sont distincts 2 à 2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "sont distincts 2 à 2."

Transcription

1 Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque chaque somme sur les P N k comporte card(n k ) termes. 2) Pour tout k, Mk P = M k G k + G k P. D où : M k P 2 = ( M k G k + G k P) 2 = (M k G 2 k + 2 M k G k. G k P + G k P 2 ) P N k P N k P N k = k M k G 2 k + 2 M k G k. Gk P + G k P 2 = k M k G 2 k + G k P 2 P N k P N k P N k } {{ } = 0 3) Doc, d après la questo précédete, I(M 1,..., M p ) = 1 p k M k G 2 k + 1 p G k P 2.e. k=1 k=1 P N k I(M 1,..., M p ) = 1 p k M k G 2 k + I(G 1,..., G p ). I(M 1,..., M p ) sera mmale lorsque la premère somme k=1 est ulle, sot lorsque M k = G k pour tout k. L algorthme. [Qu. 2] Par défto, s u pot du uage appartet à N (k) plus proche de A (k) Doc l appartet à C. que de A (k) j et pour tout j >, plus proche de A (k) alors pour tout j <, ce pot est strctemet que de A (k), vore à égale dstace. j Les esembles K,j (k) et H,j (k) sot des dem plas ouverts ou fermés. Il sot be covexes. Ue tersecto d esembles covexes état covexe, les C le sot auss. Motros qu l sot dsjots. Par l absurde, sot M C r C s avec r < s. O a alors M K r,s (k) et M H s,r (k).e. MA (k) r MA (k) s et MA (k) s < MA (k) r ce qu est mpossble. Les C sot doc 2 à 2 dsjots et covexes, A (k+1), l sobarycetre des pots apparteat à N (k) appartet à C, d où les A (k+1) sot dstcts 2 à 2.

2 CORRIGÉ TP PYTHON L mplémetato de l algorthme [Qu. 3] O souhate revoyer le carré de la dstace de deux pots du pla : def dst2(p,q): retur (P[0]-Q[0])**2+(P[1]-Q[1])**2 [Qu. 4] O met e oeuvre l algorthme vu das le TP8 : def choxalea(x,y,p): =le(x) for rage(p): k= radt(,-1) # o permute les valeurs d dces k et tp=x[k],y[k]; X[k],Y[k]=X[],Y[]; X[],Y[]= tp retur X[:p],Y[:p] [Qu. 5] Ic pas de dffculté. O remarquera juste l astérsque qu précède le couple choxalea(x,y,p) permettat trasmettre à la focto scatter o pas ue varable, ce couple, mas deux varables, les deux composates de ce couple. Cela doe : def tnuagecetres(x,y,p, tallec): retur scatter(* choxalea(x,y,p),c=[( k/(p-1),(p-1-k)/(p-1),0,0.5) for k rage(p)], marker = *,s=p*[ tallec]) [Qu. 6] O retrouve c l algorthme classque de recherche d ue valeur mmale. O revoe le uméro du cetre qu est le plus proche du pot uméro k du uage, la focto mesurat cette proxmté état la focto dst2 : def plusprochecetre(ceters,k, cloud): # déterme l dce ( ppc) du cetre le plus proche du k- ème pot du uage et colore ce pot de la couleur du cetre et retoure l dce trouvé pt=cloud._offsets[k] # o colore le pot uméro k e or cloud._facecolors[k]=(0,0,0,0.5) # o dlate le pot uméro k cloud._szes[k]=cloud._szes[k]*3 cts= ceters._offsets # talsato du uméro du cetre le plus proche ppc=0 dm= dst2(pt,cts[0]) for rage(1, le(cts)): f dst2(pt,cts[]) <dm: ppc= dm= dst2(pt,cts[])

3 CORRIGÉ TP PYTHON pause (0.1) # o colore le pot uméro k avec la couleur du cetre le plus proche cloud._facecolors[k]= ceters._facecolors[ppc] # o red au pot uméro k sa talle d orge cloud._szes[k]=cloud._szes[k]//3 retur ppc [Qu. 7] O dot revoyer ue lste composée de p lstes, la -ème lste coteat les uméros des pots dot le cetre le plus proche est le cetre uméro. O utlse la focto précédete, das ue boucle, ce qu permet d examer tout les pots du uage et de détermer pour chacu le cetre assocé. Ue fos cette lste de lstes détermée, o met à jour la talle des cetres proportoellemet aux ombres de pots qu sot «proxmaux» de celu-c. def classes( ceters, cloud, tallec): # revoe la lste des classes, chaque classe état ue lste de uméro cls =[[] for k rage(p)] for k rage(): # la lste dot le uméro est égal au uméro du cetre assocé au pot uméro k est augmetée de la valeur k cls[ plusprochecetre( ceters,k, cloud)]. apped(k) # O met à jour les talles des cetres for k rage(le(cls)): f le(cls[k])!=0: ceters._szes[k]= tallec*le(cls[k]) retur cls [Qu. 8] 1) S l est ue lste de uméros de pots du uage cloud, o revoe le pot moye de ce sous uage sous la forme d u couple, abscsse moyee, ordoée moyee : def potmoye(l, cloud): pt=le(l) retur 1/ pt*sum([ cloud._offsets[k][0] for k l]),1/ pt *sum([ cloud._offsets[k][1] for k l]) 2) Pour obter u pot chos au hasard parm les pots du uage cloud et qu est pas das lstpts, o chost au hasard des uméros de pots de ce uage jusqu à avor chos u pot qu est pas das cette lste. O revoe alors ce pot. Volà ue soluto : def potalea(lstpts, cloud): test=true whle test:

4 CORRIGÉ TP PYTHON ewpt=cloud._offsets[radt(0,-1)] test= ewpt lstpts retur ewpt 3) A partr de la lste des classes, des uages cloud et ceters, o met à jour le tableau ceters e testat s le pot moye qu remplace u cetre est dfféret de ce cetre. S ue classe est vde, o chost u pot du uage qu est pas das la lste des cetres déjà costtuée. Cela peut se tradure as : def ouveauxct(cl, cloud, ceters, tallec): # revoe la lste des pots moyes des classes complétée par des pots du uage s le ombre de classes < p for k rage(p): l=le( cl[k]) test=false f l!=0: pm= potmoye( cl[k], cloud) test=test or tuple( ceters._offsets[k])!= pm ceters._offsets[k]= potmoye( cl[k], cloud) else: ceters._offsets[k]=potalea(ceters._offsets[:k ],cloud) ceters._szes[k]= tallec retur test [Qu. 9] Pour fr, o utlse ue boucle whle das laquelle o met à jour les classes, avec la codto d arrêt pour fr cette boucle : # les structos clf() uage = scatter(x,y,c=le(x)*[(1,1,1,0.5)],s=le(x)*[ tallept]) =le(x) cetres = tnuagecetres(x,y,p, tallect) pause(3) lesclasses = classes(cetres,uage, tallect) pause (0.5) whle ouveauxct( lesclasses,uage,cetres, tallect): pause (0.5) lesclasses = classes(cetres,uage, tallect) pause (0.1) La focto globale, kmeas clus toutes les déftos des foctos précédetes das l ordre des questos et comporte pour lge tale : def kmeas(x,y,p,tallept, tallect):

5 Le fcher du code se trouve c : tp9.py. O peut tester cette focto e exécutat les commades suvates : CORRIGÉ TP PYTHON kmeas([ radom()*200 for k rage(50)],[ radom()*200 for k rage(50)],5,80,120) ou kmeas([ radom()*300 for k rage(80)],[ radom()*300 for k rage(80)],7,80,120) Vous pouvez vor le résultat das les vdéos suvates : vdeo Kmeas 5-50 et vdeo Kmeas 7-80.

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Informatique TP2 : Calcul numérique d une intégrale CPP 1A Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui 014 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S

IREM Section Martinique Groupe Lycée. QCM pour la classe de Terminale S IREM Secto Matque Goupe Lycée QCM pou la classe de Temale S QCM : Calculatce o autosée Pou chaque questo, seules ou popostos sot vaes. Recope la ou les popostos vaes. Sot f la focto défe su IR pa f ( )

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Opto écoomque MATHEMATIQUES III Aée 2006 La présetato, la lsblté, l orthographe, la qualté de la rédacto, la clarté et la précso des rasoemets etrerot pour ue part mportate

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Variable aléatoire Définir une variable aléatoire sur Ω, c est associer à chaque éventualité de Ω un unique nombre réel.

Variable aléatoire Définir une variable aléatoire sur Ω, c est associer à chaque éventualité de Ω un unique nombre réel. Cours VARIABLES ALEATOIRES DISCRETES Le hasard, c est «l volotare smulat le volotare» - Tarde I - DEFINITIONS Sot Ω u uvers. Varable aléatore Défr ue varable aléatore sur Ω, c est assocer à chaque évetualté

Plus en détail

FONCTIONS REELLES DEFINIES SUR Premières notions

FONCTIONS REELLES DEFINIES SUR Premières notions FONCTIONS REELLES DEFINIES SUR Premères otos A. Premères déftos Sot u eter aturel supéreur ou égal à ) Graphe d ue focto à varables Sot ue focto f défe sur D à valeurs das O appelle graphe de la focto

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

La statistique et les statistiques

La statistique et les statistiques Psy004 Secto : La statstque et les statstques Pla du cours: 0.0: Beveue 0.: Les catégores du savor 0.: Survol de la psychologe 0.3: Le pla de cours 0.4: Les assstats.0: La physque: scece exacte?.: Scece

Plus en détail

PHYSIQUE DES SEMICONDUCTEURS

PHYSIQUE DES SEMICONDUCTEURS MIISTERE DE L'ESEIGEMET SUPERIEURE ET DE LA REHERHE SIETIFIQUE UIERSITE DE BEHAR Départemet es Sceces Laboratore e Pysque es spostfs à semcoucteurs (L.P.D.S ttp://www.uv-becar.z/lps/ PHYSIQUE DES SEMIODUTEURS

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

,=LESfCOMPLEXESfAUfBACf2014e

,=LESfCOMPLEXESfAUfBACf2014e ,=LESfCOMPLEXESfAUfBACf01e 1 Nouvelle-Calédoe ovembre 013 5 pots Le pla est rapporté à u repère orthoormal drect (O; u, v) O ote l esemble des ombres complexes Pour chacue des propostos suvates, dre s

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

Les codes demandés devront être clairement commentés! EXERCICE 1. La Française des Jeux est votre amie. (Tu parles!).

Les codes demandés devront être clairement commentés! EXERCICE 1. La Française des Jeux est votre amie. (Tu parles!). Lycée Féelo Sate-Mare PC-PC*/PSI* Aée 206-206 Iformatque Pour Tous 5 Javer 207 Durée : 2 heures Cocours blac Toute calculatrce autorsée. Le sujet comporte u total de 3 exercces que vous pouvez trater das

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

VII. Statistiques. Exemple 1: On étudie sur le un groupe de 10 élèves les moyennes de mathématiques et d économie:

VII. Statistiques. Exemple 1: On étudie sur le un groupe de 10 élèves les moyennes de mathématiques et d économie: 07 Statstquesdoc 1/5 VII Statstques Parte A Rappels de statstque à ue varable Vor fche de rappels de premère : 07_Statstques rappels_premère_pdf Parte B Sére statstque à deu varables 1 / Eemple Eemple

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Loi de Bernoulli et loi binomiale, cours, première S

Loi de Bernoulli et loi binomiale, cours, première S Loi de Beroulli et loi biomiale, cours, classe de première S Loi de Beroulli et loi biomiale, cours, première S 1 Loi de Beroulli Déitio : Soit p u ombre réel tel que p [0; 1]. Soit X ue variable aléatoire.

Plus en détail

x c. En déduire les réels a et b 2 2 ln x

x c. En déduire les réels a et b 2 2 ln x NOM : TS DS6 lud 9/0/05 Eercce : sur 9,5 pots Sur le graphque c-dessous, o a tracé, das le pla mu d u repère orthoormé O ; ; j, la courbe représetatve C d ue focto f défe et dérvable sur l tervalle 0;.

Plus en détail

Partie I. Corrigé ESSEC MATHS II 9 mai /12. par équiprobabilité : i N N

Partie I. Corrigé ESSEC MATHS II 9 mai /12. par équiprobabilité : i N N Parte I Corrgé ESSEC MATHS II 9 ma 0 / ) Partos du côté drot de l égalté demadée : = + T T = + T T = T + T T = T "domos". Pour tout comprs etre et, posto. représete le temps que met la carte C à passer

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE

LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE LES MESURES CLéS DU PROJET DE LOI économie SOCIALE ET SOLIDAIRE Qu est-ce que l écoomie sociale et solidaire? Qu est-ce que l écoomie sociale et solidaire? Scop Scic Coopératives Etreprises sociales Fiaceurs

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Exercices d algorithmique

Exercices d algorithmique Exercces d algorthmque Les algorthmes proposés ne sont pas classés par ordre de dffculté Nombres Ecrre un algorthme qu renvoe la somme des nombre entre 0 et n passé en paramètre Ecrre un algorthme qu renvoe

Plus en détail

f(t) g(t)dt f²(t)dt g²(t) dt a a a

f(t) g(t)dt f²(t)dt g²(t) dt a a a PCSI Chatre 4 : Produts scalares-résumé Das ce chatre E est u -ev. Produts scalares. Défto et exemles de référeces Def: O aelle rodut scalare sur E toute alcato de E² das est bléare. est symétrque: x,ye,

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

LO12. Chap 5. 5. Le fenêtrage. x r x w. y r y w. 5.1 Introduction. OpenGL. 1 x. Transformation de cadrage. glviewport();

LO12. Chap 5. 5. Le fenêtrage. x r x w. y r y w. 5.1 Introduction. OpenGL. 1 x. Transformation de cadrage. glviewport(); LO 5. Le feêtrage 5. Itroductio L affichage d u modèle implique la mise e correspodace des coordoées des poits et des liges du modèle avec les coordoées appropriées du dispositif où l image doit être visualisée.

Plus en détail

Devoir surveillé n 3. 1) Vérifier que O et A sont bien sur la courbe. 3 f x = x 4 x. 32

Devoir surveillé n 3. 1) Vérifier que O et A sont bien sur la courbe. 3 f x = x 4 x. 32 Termale stl le lud 8//8 Durée : heures Devor survellé Eercce : 5 pots Pour la costructo d u stad d eposto, des étudats e BTS ot beso de créer ue rampe d accès relat le placher du stad au sol du hall d

Plus en détail

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES

ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES ESPACES VECTORIELS NORMÉS DE DIMENSION FINIE NORMES USUELLES, ÉQUIVALENCE DES NORMES SOMMAIRE. Normes sur u espace vectorel E 2.. Défto d'ue orme. Cter l'égalté tragulare reversée. 2.2. Normes usuelles

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Fi chiers. Créer/ouvrir/enregistrer/fermer un fichier. i i

Fi chiers. Créer/ouvrir/enregistrer/fermer un fichier. i i Fchers F chers Offce 2013 - Fonctons de base Créer/ouvrr/enregstrer/fermer un fcher Clquez sur l onglet FICHIER. Pour créer un nouveau fcher, clquez sur l opton Nouveau pus, selon l applcaton utlsée, clquez

Plus en détail

TUTORIAL ADOBE AFTER EFFECTS 6.5 (module compositing)

TUTORIAL ADOBE AFTER EFFECTS 6.5 (module compositing) TUTORIAL ADOBE AFTER EFFECTS 6.5 (module compositing) Pour cette première partie consacrée aux trucages, nous allons pouvoir aborder l interface du logiciel Adobe After Effects 6.5 et enlever le fond vert

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

Lycée Fénelon Sainte-Marie. Toute calculatrice autorisée. Le sujet comporte un total de 3 exercices.

Lycée Fénelon Sainte-Marie. Toute calculatrice autorisée. Le sujet comporte un total de 3 exercices. Lycée Féelo Sate-Mare PSI* Aée 5-6 Iformatque Pour ous 6 Javer 6 Durée : heures Cocours blac oute calculatrce autorsée Le sujet comporte u total de 3 exercces EXERCICE Décollage d u eg spatal O s téresse

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

TP n o 9 - Tables de hachage

TP n o 9 - Tables de hachage L2 - Algorithmique et structures de données (Année 2011/2012) Delacourt, Phan Luong, Poupet TP n o 9 - Tables de hachage Exercice 1. En python En python les tables de hachage sont appelées dictionnaires.

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

Réponses aux exercices supplémentaires de l intra 2 STT1700 (Automne 2009)

Réponses aux exercices supplémentaires de l intra 2 STT1700 (Automne 2009) Réposes aux exercces supplémetares de l tra STT700 (Autome 009). Sot X le ombre de fos où le magce deve correctemet le résultat du dé parm les lacers. Alors X ~ B(, p ), où p = prob. de dever correctemet

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Informatique TP3 : Interface graphiques et tracés de fractales CPP 1A

Informatique TP3 : Interface graphiques et tracés de fractales CPP 1A Informatique TP : Interface graphiques et tracés de fractales CPP 1A Romain Casati, Wafa Johal, Frederic Devernay, Matthieu Moy Avril - juin 014 Ce TP est dédié à la construction de courbes fractales.

Plus en détail

Interface OneNote 2013

Interface OneNote 2013 Interface OneNote 2013 Interface OneNote 2013 Offce 2013 - Fonctons avancées Lancer OneNote 2013 À partr de l'nterface Wndows 8, utlsez une des méthodes suvantes : - Clquez sur la vgnette OneNote 2013

Plus en détail

Année Universitaire 2013/2014 DST de Printemps

Année Universitaire 2013/2014 DST de Printemps Année Universitaire 2013/2014 DST de Printemps Parcours : Licence LIMI201 & LIMI211 Code UE : J1MI2013 Épreuve : Algorithmes et Programmes Date : Lundi 16 juin 2014 Heure : 16 heures 30 Durée : 2 heures

Plus en détail

NOMBRES LIBRES DE CARRES

NOMBRES LIBRES DE CARRES NOMBRS LIBRS D CARRS Problème à trater de préférece à la sute du problème «Tel-Avv 976» O trouvera e effet das la parte ue applcato de la derère questo complémetare du suet «Tel- Avv 976» portat sur u

Plus en détail

Modèles stochastiques. Révision de probabilité et de statistiques

Modèles stochastiques. Révision de probabilité et de statistiques Modèles stochastques Révso de probablté et de statstques . Espace échatllo Sot ue expérece dot le résultat 'est pas prévsble avec certtude à l'avace ( expérece aléato ) re. Supposos que ous coassos à l'avace

Plus en détail

Historique de la fibre optique Les fontaines lumineuses de l antiquité

Historique de la fibre optique Les fontaines lumineuses de l antiquité stoque de la fbe optque Les fotaes lumeuses de l atquté Pcpe de la popagato de la lumèe? Pcpe du gudage plaae (1 Dmeso) Se place e codto de éfleo totale A 1 A 1 Gae g Gae g M < c Cœu c M > c Cœu c Fute

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Les emprunts indivis. Auteur : Philippe GILLET

Les emprunts indivis. Auteur : Philippe GILLET Les emruts dvs Auteur : Phle GILLET Emrut dvs et emrut oblgatare Emrut dvs Emrut oblgatare Souscrt ar ue ou luseurs baques Pluseurs souscrteurs Dvsé e arts : oblgatos Oblgatos cotées Grad ombre de souscrteurs

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Seconde partie. A. Forme trigonométrique. 1) Rappels. a pour point image le point. est le réel positif. Géométriquement r z OM.

Seconde partie. A. Forme trigonométrique. 1) Rappels. a pour point image le point. est le réel positif. Géométriquement r z OM. L esemble des ombres complexes Secode parte A. Forme trgoométrque 1) Rappels O sat que tout complexe s écrt de maère uque sous la forme a b où a etb sot deux réels Cette forme est appelée forme algébrque

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

1 TD 5 : Carré magique minuté

1 TD 5 : Carré magique minuté 1 TD 5 : Carré magique minuté (correction page??) Abordé lors de cette séance programmation algorithme classe méthode de construction d un carré magique Un carré magique est un carré 3x3 dont chaque case

Plus en détail

L'affichage des pages

L'affichage des pages L'affchage des pages des pages L'affchage des pages dans les navgateurs 51 Tester la page dans un navgateur Avec Dreamweaver vous travallez dans un envronnement graphque : vous voyez à l'écran ce que vous

Plus en détail

Tableau croisé dynamique

Tableau croisé dynamique Tableau crosé dynamque Tableau crosé dynamque Excel 2010 Créer un tableau crosé dynamque Un tableau crosé dynamque permet de résumer, d analyser, d explorer et de présenter des données de synthèse. S la

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Impression de documents avec Optymo

Impression de documents avec Optymo Impression de documents avec Optymo Notes de lecture : dans ce document, les textes soulignés font référence aux libellés des fenêtres ou aux libellés associés à des boutons d Optymo. Les textes en caractères

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

MATHÉMATIQUES II. Nota : les trois parties du problème peuvent être abordées indépendamment. Partie I - Propriétés de la transformée de Legendre

MATHÉMATIQUES II. Nota : les trois parties du problème peuvent être abordées indépendamment. Partie I - Propriétés de la transformée de Legendre MATHÉMATIQUES II Noa : les rois paries du problème peuve êre abordées idépedamme Parie I - Propriéés de la rasformée de Legedre Das oue la parie I -, I désige u iervalle de IR e f ue focio à valeurs réelles,

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Les Tracés et les Outils de Dessin. Formes géométriques

Les Tracés et les Outils de Dessin. Formes géométriques et les Outils de Dessin Prise en main rapide Formes géométriques Cliquez sur cette Icône pour ouvrir la fenêtre Caractéristiques générales des Dessins. Ci-contre, vous avez les différentes formes géométriques,

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Mailing. Les étapes de conception d un mailing. Créer un mailing

Mailing. Les étapes de conception d un mailing. Créer un mailing Malng Malng Word 2011 pour Mac Les étapes de concepton d un malng Le malng ou publpostage permet l envo en nombre de documents à des destnatares répertorés dans un fcher de données. Cette technque sous-entend

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

LE PARAMETRAGE DU MRP SOUS INCERTITUDES DE DELAIS D APPROVISIONNEMENTS ET DEMANDE : LE CAS DE SYSTEME D ASSEMBLAGE A UN NIVEAU

LE PARAMETRAGE DU MRP SOUS INCERTITUDES DE DELAIS D APPROVISIONNEMENTS ET DEMANDE : LE CAS DE SYSTEME D ASSEMBLAGE A UN NIVEAU 8 e Coférece Iteratoale de MOdélsato et SIMulato - MOSIM 0-0 au 2 ma 200 - Hammamet - Tuse «Evaluato et optmsato des systèmes ovats de producto de bes et de servces» LE PARAMETRAE U MRP SOUS INCERTITUES

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Cours 3 : Estimation paramétrique de la loi d une durée de vie

Cours 3 : Estimation paramétrique de la loi d une durée de vie Cours 3 : Estmato paramétrque de la lo d ue durée de ve I-Gééraltés II- Doées complètes III- Doées cesurées IV- Doées troquées IV- Applcato aux modèles classques V- Méthodes umérques de recherche de l

Plus en détail