DIPÔLE CONDENSATEUR-DIPÔLE RC

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "DIPÔLE CONDENSATEUR-DIPÔLE RC"

Transcription

1 HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur I.6. elaion enre l inensié e la charge du condensaeur II) ÉTUDE DE LA DÉHAGE D UN ONDENSATEU II.1. Problème II.2. Équaion différenielle de la décharge II.3. Foncions = f() e i = h() III) ÉTUDE DE LA HAGE D UN ONDENSATEU III.1. Problème III.2. Équaion différenielle de la décharge III.3. Foncions = f() e i = h() Tous les circuis d appareils uilisés quoidiennemen (ordinaeurs, calcularices, élévisions, appareils élecroménagers, flashs, ) comporen des condensaeurs. Qu esce qu un condensaeur? Quelles son ses propriéés? hap. P8 1/8

2 I) DIPÔLE ONDENSATEU I.1. Définiion e symbole Un condensaeur es un dipôle consiué par deux armaures conduceurs méalliques ou armaures séparés par un isolan. armaures : aluminium, argen, anale. isolan : papier, mica, air, plasique,. Symbole : isolan I.2. harge e décharge d un condensaeur ( cf. TP6 P7) I.2.a. Monage : généraeur de ension consane (1) u G = E = cse circui de charge commuaeur (2) A u u Amp 0 circui de décharge I.2.b. harge du condensaeur inerrupeur en posiion (1) : charge du condensaeur loi d addiivié des ensions : u G = E = u = cse à chaque insan u u G u = u G i h = régime ransioire régime permanen = 0 charge en cours charge erminée E, fem du généraeur = cse.. u max =... i h max = u... i h... max =..... i h =.. décharge du condensaeur hap. P8 2/8

3 I.2.c. Décharge du condensaeur inerrupeur en posiion (2) : décharge du condensaeur loi d addiivié des ensions : u = 0 à chaque insan u u G u = i d = = 0... u max =... i d max =... régime ransioire décharge en cours 0 =... u... i d... régime permanen décharge erminée... i d =.. I.3. Inerpréaion appels : Par convenion, le couran élecrique circule du pôle vers le pôle du généraeur, à l exérieur du généraeur. Le sens de déplacemen des élecrons es le sens inverse du sens convenionnel de circulaion du couran. I.3.a. harge i q h e A Le condensaeur accumule (ou condense) progressivemen des charges élecriques posiives sur l armaure reliée au pôle, e négaives sur l aure. condensaeur chargé = généraeur moné en opposiion par rappor au généraeur principal I.3.b. Décharge i D q A e Les 2 armaures du condensaeur son reliées par des conduceurs : les élecrons se déplacen donc de la plaque vers la plaque à ravers le circui. Le condensaeur chargé se compore comme un généraeur e débie un couran i D dans le circui : i D e i h son de sens conraires hap. P8 3/8

4 I.4. apacié d un condensaeur On caracérise un condensaeur par sa capacié, c esàdire la quanié de charge élecrique qu il peu conenir. Si on éabli enre les armaures A e B d un condensaeur la ension, la charge élecrique q commune aux 2 armaures es : q =. avec q = q A =q B q q A B q en coulomb () en farad (F) en vol (V) = u AB Sousmuliples du farad : μf, nf, pf Exemple : = µf ; E = 6 V = cse. Pendan la charge, q augmene de 0 à q max = 6 m pendan la décharge, q diminue de q max = 6 m à 0. I.5. Énergie emmagasinée dans un condensaeur L énergie élecrique emmagasinée par un condensaeur de capacié, chargé sous la ension, es : 2 E élec = ½ E en J en F u c en V I.6. elaion enre l inensié e la charge du condensaeur I.6.a. onvenion d orienaion du circui q A q B le sens convenionnel poine vers l armaure 1 er cas 2 ème cas i h >0 e i D < 0 e Pendan la charge, le condensaeur emmagasine des charges élecriques q augmene donc dq > 0 e i h > 0 À la décharge, le condensaeur perd des charges élecriques q diminue donc dq < 0 e i D < 0 hap. P8 4/8

5 I.6.b. elaion enre q e i en couran coninu q Par définiion : i = = cse i en A q en en s q q Δq i= Δ = cse = coefficien direceur de la droie q = f() q I.6.c. elaion enre q e i en couran variable (charge ou décharge) La relaion es la même qu en couran coninu, mais sur un inervalle de emps d infinimen pei, pour une charge infinimen peie dq. L inensié i es consane sur l inervalle d. L inensié i es la dérivée q ()= dq d de la charge q du condensaeur par rappor au emps. La valeur de i à un insan es le coefficien direceur de la angene à la courbe q = f() à ce insan. Exemple : en uilisan = µf e E = 6 V, on mesure au cours de la charge. On en dédui q = e on obien la courbe cidessous : a) Déerminer i à = 100 s. dq Δq i( =100s) = ( d ) = 100 s ( Δ ) enre 80s e 120s i.. soi i =. b) Vérifier sur la courbe i = f() du I.2.b. i µa Au cours de la charge, on voi que la angene es de moins en moins penue donc i diminue, ce que l on vérifie direcemen sur i = f ( ). hap. P8 5/8

6 II) ÉTUDE DE LA DÉHAGE DU ONDENSATEU II.1. Problème Un condensaeur de capacié = µf es chargé sous la ension E = 6 V. Il se décharge dans une résisance = 47 kω. Éablir l équaion différenielle de cee décharge. En déduire = f () e i = h () au cours de la décharge. II.2.Équaion différenielle de la décharge loi d addiivié des ensions dans le circui série : u = 0 à chaque insan i e D < 0 loi d Ohm en convenion récepeur : u =.i dq du Or i= d e q = u donc i= d soi u =.i=.. d d u équaion différenielle : du De la loi d addiivié des ensions on dédui que : d = 0 1 ou = 0 (1) d d II.3. Foncions = f() e i = h() équaion différenielle de la décharge ( de la forme y k y = 0 ) La foncion = f ( ) es soluion de l équaion différenielle précédene. On démonre que : = A e B (2) A e B son des consanes posiives. II.3.a. Déerminaion de A : On se place à = 0 (débu de la décharge) ( ) = 0 = E = A e 0 donc E = A du On remplace e d II.3.b. Déerminaion de B : dans l équaion différenielle = E e B du d où d = B E e B De l équa diff (1) on ire B E e B 1 E e B = 0 d où E e B 1 ( B E=cse 0 e e B en général, alors : B =0 donc B = )=0 unié de B : on raisonne sur l exposan de l exponenielle e B e E s exprimen en V donc e B e l exposan ( B.) n on pas d unié donc B a pour unié l inverse d un emps : s 1 en unié SI. hap. P8 6/8

7 II.3.c. onclusions : Au cours de la décharge : () = E e = E e τ avec τ = = consane de emps du dipôle du i D () = E d = τ e < 0 décharge u G = u = 0 à chaque insan 0 τ 5 τ = E e τ E E e 1 = 0,37 E E e5 0,007 E 0 décharge erminée 0 II.3.d. Déerminaion de l unié de τ : 2 méhodes à connaîre 1 ère méhode : raisonner sur l exposan de l exponenielle e / τ : τ n a pas d unié τ es un emps e s exprime en s ( unié SI ) 2 ème méhode : analyse dimensionnelle : [τ ] = [ ] = [] [] e U = i ou = U i donc [] = [U] [i] 1 De même : q = U = i donc [] = [ i U ] d où [] = [i] T [U] 1 Finalemen : [τ ] = [U] x I 1 (I T [U] 1 ) soi [τ ] = T II.3.e. Déerminaion graphique de τ : 2 méhodes à connaîre 1 ère méhode : inersecion enre la angene à la courbe = f() à l insan =0 e l axe des emps (asympoe de la courbe) 2 ème méhode : on uilise l équaion u c =f(). À = τ, on calcule ( ) = τ = E e 1 = 0,37 E On cherche l anécéden de cee valeur sur la courbe. 0,37 τ angene à = 0 hap. P8 7/8

8 III) ÉTUDE DE LA HAGE DU ONDENSATEU III.1. Problème On uilise le même condensaeur = µf, la même résisance =47 kω e la même fém. E = 6 V. On veu mainenan éablir l équaion différenielle de la charge puis déerminer les foncions = f() e i = h (). i > 0 III.2. Équaion différenielle de la charge u G = E u e On éabli comme au II.2. l équaion différenielle : du d = E donc du d 1 = E (1) équaion différenielle de la charge III.3. Foncions = f() e i = h() Au cours de la charge = E( 1 e )= E( 1 e τ ) avec τ = = consane de emps du dipôle i ch = E e charge E = u = cse 0 τ 5 τ = E ( 1 e τ ) 0 0,63 E 0,99 E E charge erminée Déerminaion graphique de τ : 2 méhodes à connaîre 1 ère méhode : inersecion enre la angene à la courbe = f() à l insan =0 e l asympoe à la courbe = E 2 ème méhode : on uilise l équaion u c =f(). À = τ, on calcule ( ) = τ = E(1 e 1 ) = 0,63 E On cherche l anécéden de cee valeur sur la courbe. E angene à = 0 E 0,63 E τ hap. P8 8/8

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

LOIS FONDAMENTALES EN COURANT CONTINU

LOIS FONDAMENTALES EN COURANT CONTINU Chapire : LOS FONMENTLES EN CONT CONTN u cours de ce chapire, nous apprendrons à connaîre les grandeurs fondamenales que son le couran e la ension, à éablir e à appliquer les lois fondamenales dies des

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire :

LOGARITHME NEPERIEN. 1. Exercices préliminaires : 11. Méthode approximative pour déterminer une aire : LOGARITHME NEPERIEN 1. Exercices préliminaires : 11. Méhode approximaive pour déerminer une aire : On veu déerminer l aire siuée sous la courbe délimiée par la courbe, l axe des x, les 2 vericales passan

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan.

Cas du circuit RL. I. Un exemple d application d un circuit RL : un composant du système d alimentation en gazole d une Logan. Cas du circui I. Un exemple d applicaion d un circui : un composan du sysème d alimenaion en gazole d une ogan. xrai du suje IBAN 2006 a Dacia ogan, conçue par le consruceur français enaul es produie au

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

MODULE 8. Performances-seuils. Le condensateur (accumulateur). L élève sera capable

MODULE 8. Performances-seuils. Le condensateur (accumulateur). L élève sera capable ondensaers MODULE 8. Le condensaer (accmlaer). Performances-seils. L élève sera capable 1. de différencier ne pile d n condensaer (accmlaer) dans sa mise en œvre. ondensaers 1. Le condensaer. 1.1. Descripion.

Plus en détail

GRANDEURS PERIODIQUES

GRANDEURS PERIODIQUES GRANDEURS PERIODIQUES I. GRANDEURS VARIABLES 1. NOAIONS Nous représenons par une lere minuscule la valeur insananée d'une grandeur élecrique variable (inensié de couran i, ension u). La valeur maximale

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Traitement du signal

Traitement du signal Spé ψ 6- evoir n Traiemen du signal EXTAIT E E3A PSI Quesion 9 Analyse de l ALI enrée ( : v = par consrucion ; enrée ( : i = donc U v = I relaion enrée-sorie : l ALI es bouclé sur son enrée inverseuse

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Les hacheurs à liaison directe

Les hacheurs à liaison directe es hacheurs à liaison direce I. Hacheur série (Buck) Exercice I n considère le monage ci conre : a ension d alimenaion es égale à 200 V, la fréquence de découpage es noée f (période ) e le rappor cyclique

Plus en détail

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs Circuis résisifs e réacifs Chapire 14 Circuis résisifs e réacifs Sommaire Elémens résisifs e réacifs Comporemen d une résisance en régime alernaif sinusoïdal Comporemen d un condensaeur en régime alernaif

Plus en détail

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU Soluionnaire hysique, Élecricié e Magnéisme, Harris Benson Soluionnaire rédigé par Maxime Verreaul, professeur CHATE 7 LES CCUTS À COUANT CONTNU 7 FAUX. Le couran es le même en ou poin du circui. 7 Comme

Plus en détail

Corrigés des exercices sur le dipôle RC

Corrigés des exercices sur le dipôle RC ORRIG XRIS TS /0 DIPOL R orrigés es exercices sur le ipôle R orrigé e l exercice Uiliser la loi aiivié es ensions e. Pour les ensions u AB e u BM e les connexions à l inerface acquisiion voir figure ci-conre.

Plus en détail

TP de physique n 7 charge et décharge d'un condensateur Terminale

TP de physique n 7 charge et décharge d'un condensateur Terminale TP de physique n 7 charge e décharge d'un condensaeur Terminale I. CHARG T DCHARG D'UN CONDNSATUR SOUS UN TNSION CONSTANT 1) Monage u R u C ma COM i + - 2 1 R = 5,6 k C = 1500 F = 10 V coninu V COM ATTNTION:

Plus en détail

Lois générales de l'électrocinétique

Lois générales de l'électrocinétique Lois générales de l'élecrocinéique «Paience e longueur de emps Fon plus que force ni que rage.» Jean de La Fonaine in «Fables», le Lion e le Ra. Résumé L élecrocinéique raie de la circulaion des charges

Plus en détail

Merci! Evolution temporelle des systèmes électriques

Merci! Evolution temporelle des systèmes électriques voluion emporelle des sysèmes élecriques Monage : reard à l'éablissemen du couran Une alim Deux ampoules + suppor Un inerrupeur Une bobine Des fils Monage éincelles! Une alim Une bobine Une lime Un ournevis

Plus en détail

Diode, thyristor : le redressement

Diode, thyristor : le redressement PAIE 11 FONCIONS 47, hyrisor : le redressemen La conversion d énergie appelée redressemen perme d obenir un couran unidirecionnel à parir d un couran alernaif sinusoïdal ne diode peu assurer cee foncion

Plus en détail

Réponse d un dipôle RL à un échelon de tension

Réponse d un dipôle RL à un échelon de tension éonse d un diôle L à un échelon de ension Tire Descriion emarques 1- Le diôle L es une associaion en série d une bobine e d un conduceur ohmique (ou résisor) : I- Inroducion 2- L échelon de ension : es

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

u = 1, kg E = 931,5 MeV Électronvolt 1 ev = 1, J Megaélectronvolt

u = 1, kg E = 931,5 MeV Électronvolt 1 ev = 1, J Megaélectronvolt NOM : Prénom : TS5 Sciences Physiques Physique nucléaire (11 poins) Données : Unié de masse aomique Énergie de masse de l'unié de masse aomique u = 1,660 54 10-27 kg = 931,5 MeV Élecronvol 1 ev = 1,602

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان

اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان 11 وزارة التربية والتعلين العالي الوديرية العاهة للتربية دائرة االهتحانات اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان االسن: الرقن: الدورة العادية للعام ee

Plus en détail

1.1 Les Grandeurs de base

1.1 Les Grandeurs de base Les Grandeurs de base Charge Les maériaux, conduceurs ou isolans, son ous formés d'aomes e leurs propriéés élecriques dépenden de la présence des élecrons périphériques, faiblemen liés aux aomes Dans un

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

Fonction «Génération de signaux non sinusoïdaux»

Fonction «Génération de signaux non sinusoïdaux» Foncion «Généraion de signaux non sinusoïdaux» Générer un signal élecrique consise à produire des variaions de ension don les caracérisiques de forme, d ampliude e de fréquence son connues. Les signaux

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V Universié Mohammed Khidher Biskra A.U.: 204/205 Faculé des sciences e de la echnologie nseignan: Bekhouche Khaled Maière: lecronique Fondamenale Chapire 3 : La Diode 3.. Définiion, symbole e caracérisique

Plus en détail

Ch 12 : CONVERSION NUMERIQUE ANALOGIQUE ( CNA ). CONVERSION ANALOGIQUE NUMERIQUE ( CAN ).

Ch 12 : CONVERSION NUMERIQUE ANALOGIQUE ( CNA ). CONVERSION ANALOGIQUE NUMERIQUE ( CAN ). h 12 : ONVRSON NUMRQU ANALOGQU ( NA ). ONVRSON ANALOGQU NUMRQU ( AN ). 1. Définiion 1.1. Signal analogiue. Un signal analogiue es un signal don la valeur évolue coninûmen en foncion d'une variable coninue.

Plus en détail

Cours n 10 : Régimes transitoires des circuits du premier ordre.

Cours n 10 : Régimes transitoires des circuits du premier ordre. Cours n 0 : égimes ransioires des circuis du premier ordre. Avez- vous déjà observé le circui d allumage d une lampe fluorescene (à or appelée ube néon) di circui ballas, il s agi d un circui,l (il y en

Plus en détail

FEUILLE D'EXERCICES : Condensateur en transitoire.

FEUILLE D'EXERCICES : Condensateur en transitoire. FUILL D'XRCICS : Condensaeur en ransioire. XRCIC.: Charge e décharge d un condensaeur avec une source de couran I0 C µ s Condiion iniiale : Uc = 0.. Donner l équaion de charge d un condensaeur à couran

Plus en détail

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht)

Corrigé des exercices de l examen du 23 janvier 2007 (Les N de page font référence au livre «Physique» de E. Hecht) Corrigé des exercices de l examen du 3 janvier 7 (Les N de page fon référence au livre «Physique» de E. Hech) Q1. Deux charges poncuelles de +5 µc e +1 µc se rouven sur l axe des x aux poins des coordonnées

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

GENERALITES SUR LA CINÉTIQUE CHIMIQUE

GENERALITES SUR LA CINÉTIQUE CHIMIQUE ere année Meecine Cinéique Chimique GENERLITES SUR L CINÉTIQUE CHIMIQUE Inroucion La cinéique chimique es la science qui s occupe e la façon on les réacions chimiques procèen (mécanisme) e e leur viesse.

Plus en détail

Chapitre 8 : Onduleur autonome de tension

Chapitre 8 : Onduleur autonome de tension Terminale GT hapire 8 : Onduleur auonome de ension I / préambule : inerrupeurs en élecronique de puissance 1. diode à joncion 2. ransisor bipolaire II / principes des onduleurs auonomes 1. définiion 2.

Plus en détail

I- La pile cuivre-aluminium (16 points)

I- La pile cuivre-aluminium (16 points) nom : TS 6 CONTRÔLE DE SCENCES PHYSQUES durée conseillée 1h15 26/03/12 Lors de la correcion il sera enu compe de la présenaion e de la rédacion de la copie. Les réponses seron jusifiées e données sous

Plus en détail

Commande d un moteur à courant continu

Commande d un moteur à courant continu Commande d un moeur à couran coninu 1. Généraliés Le hacheur es un disposiif classé dans la caégorie des converisseurs saiques d énergie coninu - coninu. l a pour rôle de ransférer l'énergie d'une source

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les L essenel du cours proposé par Mahmoud Gazzah Le condensaeur, le dpôle Descrpon sommare d un condensaeur Défnon e symbole : Un condensaeur es consué de deux armaures méallques séparées par un solan appelé

Plus en détail

Amplification de puissance

Amplification de puissance Académie de Marinique Préparaion Agrégaion Sciences Physiques B. Ponalier Amplificaion de puissance Objecifs Comparer les différenes classes d amplificaion du poin de vue: du foncionnemen du rendemen Classe

Plus en détail

Plan. Le timer 555. Présentation. Présentation. Anatomie du 555. Décomposition fonctionnelle. _ Présentation. _ Caractéristique statique

Plan. Le timer 555. Présentation. Présentation. Anatomie du 555. Décomposition fonctionnelle. _ Présentation. _ Caractéristique statique Plan _ Présenaion _ aracérisique saique _ Monage en monosable ou monovibraeur _ Monage en asable ou mulivibraeur ours d Elecronique, IGI, ENI, Bruno FANÇOI ours d Elecronique, IGI, ENI, Bruno FANÇOI Présenaion

Plus en détail

المادة: الفيزياء قسم : العلوم الفرع: علوم الحياة نموذج رقم 1

المادة: الفيزياء قسم : العلوم الفرع: علوم الحياة نموذج رقم 1 الهيئة األكاديمي ة المشتركة قسم : العلوم نموذج مسابقة )يراعي تعليق الدروس والتوصيف المعد ل للعام الدراسي 017-016 المادة: الفيزياء الشهادة: الثانوية العام ة الفرع: علوم الحياة نموذج رقم 1 المد ة : ساعتان

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

La réponse d un système linéaire en questions

La réponse d un système linéaire en questions La réponse d un sysème linéaire en quesions Version juille 00 Quesions La réponse d un sysème linéaire en quesions _1_ Un sysème es caracérisé par la ransmiance : jω) = 3 + 5jω quelle es l équaion différenielle

Plus en détail

قسم: العلوم. Cette épreuve comporte trois exercices obligatoires. L'usage des calculatrices non programmables est autorisé.

قسم: العلوم. Cette épreuve comporte trois exercices obligatoires. L'usage des calculatrices non programmables est autorisé. الهيئة األكاديمي ة المشتركة قسم: العلوم نموذج مسابقة )يراعي تعليق الدروس والتوصيف المعد ل للعام الدراسي 017-016 المادة: الفيزياء الشهادة: الثانوية العام ة الفرع: علوم الحياة نموذج رقم 1 المد ة: ساعتان

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

Chapitre 4 : amplificateurs opérationnels

Chapitre 4 : amplificateurs opérationnels Chapire 4 : amplificaeurs opéraionnels I Amplificaeur opéraionnel 1. Présenaion 2. Modèle de l AO idéal 3. Défau 4. Récapiulaif II Amplificaeur opéraionnel en conre réacion 1. amplificaeur non inverseur

Plus en détail

Les fonctions logiques & l algèbre de Boole

Les fonctions logiques & l algèbre de Boole Les foncions logiques & l algèbre de Boole 1 - Algèbre de Boole Hisorique : Georges BOOLE, philosophe e mahémaicien anglais, publia en 1854 un essai sur les raisonnemens logiques poran sur les proposiions

Plus en détail

LES COMPOSANTS PASSIFS

LES COMPOSANTS PASSIFS HD:sers:pauex:Deskop:T- docs du sie:omposans passifs.doc OMOANT AF es résisances Définiion as des inerrupeurs ouver e fermé ésisance dynamique d'un dipôle quelconque oefficien de résisivié d'un maériau

Plus en détail

Étude d un chariot de golf électrique (corrigé)

Étude d un chariot de golf électrique (corrigé) élec PÉDAGOGIE Concours Cenrale-Supélec 2003 Filière TSI Sciences indusrielles Éude d un chario de golf élecrique (corrigé) La prédéerminaion des caracérisiques élecriques d une machine ournane débue oujours

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

Dans les montages suivants à AO, il y a une rétroaction négative, l AO fonctionne donc en régime linéaire.

Dans les montages suivants à AO, il y a une rétroaction négative, l AO fonctionne donc en régime linéaire. TP COURS ELECTROCINETIQUE RDuperray Lycée FBUISSON PTSI AMPLIFICATEUR OPERATIONNEL: MONTAGES SUIVEURS Dans les monages suivans à AO, il y a une réroacion négaive, l AO foncionne donc en régime linéaire

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Support de cours D électronique de puissance Les convertisseurs DC-DC et DC-AC

Support de cours D électronique de puissance Les convertisseurs DC-DC et DC-AC MINISR D NSIGNMN SUPRIUR D A RCHRCH SCINIFIQU Direcion générale des éudes echnologiques Insiu supérieur des éudes echnologiques de Nabeul Déparemen : Génie lecrique Suppor de cours D élecronique de puissance

Plus en détail

Elève Etude de PF3: Barrière InfraRouge EMETTEUR 1 AUTOMATISME DE PORTAIL

Elève Etude de PF3: Barrière InfraRouge EMETTEUR 1 AUTOMATISME DE PORTAIL Elève Eude de PF3: Barrière InfraRouge EMETTEUR 1 Baccalauréa STI Génie Elecronique Thème de consrucion élecronique AUTOMATISME DE PORTAIL 14H LYCEE A.CAMUS Session 2011 SEQUENCE n 3 PRE-REQUIS Mesures

Plus en détail

1. Les signaux électriques (selon la nature de l'information transportée).

1. Les signaux électriques (selon la nature de l'information transportée). Lycée Jean-Pierre Vernan PINS-JUSTARET Cycle 7 Les signaux élecriques Niveau : 1ère S-SI Signaux analogiques, numériques Signaux variables, coninus, périodiques Période, fréquence, pulsaion Ampliudes Valeur

Plus en détail

La diode, un composant non-linéaire

La diode, un composant non-linéaire La diode, un composan non-linéaire En première approximaion : un clape ani-reour Universié Anode Cahode Anode P N Cahode Méal Symbole Semiconduceur dopé P Srucure Semiconduceur dopé N Anode Cahode 1ère

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t²

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t² Parie A Pour ou réel, on pose h() = 1 + ² - e-. 1) Prouver que la foncion h ainsi définie es dérivable sur [ ;+ [, que h es dérivable sur [ ;+ [, e calculer h () e h () pour ou réel. Préciser les valeurs

Plus en détail

EL 20 - TD N 1. R1 = 10 k. R2 = 12 k. R3 = 15 k V0 = 12 V

EL 20 - TD N 1. R1 = 10 k. R2 = 12 k. R3 = 15 k V0 = 12 V EL 0 - TD N 1 Exercice 1 : Que vau la résisance vue enre A e B, soi AB? Exercice : Quelle es la valeur de la résisance vue enre A e B, soi AB? Exercice 3 : Déerminez l équivalen de Thévenin du monage suivan

Plus en détail

Signal 4 Les oscillateurs amortis

Signal 4 Les oscillateurs amortis Signal 4 Les oscillaeurs amoris Lycée Polyvalen de Monbéliard - Physique-Chimie - TSI 1-2016-2017 Conenu du programme officiel : Noions e conenus Circui RLC série e oscillaeur mécanique amori par froemen

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 9- Devoir n 6 CONVERSION DE PUISNCE PARTIE I E3A PSI 8 e E X X d SPIRE m l où I-A Par définiion, la fem d inducion dans une spire es = τ E X v X B X m = es le champ élecromoeur de orenz au poin X

Plus en détail

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur :

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur : Formulare d élecrcé Pons de cours Condensaeur Explcaons ou ulsaons Un condensaeur es composé de deux armaures méallques séparé par un solan appelé délecrque. S une armaure se charge posvemen, l aure es

Plus en détail

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007 C.P.G.E-S es hacheurs 2006/2007 es hacheurs. nrodion : e Hacheur es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Réseau Coninu

Plus en détail

Convertisseurs. Figure 1 Figure 2

Convertisseurs. Figure 1 Figure 2 Converisseurs Converisseurs On se propose d éudier expérimenalemen les converisseurs permean de passer d un signal analogique à un signal numérique, e inversemen. Il s agi de mesurer leurs principales

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE

SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE BACCALAUREAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GENIE MECANIQUE Session 211 SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUEE Durée : 2 heures Coefficien : 5 CALCULATRICE AUTORISÉE L emploi de

Plus en détail

ELP 304. Électronique numérique. Année scolaire PC4-PC5 Corrigé. Thèmes abordés

ELP 304. Électronique numérique. Année scolaire PC4-PC5 Corrigé. Thèmes abordés ELP 304 Élecronique numérique nnée scolaire 008-009 Majeure ELP PC4-PC5 Corrigé Thèmes abordés Temps de monée, de descene e de propagaion des opéraeurs CMO. ynhèse combinaoire en CMO. Esimaion de surface

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPREILS DE MESURE EN COURANT ALTERNATIF I- PARAMETRES CARACTERISTIQUES D UN SIGNAL ALTERNATIF : Un signal alernaif es caracérisé par sa forme (sinus, carré, den de scie, ), sa période (

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail