l amorçage redresser à 4 thyrstors 1. sr charge R a) montage b) obseraton c) fonctonnement 2. sr charge RLE a) montage b) obseraton

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

AMPLIFICATEUR OPERATIONNEL

AMPLIFICATEUR OPERATIONNEL APLIFICAU OPAIONNL - POPI D L'AOP IDAL. Descrpton L'amplfcater opératonnel se présente sos la forme d'n crct ntégré (en général DIL) ; l possède entrées notées - entrée non nversese - et - - entrée nversese.

Plus en détail

TP6 Caractéristiques de dipôles 2013

TP6 Caractéristiques de dipôles 2013 TP6 Caractérstqes de dpôles 2013 Noms des étdants : 1-Dpôles lnéares Par défnton, n dpôle est lnéare s l exste entre la tenson à ses bornes et le corant électrqe q le traverse, ne éqaton dfférentelle lnéare.

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

Redresseur ou commutateur

Redresseur ou commutateur N.L.T.Mohammeda FONCTION DISTIBUE : CONETISSEUS STATIQUES I. Introdcton 1. Nécessté de la conerson d énerge Les dfférents réseax électrqes ndstrels almentent de nombrex actonners. Cette énerge apparaît

Plus en détail

Compensation des amétropies sphériques

Compensation des amétropies sphériques Compensation des amétropies sphériqes Principe de la compensation e verre compensater théoriqe (o verre correcter) de l'amétropie, placé devant l'œil, permet a sjet de voir net à l'infini sans accommoder.

Plus en détail

Le redressement. 1. Intérêt du redressement MCC

Le redressement. 1. Intérêt du redressement MCC . Intérêt d redressement Le redressement MCC Si on désire faire fonctionner n moter à corant contin (MCC) en alternatif il ne torne pas mais vibre. Explication : le corant alternatif change de sens réglièrement

Plus en détail

REDRESSEMENT NON COMMANDÉ

REDRESSEMENT NON COMMANDÉ EDESSEMENT NON COMMNDÉ Por almenter n récepter en contn à partr d'n résea de dstrbton alternatf, on tlse n conertsser alternatf-contn appelé ass redresser. es redressers non commandés, ne comportant qe

Plus en détail

Chapitre 1 ETUDE DES CIRCUITS EN CONTINU Connaissances (C) : Loi des nœuds, loi des mailles Relation tension - courant ou courant tension, loi d ohm

Chapitre 1 ETUDE DES CIRCUITS EN CONTINU Connaissances (C) : Loi des nœuds, loi des mailles Relation tension - courant ou courant tension, loi d ohm Chapte TUD DS CICUITS N CONTINU Connassances (C) : Lo des nœds, lo des malles elaton tenson - coant o coant tenson, lo d ohm Théoème de Thévenn. Pncpe de speposton Calcl de pssance en contn Savo-fae théoqes

Plus en détail

RESEAUX DE NEURONES, LOGIQUE FLOUE ET ALGORITHMES GENETIQUES

RESEAUX DE NEURONES, LOGIQUE FLOUE ET ALGORITHMES GENETIQUES RESEAUX DE NEURONES, LOGIQUE FLOUE ET ALGORITHMES GENETIQUES Jalel ZRIDA Ecole Spérere des Scences et Technqes de Tns et Unté Sgna et Système, ENIT La Logqe Floe De nos jors, nos problèmes mplqent sovent

Plus en détail

Chap2 Conversion électronique de puissance : Hacheurs

Chap2 Conversion électronique de puissance : Hacheurs Chap2 Converson électronqe de pssance : Hachers 1. Prncpe de la converson électronqe de pssance 1.1. Ordres de granders en électronqe de pssance 1.2. Intérêt des convertssers électronqes à nterrpters 1.3.

Plus en détail

Dans sa version la plus simple, ce redresseur est alimenté par un seul enroulement secondaire de transformateur.

Dans sa version la plus simple, ce redresseur est alimenté par un seul enroulement secondaire de transformateur. Hypothèses : - Les dodes tlsées dans les redressers sont spposées déales : Dode passante : v D = 0 et D > 0 Dode bloqée : v D < 0 et D = 0 - On se lmte a redressement de sgnax sss d résea 50Hz. A D v D

Plus en détail

Olympiades de physique Lycée Guez de Balzac Angoulême page 1

Olympiades de physique Lycée Guez de Balzac Angoulême page 1 Olympades de physqe Lycée Gez de Balzac Angolême page Olympades de physqe Lycée Gez de Balzac Angolême page Pls rapdes, pls sûres, pls économes, les plaqes à ndcton révoltonnent la csson et envahssent

Plus en détail

Systèmes électromécaniques

Systèmes électromécaniques Hate Ecole d ngénere et de Geston D Canton d Vad Systèes électroécanqes Chaptre 6 OEURS SYNCRHONES A AANS PERANENS Coplage et odélsaton por les oters trphasés CD\SE\Cors\Chap6. Correvon A B E D E S A

Plus en détail

= E. I Introduction : II Principe de fonctionnement du hacheur série : Le hacheur série. II.1 Présentation :

= E. I Introduction : II Principe de fonctionnement du hacheur série : Le hacheur série. II.1 Présentation : CAG I Introducton : e hacheur sére. es hacheurs sont des convertsseurs statques contnu-contnu. Ils permettent, à partr d'une tenson contnue fxe, d'obtenr une tenson contnue de valeur dfférente. Son symbole

Plus en détail

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE E1 - LOIS GÉNÉRLES E L ÉLECTROCINÉTIQUE OBJECTIFS L Électrocnétqe est la branche de l Électromagnétsme q étde le transport des charges électrqes dans les crcts condcters. Ses applcatons, de l électrotechnqe

Plus en détail

CL2 CL1. Figure 1. Le transistor T 1 possède : Un gain en courant β 1 de 100 Une résistance interne r ce1 de 20 KΩ.

CL2 CL1. Figure 1. Le transistor T 1 possède : Un gain en courant β 1 de 100 Une résistance interne r ce1 de 20 KΩ. PREMIERE PARTIE : ETAGE AMPLIFICATEUR EN EMETTEUR COMMUN On donne en fgre le schéma d n amplfcater émetter commn à T 25 C, almenté par ne tenson V CC de 20V, dans leqel le transstor NPN T possède, grâce

Plus en détail

PHY124, année 0405 COURS D'ÉLECTROCINÉTIQUE

PHY124, année 0405 COURS D'ÉLECTROCINÉTIQUE PHY4, année 45 COUS D'ÉLECTOCINÉTIQUE Ce ors, dsponble sr le web à l adresse http ://marpx.np3.fr/alo/my-web/ele/ele.html, est l œvre de Sylvan Tsserant, de l Unversté de Marselle, q a donné l atorsaton

Plus en détail

Examen de fin d apprentissage Monteur-électricien / Monteuse électricienne. Livre de formules et calculatrice de poche.

Examen de fin d apprentissage Monteur-électricien / Monteuse électricienne. Livre de formules et calculatrice de poche. Sére 2004 Connassances professonnelles écrtes Electrotechnqe / Electronqe Nom... Prénom... Examen de fn d apprentssage Monter-électrcen / Montese électrcenne N o d canddat... Date... Dosser d canddat Temps

Plus en détail

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus :

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus : 1. Une dode est utlsée dans le montage c-dessous : 3,3 générateur + 2,5 =4,5 V V Fgure 43 Des relevés effectués sur cette dode branchée en drect sont donnés dans le tableau c-dessus : v (V) 0 0,6 0,7 0,8

Plus en détail

Exercices de révision pour examen #1

Exercices de révision pour examen #1 Exercces de révson pour examen #1 Queston 1. Questons théorques. a) Nommez les courants qu exstent quand une dode est en équlbre. Courants de dffuson et de drft. b) Dessnez la structure physque réelle

Plus en détail

Chapitre III- 4- RÉGIME SINUSOÏDAL ASSOCIATION DE DIPÔLES

Chapitre III- 4- RÉGIME SINUSOÏDAL ASSOCIATION DE DIPÔLES haptre - 4- ÉGME SNSOÏDA ASSOATON DE DPÔES - Montage por les assocatons "parallèle" 1 OBJETFS l s'agt d'étder la relaton corant-tenson ( mpédance Z [ Z ; ] ) dans des assocatons de dpôles lnéares élémentares

Plus en détail

OSCILLATEURS COUPLÉS

OSCILLATEURS COUPLÉS TP OSCILLATEURS COUPLÉS Capacités exigibles : mtre en évidence l action d n filtre linéaire sr n signal périoqe dans les domaines fréqentiel temporel La théorie générale des oscillaters coplés n est pas

Plus en détail

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique:

SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12. Phénomènes d induction et conversion électromécanique: SPE PSI DEVOIR LIBRE N 9 pour le 04/01/12 Phénomènes d nducton et converson électromécanque: 1/ Inductance propre et nductance mutuelle. 11/ Défntons et proprétés : 11a/ Défnr l'nductance propre L d un

Plus en détail

Chapitre 9 : Redressement

Chapitre 9 : Redressement Cors 9 M 2 Préamble 1. défnons 2. le hyrsor Chapre 9 : Redressemen pon de graez 4 Dodes 1. sr charge résse a. monage b. obseraon c. analyse de fonconnemen d. granders caracérsqes 2. monage sr charge RL

Plus en détail

Clemenceau. Lois fondamentales de l électrocinétique. Exemple du courant continu. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Lois fondamentales de l électrocinétique. Exemple du courant continu. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. PCSI - Physqe Lycée Clemencea PCSI (O.Graner) Los fondamentales de l électrocnétqe Exemple d corant contn Olver GNIE PCSI - Physqe I Défntons sr les crcts électrqes : éseax et dpôles : Un résea est n crct

Plus en détail

Vecteurs dans le plan

Vecteurs dans le plan Vecters dans le plan 1. Définition d n vecter : (classe de seconde) Soient A et B dex points d plan. La translation transformant A en B est la transformation qi transforme tot point M en n point M tel

Plus en détail

CHAPITRE CP3 C Conversion électronique

CHAPITRE CP3 C Conversion électronique PS Brzex Ch. CP3: Converson électronqe 31 CHAPTR CP3 C Converson électronqe Contrarement ax convertssers électromécanqes, les convertssers électronqes, tlsés en électronqe de pssance, ont des granders

Plus en détail

GENIE ELECTRIQUE. Conversion statique d énergie. Michel Piou

GENIE ELECTRIQUE. Conversion statique d énergie. Michel Piou GENIE ELECTRIQUE Converson statqe d énerge Mchel Po Converson DC DC (hachers et almentatons à décopage) Convertssers à lason drecte et Convertssers à lason ndrecte. Chaptre II Edton 24/11/2010 Extrat de

Plus en détail

REDRESSEMENT COMMANDÉ

REDRESSEMENT COMMANDÉ DSSMNT COMMNDÉ es redressers commandés sont des conertssers statqes alternatfs contns permettant d'obtenr des tensons (o corant) de aler moyenne réglable. Dans tote l'étde, les dodes et les thyrstors sont

Plus en détail

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL?

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL? OBJECTFS Chapre - - RÉGME SNSOÏDAL GÉNÉRALTÉS - Monrer l'mporance d régme snsoïdal en élecronqe e dans d'ares domanes. - Défnr les granders relaves à n sgnal snsoïdal. - Savor représener ne grander snsoïdale

Plus en détail

Electrocinétique : régime permanent (Corrigé) Ex 0 : application des lois de Kirchoff.

Electrocinétique : régime permanent (Corrigé) Ex 0 : application des lois de Kirchoff. lectrocnétqe : régme permanent (Corrgé) x : applcaton des los de Krchoff. Posons d'abord les éqatons électrqes : lo de nœd : 1 + 2 + 3 = (1) (attenton à l'orentaton des condcters). los de malles : 1 1

Plus en détail

I Le pont tout thyristors :

I Le pont tout thyristors : I Le pont tout thyristors : T.P. Le redressement commandé : le pont tout thyristors. I.1 Présentation du montage (Charge R-L ou R-L-E ; conduction ininterrompue): i CH u TH1 u TH2 TH 1 TH 2 u L u i i TH1

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

TP1 : Analyse et Commande des Systèmes Linéaires

TP1 : Analyse et Commande des Systèmes Linéaires TP1 : Analyse et Commane es Systèmes Lnéares 1. Analyse e la stablté 'n système Consérons le système : ( p ) ( p + 1) p 1 1 3 1.1 Cas K 1 Calcl es pôles système (racnes énomnater). roots(en) Proposer ne

Plus en détail

Oscillations libres dans un circuit RLC série

Oscillations libres dans un circuit RLC série HAPI 8 Oscllatons lbres dans n crct sére r Manel pages 75 à 9 hox pédagoges e chaptre est le trosème et derner chaptre consacré à l évolton des systèmes électres Après avor étdé séparément les dpôles et

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

. τ. avec τ = 1. R + r. R + r R + r τ r exp t τ

. τ. avec τ = 1. R + r. R + r R + r τ r exp t τ 8-9 xrccs d Élctrocnétq égm transtor t régm forcé contn x-4. rct d ordr ) xprmr t) t t), ps tracr ls corbs rprésntatvs. On posra τ =. I I I I 4 ép : t) = I xp t )) t t) = I xp t ). τ τ t x-4. rct parallèl

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

MPàP = commande d'axe en boucle ouverte Nombre de pas / tour Angle de pas Fréquence Vitesse angulaire N p

MPàP = commande d'axe en boucle ouverte Nombre de pas / tour Angle de pas Fréquence Vitesse angulaire N p G. Pnson - Physqe Applqée Moter pas à pas - C35 / C35 - Moter pas à pas (MPàP) MPàP = commande d'axe en bocle overte ombre de pas / tor Angle de pas Fréqence Vtesse anglare p θ = 360 ( ) f = nb pas / seconde

Plus en détail

2 Produit scalaire - Exercices

2 Produit scalaire - Exercices 6 Edton 007-008 / DELM Géométre métrqe Prodt scalare - Exercces Les exercces dont le nméro content la lettre A, par exemple -A1, sont des exercces complémentares destnés ax élèves d nvea avancé. Lens hypertextes

Plus en détail

Ch.9 : Dipôles passifs en régime sinusoïdal.

Ch.9 : Dipôles passifs en régime sinusoïdal. _ch (omplexes snsoïdal).o Mare Perrot ycée d empart // h. : Dpôles passfs en régme snsoïdal.. Nombres complexes assocés ax vecters de Fresnel. θ x e vecter de Fresnel: Son modle est la valer effcace de

Plus en détail

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes :

LES POMPES. Devant la grande diversité de situations possibles, on trouve un grand nombre de machines que l on peut classer en deux grands groupes : Ste: http://gene.ndustrel.aa.free.fr LES POMPES Les pompes sont des apparels permettant un transfert d énerge entre le flude et un dspostf mécanque convenable. Suvant les condtons d utlsaton, ces machnes

Plus en détail

Exercice 1. 1) Représenter le vecteur U ci-dessous. 2) Déterminer graphiquement le module et l'argument du nombre complexe z.

Exercice 1. 1) Représenter le vecteur U ci-dessous. 2) Déterminer graphiquement le module et l'argument du nombre complexe z. http://maths-sciencesfr EXERCICES SUR LES NOMBRES COMPLEXES Exercice Une minterie est alimentée par ne tension alternative sinsoïdale U(t) = U m sin(t + ) À n instant cette tension est représentée par

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

TRIGONOMÉTRIE 1 ) ORIENTATION DU PLAN 2 ) MESURE DES ANGLES EN RADIAN. 1 rad 57,3 1 = rad 0,0175 rad

TRIGONOMÉTRIE 1 ) ORIENTATION DU PLAN 2 ) MESURE DES ANGLES EN RADIAN. 1 rad 57,3 1 = rad 0,0175 rad TRIGNMÉTRIE 1 ) RIENTTIN DU PLN rienter n cercle, c'est choisir n sens de parcors sr ce cercle appelé sens direct ( o positif ). L'atre sens est appelé sens indirect (négatif o rétrograde) rienter le plan,

Plus en détail

DE LA VALIDATION DES METHODES D ANALYSE A L EVALUATION DE L INCERTITUDE DES RESULTATS DE MESURE

DE LA VALIDATION DES METHODES D ANALYSE A L EVALUATION DE L INCERTITUDE DES RESULTATS DE MESURE DE LA VALIDATION DES METHODES D ANALYSE A L EVALUATION DE L INCETITUDE DES ESULTATS DE MESUE Mchèle Désenfant Marc Prel Cédrc ver Laboratore Natonal d Essas BNM-LNE 1, re Gaston Bosser 7574 Pars Cedex

Plus en détail

I) A quoi sert la géométrie analytique?

I) A quoi sert la géométrie analytique? FICHE ETHDE sr la GEETRIE ANALYTIQUE I) A qo sert la géométre analtqe? a) Exemples : 1 ACKE, CHBD et HGLF sont 3 parallélogrammes. d b f l AC = 8, AE =, CH = 5, CD = 6,6 HG = 1, HF = 11 6,6 11 Les ponts

Plus en détail

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L.

À partir de la demi-période comprise entre les points C et D de la figure 2, mesurer u L, de la bobine. calculer et en déduire la valeur de L. se 2004 ÉTUD XPÉIMNTL D'UN BOBIN (6 ponts) 1.5. On néglge dans la sute le terme fasant ntervenr r dans l'expresson de u L ans que les arronds des crêtes de l'ntensté. 1 - Détermnaton expérmentale de l'nductance

Plus en détail

Chapitre 2 Etude des circuits linéaires; théorèmes généraux

Chapitre 2 Etude des circuits linéaires; théorèmes généraux Chaptre 2 Etde des crcts lnéares; théorèmes générax 3 2.. Les éléments des crcts lnéares Rappel : n crct lnéare est n crct necomportant qe des composants (o dpôles) lnéares. Un composant est lnéare s la

Plus en détail

Devoir surveillé n o 2 niveau 2 Mercredi 27 novembre de 13h à 17h. sint t + x dt.

Devoir surveillé n o 2 niveau 2 Mercredi 27 novembre de 13h à 17h. sint t + x dt. Lycée Ponts de Tyard 3/4 ECS Devoir srveillé n o nivea Mercredi 7 novembre de 3h à 7h La qalité de rédaction, de notation et de présentation prendra ne large part dans la note finale. Le sjet comporte

Plus en détail

C ha pi t re 4 : Puissance et éne rgie

C ha pi t re 4 : Puissance et éne rgie 1 GEL C hapt re 4 : Pssance et énerge C ha p t re 4 : Pssance et éne rge 4.1. la pssance électrqe 240 V 50 W 240 V 100 W 240 V 75 W exemple des lampes dont l'éclarement change avec la pssance ndqée, on

Plus en détail

Electronique TD1 Corrigé

Electronique TD1 Corrigé nersté du Mane - Faculté des Scences! etour D électronque lectronque D1 Corrgé Pour un sgnal (t) quelconque : 1 $ (t) # MOY! (t) dt 1 FF! (t) dt (t) MX MOY mpltude crête à - crête mpltude Mn Pérode t emarque

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

Chapitre 3 REGIMES VARIABLES PERIODIQUES

Chapitre 3 REGIMES VARIABLES PERIODIQUES Chaptre 3 REGME ARABLE ERODQUE. DEFNON... Notatons générales - g o g(t) : grander varable a cors d temps, - = G moy = G = valer moyenne de la grander - Ĝ valer de crête. - G = G (sans ndce) = valer

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Produit Scalaire. u = AB. La norme du vecteur. u un vecteur du plan, A et B deux points du plan tels que. u = 1, on dit que le vecteur est unitaire

Produit Scalaire. u = AB. La norme du vecteur. u un vecteur du plan, A et B deux points du plan tels que. u = 1, on dit que le vecteur est unitaire Prodt Scalare I éfntons d prodt scalare : a norme d'n ecter : défnton : Soent n ecter d plan, et dex ponts d plan tels qe =. La norme d ecter est la longer d segment []. n la note. S = 1, on dt qe le ecter

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

GUIDE D INSTALLATION ET DE PROGRAMMATION CENTRALE D ALARME

GUIDE D INSTALLATION ET DE PROGRAMMATION CENTRALE D ALARME GUIDE D INSTALLATIN ET DE PRGRAMMATIN CENTRALE D ALARME Gde d nstallaton et de programmaton centrales flares 9751 / 9752. Cooper Secrty Lmted. 2002 La pls grande attenton a été apportée à l exacttde des

Plus en détail

PHYSIQUE APPLIQUEE 1ère STI

PHYSIQUE APPLIQUEE 1ère STI PHYSQE APPLQEE 1ère ST 1-59 TABLE DES MATÈRES LOS FONDAMENTALES D CORANT CONTN 6.LE CORANT ÉLECTRQE...6 1. Circuit électrique...6 2.Nature microscopique du courant électrique...7 3.Sens conventionnel du

Plus en détail

Accès personnalisé à des sources de données multiples : évaluation de deux approches de reformulation de requêtes 1

Accès personnalisé à des sources de données multiples : évaluation de deux approches de reformulation de requêtes 1 Accès personnalsé à des sorces de données mltples : évalaton de dex approches de reformlaton de reqêtes 1 Dmtre Kostadnov, Mokrane Bozeghob, Stéphane Lopes Laboratore PRSM CNRS-Unversté de Versalles 45,

Plus en détail

REDRESSEMENT COMMANDÉ PONT MIXTE

REDRESSEMENT COMMANDÉ PONT MIXTE REDRESSEMENT COMMANDÉ PONT MIXTE A) THYRISTOR 1) Présentaton : C est un nterrupteur électronque commandé ( undrectonnel ) dont le symbole est représenté c-dessous : anode T cathode 2) Fonctonnement : Fermeture

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Machines à courant continu

Machines à courant continu achnes à courant contnu Foncton d usage : La machne à courant contnu peut fonctonner en «moteur» ou en «génératrce» Le moteur à courant contnu est un convertsseur d énerge électrque en énerge mécanque

Plus en détail

2 exercices corrigés d Electronique de puissance sur l onduleur

2 exercices corrigés d Electronique de puissance sur l onduleur 2 exercces corrgés d lecronqe de pssance sr l ondler xercce nd01 : ondler aonome n réalse le monage svan en lsan qare nerrpers élecronqes, fonconnan dex par dex : Le généraer de enson conne a ne f.e.m.

Plus en détail

schéma électrique équivalent au circuit électrique représenté : symbole d'une lampe D 2 de dipôles générateurs :

schéma électrique équivalent au circuit électrique représenté : symbole d'une lampe D 2 de dipôles générateurs : C hapt re 1 : crc t s éle ct rqes, corant, tenson et ps sance 1.1. le corant électrqe 1.1.1. le crct électrqe n crct électrqe content a mons n générater, des fls condcters et a mons n récepter. n fl condcter

Plus en détail

Ch.7 : Etude des variations d une fonction

Ch.7 : Etude des variations d une fonction e S - programme 20 - mathématiqes ch.7 - cors Page sr 6 Ch.7 : Etde des variations d ne fonction SENS DE VARIATION ET OPÉRATIONS SUR LES FONCTIONS THÉORÈME Somme de fonctions Soit n réel k et dex fonctions

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

EXERCICES D ELECTRICITE REGIME VARIABLE ENONCES

EXERCICES D ELECTRICITE REGIME VARIABLE ENONCES EXEES D EEE EGME VAABE ENONES Exercce : enson rectanglare (t) E (t) est ne tenson de pérode et de rapport cyclqe α. alcler la valer moyenne et la valer effcace de la tenson. α t A.N. E 5V ; α,5. Avec

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace

GEOMETRIE DANS L ESPACE. I) Vecteurs de l espace GEOETRIE DNS L ESPCE ant tot, rappelons ne propriété fondamentale : Tot théorème de Géométrie plane s appliqe dans n importe qel plan de l espace. Les exemples de ce chapitre se réfèrent a dessin ci-contre

Plus en détail

TD: Transformée de Fourier

TD: Transformée de Fourier TD: Transformée de Forier Définition + Soit ne fonction complee f de la variable réelle Si elle est de carré sommable, c est-à-dire si l intégrale f( d converge (on se reportera a cors de mathématiqes

Plus en détail

Clemenceau. Régimes transitoires dans les circuits (RC), (RL) et (RLC) Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régimes transitoires dans les circuits (RC), (RL) et (RLC) Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycée lemencea PSI - Physqe ycée lemencea PSI (O.Graner) égmes transtores dans les crcts (), () et () Un len vers le TP sr l étde de ces crcts ycée lemencea PSI - Physqe ère parte harge et décharge d n

Plus en détail

Les bases de l électricité

Les bases de l électricité Les bases de l électrcté COS BTS Systèmes Photonqes.A. L électrcté permet de faclement transporter énerge et nformaton. lle permet également de mltples transformatons d énerges : thermqe, lmnese, magnétqe

Plus en détail

Chapitre 0, Troisième partie : Produit vectoriel, Produit mixte

Chapitre 0, Troisième partie : Produit vectoriel, Produit mixte Chapitre 0, Troisième partie : Prodit ectoriel, Prodit mixte On appelle V l ensemble des ecters de l espace. On rappelle qe dex ecters non-colinéaires définissent n plan ectoriel et qe trois ecters non-coplanaires

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Physique appliquée. 1 res STI. Génie mécanique, Génie civil, Génie énergétique

Physique appliquée. 1 res STI. Génie mécanique, Génie civil, Génie énergétique hysqe applqée 1 res STI éne mécanqe, éne cvl, éne énergétqe Jacqes Lafarge Lycée stave Effel, ordeax Therry Lecorex Lycée Rchele, Rel-almason érard ontaster Lycée oran, ars Sos la drecton de Robert Le

Plus en détail

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction

TP 6: Circuit RC, charge et décharge d'un condensateur - Correction TP 6: Crcut C, charge et décharge d'un condensateur - Correcton Objectfs: Savor utlser un multmètre. Savor réalser un crcut électrque à partr d'un schéma. Connaître l'nfluence d'un condensateur dans un

Plus en détail

La notation différentielle

La notation différentielle IUT Orsa Mesres Psiqes La notation différentielle Cors d 1 er semestre A Cas d ne fonction à ne variable A-I Rappel sr la dérivée On tilise ne fonction f dont la représentation grapiqe est «sans copre»

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

Trigonométrie. AOB = 1 rad

Trigonométrie. AOB = 1 rad Trigonométrie ) Radian et cercle trigonométriqe: définition (rappel) : Un cercle trigonométriqe est n cercle de rayon sr leqel on distinge dex sens de parcors : le sens direct (sens inerse des aigilles

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

I. Expressions d une grandeur sinusoïdale 1.1. Généralités

I. Expressions d une grandeur sinusoïdale 1.1. Généralités Chap. 1 : REGIME MONOPHASÉ SINUSOIDAL I. Expressions d ne grander sinsoïdale 1.1. Généralités La tension est ne tension qi s écrit sos la forme Avec : Remarqe : por n corant i sinsoïdal, l'expression s'écrit

Plus en détail

TD ARQS. Modèle de pile. Capteur de déformation R R R R R R R R R R 1 J J 2 R R R R

TD ARQS. Modèle de pile. Capteur de déformation R R R R R R R R R R 1 J J 2 R R R R TD RQS Modèle de ple n générateur présente une dfférence de potentel de 22V quand l est traversé par une ntensté du courant de 2. La dfférence de potentel monte à 30V lorsque l ntensté du courant descend

Plus en détail