INTEGRATION. f(x) I F(x) I ) PRIMITIVE. e x R e x + c
|
|
|
- Jean-Claude Laberge
- il y a 8 ans
- Total affichages :
Transcription
1 INTEGRATION I ) PRIMITIVE Définition : Soient f et F deu fonctions définies sur I. F est une primitive de f sur I si F est dérivle sur I et pour tout de I F () = f () Propriété : Si f continue sur I lors f dmet une primitive sur I. Propriété 2 : Si f dmet une primitive sur I lors : - elle en dmet une infinité, toutes égles à une constnte prés. - pour tout couple ( 0 ; y 0 ) vec 0 I et y 0 R, il eiste une unique primitive F 0 de f sur I telle que F 0 ( 0 ) = y 0 Démonstrtion : PRIMITIVES USUELLES c désigne un réel quelconque f() I F() k (une constnte) R k+c n où n N* R n + n+ + c n où n Z - -{-} ]0;+ [ ou ] ; 0[ n + n+ + c ]0;+ [ ou ] ; 0[ ln() + c e R e + c ]0;+ [ 2 + c sin() R - cos() + c cos() R sin () + c Propriété 3 : Soient f et g deu fonctions dmettnt F et G comme primitives sur I lors une primitive de.f +.g où et sont des réels est F + G. Démonstrtion :
2 Propriété 4 : Si u dérivle sur I lors : fonction primitive condition de vlidité u.u n où n N* u n + n+ + c u.u n où n Z - -{-} u ' u u' u u n + n+ ln(u) + c 2 u + c u e u e u + c u. sin(u) - cos(u) + c u. cos(u) sin(u) + c + c u 0 sur I u>0 sur I u>0 sur I Fire : e 39 p 202 et c, 52 p e II ) INTEGRALE ) Intégrle et ire ( e 2 ) Le pln est muni d un repère orthogonl O; i, j tel que OI= i et OJ= j et OIKJ rectngle. Définition : On ppelle unité d ire, l ire du rectngle OIKJ. Définition 2 : Fire e : 27 p 200 Définition 3 : Soit une fonction continue et positive sur [;] et C l coure représenttive de f dns le repère O; i, j. On ppelle intégrle de f sur [;] le réel noté f d représentnt l ire, en unité d ire, du domine D délimité pr C, l e des scisses, et les droites d équtions = et =. Soit une fonction continue et négtive sur [;] et C l coure représenttive de f dns le repère. O; i, j On ppelle intégrle de f sur [;] le réel noté f d représentnt l opposé de l ire, en unité d ire, du domine D délimité pr C, l e des scisses, et les droites d équtions = et =.
3 2) Intégrle et primitive ( fire ct 4 p 85 ) Dns cette ctivité on vu que pour une fonction f continue, positive et croissnte sur [;], l fonction A : f d définie sur [;] est l primitive de f sur [;] qui s nnule en. On l dmet dns les utres cs. Soit une fonction f continue sur [;], l fonction A : est l primitive de f sur [;] qui s nnule en. f d définie sur [;] E : > 0 ln() = Fire e : 60 p 203 t d t 2 t 2 d t= Si f est continue sur [;] lors f d = F() - F() où F est une primitive quelconque de f sur [;]. Soit F une primitive quelconque de f lors F() = A() + k donc F() - F() = A() + k - A() - k = A() = f d 2 eemple : (2 2 +3)d = [ ] = ( ) ( ) = 55 6 Fire e : p p 204 3) Propriétés des intégrles Dns tout ce chpitre f et g sont continues sur I et, et c sont des éléments de I et et deu réels. Définition : Soit une fonction continue sur [;], on ppelle vleur moyenne de f sur [;] le réel = f d Remrque : représente l huteur rectngle de lrgeur qui l même ire que l'ire du domine sous l coure représenttive de f entre et Eemple :
4 f d = - f d c f d + c f d = f d ( reltion de Chsles) f g d = f d + g d ( linérité) 3 Fire e : Clculer 2 4 d + e 90 p (positivité) Si et f continue et positive sur [;] lors f d 0 f 0 donc F est croissnte donc implique que F() F()... Remrque : Si f continue et positive et lors f d 0 Si f continue et négtive et Si f continue et négtive et lors f d 0 lors f d 0 Fire e : 88 p 206 (conservtion de l ordre) Si, f et g continues sur [;] et f g sur [;], lors f d g d Fire e : 92 p 207 f g f - g 0 f g d 0 f d - g d 0... Si, f et g continues sur [;] et f g sur [;], lors l ire, en unités d ire, du domine délimité pr les deu coures représenttives de f et g et les droites d équtions = et = est g f d Fire e ( sur les ires ): p 205 Fire : 05 p 20 (suites et integrles) devoir mison : 2 p p 26
5 EXERCICE : Déterminer l ensemle de continuité I et une primitive sur I des fonctions définies pr : f 4 f f f f f 6 sin ( 5 + ) f f 8 ( + ) ( ) f f 0 cos() sin 3 () f sin cos 3 f f 3 ln 7 3 f 4 tn() f 5-5 e 2 +7 e -3 f 6 e 5e 2 f 7 ln EXERCICE 2 : Dns le pln muni d'un repère orthonormé ( 0 ; i ; j ), on donne P l prole d'éqution y = 2. On ppelle A l'ire de l prtie du pln délimitée pr P, l'e des scisses et les droites d'équtions = 0 et = ) En coupnt [0;] en 5 intervlles de même longueur, 6 montrer que 25 A 25. 2) En coupnt [0;] en n intervlles de même longueur, ) Montrer que s n A S n où s n = n 3 ( (n ) 2 ) et S n = n 3 ( n 2 ) ) Démontrer pr récurrence que n 2 = n(n+)(2n+) 6 c) En clculnt les limites de s n et S n, déterminer A..
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Chapitre VI Contraintes holonomiques
55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce
ANALYSE NUMERIQUE NON-LINEAIRE
Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre
semestre 3 des Licences MISM annnée universitaire 2004-2005
MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet [email protected] Cours d
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
COURS D ANALYSE. Licence d Informatique, première. Laurent Michel
COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+
01 / 24 0 0!( 10 10 20 20 02 / 24 20 20 30 30 40 40 Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) 03 / 24 40 40 50 50 60 60 60 60 04 / 24 70 70 80 80 80 80 Système de Repérage
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE
Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 [email protected] [email protected]
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Chapitre 1 : Fonctions analytiques - introduction
2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Partie 4 : La monnaie et l'inflation
Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que
Influence du milieu d étude sur l activité (suite) Inhibition et activation
Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
3- Les taux d'intérêt
3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
Licence M.A.S.S. Cours d Analyse S4
Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
VIBRATIONS COUPLEES AVEC LE VENT
VIBRATIONS OPLEES AVE LE VENT Pscl Hémon Lbortoire d Hydrodynmique, LdHyX Ecole Polytechnique, Pliseu Octobre 00 Vibrtions couplées vec le vent Si vous pense que j i révélé des secrets, je m en ecuse.
Annexe II. Les trois lois de Kepler
Annexe II es tois lois de Keple écnique & 4 èe - Annexe II es tois lois de Keple Johnnes Keple (57-6), pulie en 596 son peie ouge, ysteiu Cosogphicu Teize nnées plus td, en 69, il pulie Astonoi No, dns
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
Magister en : Génie Mécanique
الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Exemples de résolutions d équations différentielles
Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Régression multiple : principes et exemples d application. Dominique Laffly UMR 5 603 CNRS Université de Pau et des Pays de l Adour Octobre 2006
Régression multiple : principes et eemples d ppliction Dominique Lffly UMR 5 603 CNRS Université de Pu et des Pys de l Adour Octobre 006 Destiné à de futurs thémticiens, notmment géogrphes, le présent
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
- Phénoméne aérospatial non identifié ( 0.V.N.I )
ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.
Rélistion de sites Internet PME & Grndes entreprises Offre Premium Etude du projet Réunions de trvil et étude personnlisée de votre projet Définition d une strtégie de pré-référencement Webdesign Définition
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Le canal étroit du crédit : une analyse critique des fondements théoriques
Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)
Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,
Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.
CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. 2.1.
T/TR 01-01 Pge 3 r+ 1. EQUIPMENT CONCERNE L interconnexion numerique interntionl pour le service visiophonique et de visioconf&ence necessite l stndrdistion des principux prmttres num&iques tels que d~it,
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Theorie des mrches Dns ce chpitre, on etudie l'interction de l'ore et de l demnde sur un mrche d'un bien donne. On etudier, en prticulier, l'equilibre du mrche. Etnt donne qu'on s'interesse uniquement
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Transfert. Logistique. Stockage. Archivage
Trnsfert Logistique Stockge Archivge Trnsfert, logistique, stockge Pour fire fce ux nouveux enjeux, il est importnt de pouvoir compter sur l'expertise d'un spéciliste impliqué à vos côtés, en toute confince.
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Notes de révision : Automates et langages
Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s
LITE-FLOOR. Dalles de sol et marches d escalier. Information technique
LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion
Séminaires Paris le 14 et 15 mars 2007 Grenoble le 21 et 22 Mars 2007
BTS technico- Séminaires Paris le 14 et 15 mars 2007 Grenoble le 21 et 22 Mars 2007 BTS technico- Présentation des nouvelles épreuves : E3 Environnement économique et juridique E4 Négociation technico-e
GELE5222 Chapitre 9 : Antennes microruban
GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
/HVV\VWqPHVFRPELQDWRLUHV
/HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
LES GRAPHIQUES SOUS MAPLE
LES GRAPHIQUES SOUS MAPLE 1 Graphiques en 2D Maple permet de tracer des graphiques grâce à la fonction plot et ses nombreuses options. 1.1 Une seule courbe > plot (nomfn, a.. b); # tracé sur [a,b] de la
Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages
Modifiction simultnée de plusieurs crctéristiques d un bien hédonique : une nouvelle méthode de clcul de l vrition de bien-être des ménges Trvers Muriel * Version provisoire Résumé : De nombreuses situtions
Equations cartésiennes d une droite
Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»
Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres
MESURE DE LA PUISSANCE
Chapitre 9 I- INTRODUCTION : MESURE DE L PUISSNCE La mesure de la puissance fait appel à un appareil de type électrodynamique, qui est le wattmètre. Sur le cadran d un wattmètre, on trouve : la classe
Cours No 3 : Identificateurs, Fonctions, Premières Structures de contrôle.
Université Montpellier-II UFR des Sciences - Département Informatique - Licence Informatique UE GLIN302 - Programmation Applicative et Récursive Cours No 3 : Identificateurs, Fonctions, Premières Structures
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
