Intégrales fonctions des bornes

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Intégrales fonctions des bornes"

Transcription

1 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Enoncés Inégrales foncions des bornes Eercice [ 987 ] [Correcion] Soi f : R R une foncion coninue. Jusier que les foncions g : R R suivanes son de classe C e eprimer leur dérivée : (a) g() = f() (b) g() = f() (c) g() = f( + ) Eercice 4 [ 99 ] [Correcion] Soien f : R R de classe C e F : R R dénie par, F () = f(). (a) Monrer que F peu êre prolongée par coninuié en. On eecue ce prolongemen. (b) Monrer que F es dérivable sur R e eprimer F () à l'aide d'une inégrale (c) Monrer que F es dérivable en e observer F () =. Eercice [ 988 ] [Correcion] Soi ϕ: R R la foncion dénie par : Soi f : R R dénie par : ϕ() = sh f() = pour e ϕ() =. ϕ(). (a) Monrer que f es bien dénie e éudier la parié de f. (b) Jusier que f es dérivable e calculer f (). (c) Dresser le ableau de variaion de f. Eercice 3 [ 99 ] [Correcion] Soi g : R R une foncion coninue. On pose, pour ou R, f() = (a) Monrer que f es dérivable e que f () = sin( )g(). cos( )g(). (b) Monrer que f es soluion de l'équaion diérenielle y + y = g(). (c) Achever la résoluion de cee équaion diérenielle. Eercice 5 [ 88 ] [Correcion] Soi f coninue de R dans R elle que (, y) R, f() f(y) = Monrer que f es de classe C e déerminer f. Eercice 6 [ 76 ] [Correcion] Pour ] ; [, on pose ϕ() = ln. y+ +y f(). (a) Monrer que ϕ es bien dénie e que cee foncion se prolonge par coninuié en e en. (b) En déduire la valeur de Eercice 7 [ 444 ] [Correcion] Soi f() = ln d. ln. (a) Calculer les limies de f en + e +, la limie en + de f()/ e monrer que f() end vers ln quand end vers. (b) Monrer que f es de classe C sur R + mais qu'elle ne l'es pas sur R +. (c) Éudier les variaions de f e racer sa courbe représenaive. Diusion auorisée à ire enièremen graui uniquemen - dd

2 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Enoncés Eercice 8 [ 3788 ] [Correcion] (a) Monrer que la foncion es dénie e dérivable sur R. (b) Déerminer la limie de f en. Eercice 9 [ 75 ] [Correcion] Soi f : f : R e ch (a) Éudier la parié de f. On éudie désormais f sur ] ; + [. (b) Prolonger f par coninuié en. (c) Monrer que f es de classe C sur R +. (d) Branches innies, allure.. (a) Monrer que la foncion F es bien dénie, coninue sur [ ; + [ e de classe C sur ] ; + [. Eprimer sa dérivée F () (b) Éudier la dérivabilié de F en. Préciser la angene au graphe de F en. (c) Éudier la limie de F en +. (d) Jusier que F réalise une bijecion de [ ; + [ sur un inervalle à préciser. (e) Jusier que F es dérivable sur ] ; + [ e soluion de l'équaion diérenielle yy = y 3. (f) Éudier la dérivabilié de F en. Eercice [ 77 ] [Correcion] Soien f C (R, R) e g : R R dénie par g() = (a) Prolonger g par coninuié en. f(). (b) Monrer que la foncion ainsi obenue es de classe C sur R. Eercice [ 3789 ] [Correcion] Éude e graphe de la foncion On préciser le comporemen de la foncion quand e quand ±. Eercice [ 67 ] [Correcion] Pour ou [ ; + [, on pose F () = 3. Diusion auorisée à ire enièremen graui uniquemen - dd

3 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Correcions 3 Correcions Eercice : [énoncé] On inrodui F primiive de f sur R. (a) g() = F ( ) F () es C par opéraions e g () = f( ) f(). (b) g() = (F () F ()) es C par opéraions e g () = f() + f(). (c) g() = u=+ f(u) du = F () F () es C par opéraions e g () = f() f(). Eercice : [énoncé] (a) ϕ es coninue sur R donc f() eise. (b) f es dérivable e f () = sin donc f () + f() = g(). cos g() +cos sin g() +g() = (c) C'es une équaion diérenielle linéaire d'ordre à coeciens consans. Soluion homogène y() = λ cos + µ sin. Soluion pariculière y() = f(). Soluion générale y() = λ cos + µ sin + sin( )g(). sin( )g() +g( R, R e f( ) = Ainsi f es impaire. sh sh u = du = f(). u= u (b) ϕ es coninue donc possède une primiive F. Comme f() = F () F () f es dérivable e f sh sh () = pour R e f () =. (c) Pour ou, on a sh sh donc f (). Ainsi f es croissane sur R +. Puisque sh f() = sh ln on a f() + quand +. On complèe le ableau de variaion par parié. Eercice 4 : [énoncé] (a) Soi f une primiive de f. F () = f() f( ) = f() f() + f() f( ) On prolonge F par coninuié en en posan F () = f(). (b) F es dérivable par opéraions e F () = Par inégraion par paries e on peu donc simplier f() + f( ) f() = f(). [ ] f() f () f () = f(). Eercice 3 : [énoncé] (a) En développan f() = (sin cos cos sin )g() = sin cos g() cos f es donc dérivable e f () = cos cos g() + sin sin g() = cos( )g(). sin g() (c) Sachan on peu écrire F () = f (). f () = F () = ( f () f () ). Diusion auorisée à ire enièremen graui uniquemen - dd

4 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Correcions 4 En posan on a alors M = sup f () f () [ ;] F () M = M. Or f es coninue en, donc M puis F (). En veru du héorème du prolongemen C, on peu armer que F es dérivable en e F () =. Eercice 5 : [énoncé] Puisque coninue, la foncion f adme une primiive F sur R e Pour y R é, on obien (, y) R, f() f(y) = F (y + ) F ( + y). f : f(y) + F (y + ) F ( + y). Puisque la foncion F es de classe C, on obien que f es de classe C e f () = f(y + ) f( + y). En dérivan cee relaion en la variable y, on obien e donc = f (y + ) f ( + y) f (y + ) = f ( + y). Puisque pour ou (s, ) R, il eise (, y) R vérian { + y = s + y = on peu armer que la foncion f es consane. On en dédui que la foncion f es ane. Par le calcul, on vérie que, parmi les foncions anes, seule la foncion nulle vérie la relaion proposée. Eercice 6 : [énoncé] (a) Soi ] ; [, [ ; ] ] ; [ e ϕ() = ln eise. Pour [ ; ], donc Quand +, ϕ(). On a aussi donc or ln ln ln ln ln ϕ() = es dénie e coninue sur ] ; [ donc ϕ() ln. ln ln ϕ() ln [ ] ln = ln(ln ) = ln. Quand, ϕ() ln. Finalemen ϕ peu êre prolongée par coninuié en e en. (b) Soi F une primiive de ln sur ] ; [. On a ϕ() = F ( ) F () ce qui perme de dériver ϕ e d'obenir ϕ () = ln. L'inégrale ln d es dénie car on vérie aisémen que la foncion inégrée peu êre prolongée par coninuié en e en e on a Eercice 7 : [énoncé] [ ] ln d = ϕ() = ln. (a) La foncion f es dénie sur ] ; [ ] ; + [ car pour chaque dans ce domaine, la foncion /ln es dénie e coninue sur le segmen Diusion auorisée à ire enièremen graui uniquemen - dd

5 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Correcions 5 d'erémiés e car n'y apparien pas. Pour ] ; [, on a pour ou [ ; ], ln ln ln puis par encadremen d'inégrales ln f() ln e donc f(). + L'encadremen es idenique pour > ce qui perme d'armer f() + e f()/ On peu aussi écrire f() = ln e par encadremen du du numéraeur par e, on obien f() encadré par I() e I() avec d'où f() ln. I() = [ ] ln = ln ln = ln (b) On inrodui H primiive de /ln e on démonre que f es de classe C sur ] ; [ ] ; + [ avec f () = ln. Cee dérivée éan de classe C, on conclu que f es C sur ] ; [ ] ; + [. On prolonge f par coninuié en en posan f() = ln e puisque f (), la foncion f es de classe C sur ] ; + [ avec f () =. Par développemen en série enière h ln(+h) h es C au voisinage de donc ln es C au voisinage de e par passage à l'inverse f () es C au voisinage de. Finalemen f es C sur ] ; + [. Le calcul de f () perme de jusier que f n'a pas de limie nie en e donc f ne peu êre prolongée en une foncion de classe C au voisinage de. (c) f es croissane, convee, branche parabolique vericale en +, angene horizonale en l'origine. Eercice 8 : [énoncé] (a) La foncion e / es dénie e coninue sur ] ; + [, elle y adme donc une primiive F. Pour >, on a [ ; ] ] ; + [, donc l'inégrale dénissan f() eise e f() = F () F (). Puisque la foncion F es dérivable, la foncion f l'es aussi e f () = F () F () = e (e ). L'éude pour < es similaire en considéran e / dénie e coninue sur ] ; [ [ ; ]. (b) Pour >, donc puis L'éude es analogue en Eercice 9 : [énoncé] [ ; ], e e e e ln f() e ln f() ln. + (a) Par le changemen de variable u =, on obien que f es paire. (b) Pour ou >, on a En inégran, on obien e on en dédui [ ; ], ch ch ch. ch. ln f() ch. ln f() (c) La foncion ch / es coninue sur ] ; + [ donc y adme une primiive G e puisque f() = G() G(), on obien que f es de classe C sur ] ; + [ e f ch ch () =. De plus ln. f () donc, par le héorème du prolongemen C,f es de classe C sur R +. (d) Puisque f() ch. ln, f présene une branche parabolique vericale. Diusion auorisée à ire enièremen graui uniquemen - dd

6 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Correcions 6 Eercice : [énoncé] (a) On a g() f() = Pour ε >, il eise α > vérian f() f(). α = f() f() ε. Par suie, si α, pour ou compris enre e, f() f() ε puis par inégraion, g() f() ε. Ainsi g() f(). On pose g() = f(). (b) Par opéraion, g es de classe C sur R. g () = Procédons à une inégraion par paries, On a alors f() = f() f() + f(). g () = f (). De façon semblable à ce qui précède, on obien g () f (). f (). Ainsi la foncion coninue g es de classe C sur R e g () = f (). Le changemen de variable = u assure que F es impaire. Par dérivaion de primiive F () = + () + () En réduisan au même dénominaeur e en muliplian par la quanié conjuguée, F () es du signe de 4( ) ( + () + () 4) = 3( 4 4 ) F es donc croissane que [ ; / ] puis décroissane sur [/ ; + [ En, le graphe de la foncion passe par l'origine avec une angene d'équaion y =. Quand +, F () e donc F end vers en = Eercice : [énoncé] Posons On a F () = F () = ce qui assure que F es dénie e de classe C sur R. Eercice : [énoncé] (a) f : es dénie e coninue sur ] ; ] e 3 = ( )( + + ) f() 3 Diusion auorisée à ire enièremen graui uniquemen - dd

7 [hp://mp.cpgedupuydelome.fr] édié le 3 novembre 7 Correcions 7 donc F () eise. F es primiive de la foncion coninue f sur ] ; + [ donc F es C e F () = f(). Comme f es C, F es nalemen C e sur ] ; + [ F () = 3. (b) F es coninue en e F () (c) 3 3/ donc donc F () + +. F () +. Tangene vericale en. = + + (d) F es coninue e sricemen croissane sur [ ; + [ donc F réalise une bijecive de [ ; + [ sur [ ; + [. F réalise une bijecion de classe C de ] ; + [ sur ] ; + [ avec F () donc F es C sur ] ; + [. (F ) (F = F F = ) 3 F donc F es soluion de l'équaion diérenielle considérée. (e) F es coninue en e F () =. En veru de la relaion (F (F ) ) = 3 on obien F (F ) () F es donc dérivable en e (F ) () =. Diusion auorisée à ire enièremen graui uniquemen - dd

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt.

3) a) Etudier la fonction f. En particulier, f est-elle dérivable en zéro? Sa courbe représentative, notée C, u n = 1 + ln x x. F(x) = t - ln t dt. Parie A ) Prouver que pour ou réel >, ln. ) En déduire que la foncion f :, e elle que f() =, es définie sur [;+ [. ln 3) a) Eudier la foncion f. En pariculier, f es-elle dérivable en zéro? Sa courbe représenaive,

Plus en détail

Devoir surveillé n o 5 (4

Devoir surveillé n o 5 (4 Devoir surveillé n o 5 4 heures) Ce devoir es consiué d'un eercice e de deu problèmes de concours)l'ordre des eercices ne correspond à aucun crière de diculé ou de longueur : vous pouvez les raier dans

Plus en détail

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par :

TS, devoir maison. Exercice 1, Antilles-Guyane, septembre Avril Soit f la fonction définie sur [0;1] par : TS, devoir maison Avril Eercice, Anilles-Guyane, sepembre Soi f la foncion définie sur ; par f () = f () = f () = (ln ) ln( ), pour ; où ln désigne la foncion logarihme népérien. On noe C sa courbe représenaive

Plus en détail

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé

Planche n o 8. Intégration sur un intervalle quelconque. Corrigé Planche n o 8. Inégraion sur un inervalle quelconque. Corrigé Eercice n o Pour, +4+ e donc la foncion f : + +4+ es coninue sur [,+ [. Quand end vers +, + 3 +4+ = ++ +4+ 3 3. Comme la foncion es posiive

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Sup PCSI2 Quelques exercices corrigés sur les fonctions. 2x xlnx

Sup PCSI2 Quelques exercices corrigés sur les fonctions. 2x xlnx Sup PCSI Quelques eercices corrigés sur les foncions Eercice : énoncé On noe f : lnd Q Jusifiez l eisence de l applicaion f Q Quelle es la classe de coninuié de f? Q Quelle es la classe de coninuié de

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1

(t 2 + 3t)dt = = ln ( 1 ) ln ( 2 ) = ln(2). 0 = 3 ln (e + 1) 3 ln (2) = 3 ln + 1 Eercice (Calculer les inégrales suivanes)..... 5. 6. 7. 8. e d = e d = e ] = = 5. = e e. ( + )d = d = ln ( )] = ln ( ) ln ( ) = ln(). ue u du = e u = e. e e + d = ln ( e + ) e (e + ) d = u (ln u) du =

Plus en détail

Montrer que la fonction

Montrer que la fonction Théorème de convergence dominée. Théorème d inégraion erme à erme. Théorème de coninuié des inégrales à paramère. Caracère k des foncions définies par une inégrale. Monrer que la foncion L : x cos() e

Plus en détail

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018

Mathématiques DM 3 À rendre le vendredi 7 décembre 2018 Eercice : Dérivées Mahémaiques DM 3 À rendre le vendredi 7 décembre 08 Soi a R e n N Déerminer les domaines de définiions, les domaines de dérivaion e calculer les dérivées des foncions suivanes : f ()

Plus en détail

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt

1 t(t 2 + 1) 2. t 2 (t 2 + 1) 2 dt = 1. (u + 1) 2. u(u + 1) = u(u + 1) du = u 1 ) t th(t) ch(t) ln(1 + tan(t))dt Donner une primiive sur un ensemble à préciser de f : +. Corrigé : La foncion f es définie sur R, ainsi on va en déerminer une primiive sur ], [ ou sur ], + [. On a : + d + d uu + du Ceci en posan u, on

Plus en détail

EXERCICES SUR LES COURBES PARAMETREES

EXERCICES SUR LES COURBES PARAMETREES EXERCICES SUR LES COURBES PARAMETREES. Eudier les courbes représenaives des foncions f définies ci-dessous. a) f) = cos, sin ) b) f) = sin, ) sin + cos c) f) = sin, cos ) d) f) = 4cos sin, cos )cos ).

Plus en détail

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017

1 Rémy Nicolai _fex_edpdf du 8 novembre 2017 Feuille Primiives e équaions diérenielles linéaires. ed Déerminer, pour les équaions diérenielles suivanes, les ensembles de soluions. y y = sin 3 y + y = e 3 y + y coan = sin 4 + y + y = + 5 y + y = sin

Plus en détail

Equations différentielles. Exercices

Equations différentielles. Exercices Equaions différenielles Eercices 14-15 Les indispensables Dans ous les eercices, même si la quesion n'es pas posée, on pourra se demander s'il es possible, a priori, de se faire une idée sur la srucure

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

CORRECTION DU CONTROLE N 8 - bis

CORRECTION DU CONTROLE N 8 - bis Lycée J.P Vernan - TES Année scolaire 0-0 Mahémaiques CORRECTION DU CONTROLE N 8 - bis SUJET (a) Eercice : e On pose f() = (e + ). On cherche d'évenuelles valeurs inerdies : (e + ) = 0 e + = 0 e = e cee

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

ECS 2 B Correction du DM d analyse de Toussaint. I. Existence et propriétés élémentaires de l opérateur U

ECS 2 B Correction du DM d analyse de Toussaint. I. Existence et propriétés élémentaires de l opérateur U ECS 2 B Correcion du DM d analyse de Toussain I. Eisence e propriéés élémenaires de l opéraeur U. Eude de l équaion (E f a. Soi f E, y C (I, R e h : e a y(. h es dérivable sur I e pour ou I, h ( = (y (

Plus en détail

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t²

2) Démontrer que pour tout réel t 0, 0 h (t) t, en déduire un encadrement de h sur [0 ;+ [ puis, 1 t + t² 2 - t3. 6 e-t 1 t + t² Parie A Pour ou réel, on pose h() = 1 + ² - e-. 1) Prouver que la foncion h ainsi définie es dérivable sur [ ;+ [, que h es dérivable sur [ ;+ [, e calculer h () e h () pour ou réel. Préciser les valeurs

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

CCP, 2011, MP, Mathématiques I. Exercice 1

CCP, 2011, MP, Mathématiques I. Exercice 1 CCP, 211, MP, Mahémaiques I. (5 pages ) Exercice 1 1. Soi, pour n 2, = 2 n 2 1. On a n 2, > e règle de D Alember, R = 1. +1 = (n + 1)2 1 n 2 1 1 donc, selon la 2. Pour n 1, = 1 n 1 1 que les séries n 2

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p.

CORRECTION DS = f 2 (a + b) f + ab id E. = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) f b id E = (a b) p. Lycée Thiers CORRECTION DS - Enoncé ) On développe en uilisan les hypohèses : ( f a ide ) ( f b ide ) = f 2 (a + b) f + ab id E = ( a 2 p + b 2 q ) (a + b) ( ap + bq ) + ab ( p + q ) = 2) On reprend le

Plus en détail

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques

Hypokhâgne B/L - Concours Blanc. Épreuve de mathématiques Lycée du Parc 2-22 - Concours Blanc Épreuve de mahémaiques Samedi 5 Mai 22-8h-2h Si la vie es complee, c es parce qu elle a une parie réelle e une parie imaginaire. Marius Sophus Lie. Le devoir compore

Plus en détail

I = 3 ln x ln 1 x + x2 + 1 ( )] x 1/2 I = lnx (1 + x) 2 dx On effectue une par parties. 1 + x lnx dx. = ln

I = 3 ln x ln 1 x + x2 + 1 ( )] x 1/2 I = lnx (1 + x) 2 dx On effectue une par parties. 1 + x lnx dx. = ln MATHEMATIQUES TD N 6 : INTEGRALES GENERALISEES - Corrigé. R&T Sain-Malo - ère année - 9/ I. Calculer 4. ci-dessus! 7. 8. 9.. e [ e ] + + [arcan]+ π π 4 π 4 ln [ln ] lim + ln ln ln C es le même que ( +

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

Devoir de Mathématiques 3 : corrigé

Devoir de Mathématiques 3 : corrigé PCSI 4-5 Mahémaiques Lycée Berran de Born Devoir de Mahémaiques 3 : corrigé Exercice. Éude d une foncion en noaion puissance On considère la foncion f définie par f(x) = x x = e x ln(x) La foncion foncion

Plus en détail

Correction du TD 2 : Etude locale de fonctions

Correction du TD 2 : Etude locale de fonctions ECE - Mahémaiques Correcion du TD : Eude locale de foncions Eercice.. f es facorisée au maimum. A chaque fois on vérie si les faceurs ici il y en a enden vers une limie nie non nulle. Pour chaque faceur

Plus en détail

CORRECTION «SEMI-MARATHON»

CORRECTION «SEMI-MARATHON» Lycée Thiers CORRECTION «SEMI-MARATHON» Q- Calculer A = e ln ( IPP : u ( = ; v ( = ln ( u ( = ; v ( = Q- Calculer B = B = Q- Calculer C = π A = + + [ ] e e ln ( = e ( e = e + + + + = [ ( ] ln + + [arcan

Plus en détail

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1

CORRECTION FX e 2 8 ; E = 1 2 e 1 ; F = ln (e + 1) ; K = 3π 8. ; L = 1 ( 1 + e. 3 u3/2. Rappelons que, si α est une constante 1 Lycée Thiers CORRECTION FX 6 E D abord, les réponses : A = ; B = 3 D = ; C = 3 9 e 8 ; E = e ; F = ln e + G = e ; H = π ; I = J = π + 3 8 ; K = 3π 8 ; L = + e π M = ln ; N = π ; P = π 8 ln 4 Q = e + ln

Plus en détail

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème

Corrigé Maths I, TSI 2011 Elhor Abdelali, CPGE Mohammedia. Premier problème Corrigé Mahs I, TSI Elhor Abdelali, CPGE Mohammedia Premier problème Première parie Eisence du poin fie.. La bonne définiion des ermes de la suie (u n ) n es assurée par la vérié de la propriéé " n N,

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

TS1 - Contrôle n 6 de mathématiques

TS1 - Contrôle n 6 de mathématiques TS1 - Conrôle n 6 de mahémaiques Eercice 1 Le plan es rapporé à un repère orhogonal (O ; i ; j ). 1) Eude d'une foncion f On considère la foncion f définie sur l'inervalle ]0 ; + [ par f() = ln ( ) i ;

Plus en détail

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP SESSION 5 Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mahémaiques A MP Parie I 1. Les soluions de l équaion différenielle E sur l inervalle I formen un R-espace vecoriel de dimension. Les

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 02 Monrer que si f es définie, dérivable

Plus en détail

PSI / TD G1 - Correction. 4. Une simple loi des mailles permet d'obtenir, avec i L orienté de l'entrée vers la sortie : 1 dt L 1

PSI / TD G1 - Correction. 4. Une simple loi des mailles permet d'obtenir, avec i L orienté de l'entrée vers la sortie : 1 dt L 1 PSI - 202/203 TD G - Correcion 7 Réponse indicielle d'un lre 4. Une simple loi des mailles perme d'obenir, avec i L oriené de l'enrée vers la sorie : s() = e() L di L d En remplaçan dans l'équaion diérenielle

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé

Mines d Albi,Alès,Douai,Nantes Toutes filières - Corrigé Mines d Albi,Alès,Douai,Nanes - Toues filières - Corrigé Cee correcion a éé rédigée par Frédéric Bayar. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésiez pas à écrire à : mahweb@free.fr

Plus en détail

Feuille d exercices n o 19

Feuille d exercices n o 19 Mahémaiques spéciales Feuille d eercices n o 9 Eercices basiques a. Convergence e calcul d inégrales Eercice 5. ln. sin e d 4. ( e ln e Eercice. e ( cos. e + Eercice ln. + e ln ln ( d Eercice 4. Pour α,

Plus en détail

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2007 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 7 des écoles des mines d Albi, Alès, Douai, Nanes. L emploi d une calcularice es inerdi Pour ou R + on défini : ( f () = exp 1 ) e g() = f () Problème 1 Parie 1 (Généraliés) 1 Prouver que

Plus en détail

Corrigé TD 12 Fonctions caractéristiques

Corrigé TD 12 Fonctions caractéristiques Corrigé TD Foncions caracérisiques Eercice. Sur un espace de probabilié (Ω, F, P, on se donne (X, Y une variable aléaoire à valeurs dans.. On suppose que la loi de (X, Y es λµe λ µy + (, y d dy. Déerminer

Plus en détail

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7).

Corrigé du TD n 4. x e x (x 3 3x 2 + 7x 7). Corrigé du TD n 4 Eercice. Nous allons calculer à chaque fois une primiive. Connaissan une primiive, les primiives son les foncions égales à la primiive calculée à une consane près (la consigne éan de

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Lycée Pierre de Fermat 2018/2019. Calcul intégral

Lycée Pierre de Fermat 2018/2019. Calcul intégral Lycée Pierre de Ferma 8/9 MPSI TD Calcul inégral Calculs d inégrales par primiivaion direce Exercice Calcul d inégrales primiives usuelles Calculer les inégrales ci-dessous en déerminan direcemen une primiive

Plus en détail

PSI / TD G1 - Correction. 9 Tracé de réponses de ltres. H(t) H(t) H(t) H(t) t 5) H(t)

PSI / TD G1 - Correction. 9 Tracé de réponses de ltres. H(t) H(t) H(t) H(t) t 5) H(t) PSI - 03/04 TD G - Correcion 9 Tracé de réponses de lres 3 4 5 TD G - Correcion 5 Éude d'un lre acif. Noons pour commencer que ce monage conien une réroacion négaive. On supposera donc que l'ao foncionne

Plus en détail

Fonctions vectorielles, arcs paramétrés

Fonctions vectorielles, arcs paramétrés Chapire Foncions vecorielles, arcs paramérés 0 Foncions réelles Eercice 0 Soi f : R R dérivable e elle que f ne s annule pas Prouver que f ne peu êre périodique Eercice 0 Monrer que si f es définie, dérivable

Plus en détail

Chapitre 14 - Fonctions de plusieurs variables - Corrigés

Chapitre 14 - Fonctions de plusieurs variables - Corrigés Chapire 4 Foncions de plusieurs variables Exercice : Si adme une limie, alors comme y) = x, 0) = cee limie es nécessairemen nulle De plus, si adme 0 pour limie en 0), alors la oncion, ) adme 0 pour limie

Plus en détail

Corrigé : EM Lyon 2016

Corrigé : EM Lyon 2016 Exercice : Parie I : Éude de la marice A A 2 = 2 ai +ba+ca 2 = Corrigé : EM Lyon 26 Opion économique 2 On cherche ous les réels a, b, c els que ai +ba+ca 2 = On a : a+c b c b a+2c b = c b a+c a+c = b =

Plus en détail

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur.

Corrigé de l épreuve Math C, Banque PT Nathalie Planche. 1. Pour tout réel t, car y est solution de ( ) et a ne s annule pas sur. Corrigé de l éreuve Mah C, Banque PT Nahalie Planche Préambule:. Pour ou réel, car y es soluion de ( ) e a ne s annule as sur. = On a donc bien monré que es soluion du sysème différeniel (S) :. L équaion

Plus en détail

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi :

LYON 2003 PREMIER PROBLÈME. ϕ est continue sur [0, + [. dt existe pour tout élément n de N. > 0. De plus ϕ(0) > 0. Ainsi : Jean-François COSSUTTA. Lycée Marcelin Berhelo Sain Maur 94. LYON 3 PREMIER PROBLÈME PARTIE I : Résulas généraux sur ϕ e J n. Les foncions e sin son coninues sur ], + [. Par produi ϕ es coninue sur ],

Plus en détail

********* ON SERA TRÈS VIGILANT À LA QUALITÉ DE LA RÉDACTION. *********

********* ON SERA TRÈS VIGILANT À LA QUALITÉ DE LA RÉDACTION. ********* Licence 3 Inégraion e Probabiliés Devoir surveillé du 20 juin 206 durée 3h ********* Les calcularices e les documens son inerdis. ON SERA TRÈS VIGILANT À LA QUALITÉ DE LA RÉDACTION. Eercice *********.

Plus en détail

Examen Final (Solution) Base de l analyse Mathématique - MVA010. ( e 1. f(x) =

Examen Final (Solution) Base de l analyse Mathématique - MVA010. ( e 1. f(x) = Insiu des Sciences Appliquées e Économiques ISAE-Cnam Liban Cenre du Liban Associé au CNAM de Paris Dae:Sepembre-Durée:3h00 ière session- (Ecepionnel) 009-00 Suje coordonné par: J.Saab Proposé pour les

Plus en détail

DM de préparation au Partiel du 12 avril 2018

DM de préparation au Partiel du 12 avril 2018 Universié Paris Descares UFR Mah-Info Licence MAE 6-7 Analyse 4 - Séries de Fourier; Foncions de plusieurs variables; Inégrales à paramère DM de préparaion au Pariel du avril 8 Les calcularices e les éléphones

Plus en détail

Fonctions vectorielles, courbes.

Fonctions vectorielles, courbes. Foncions vecorielles, courbes Chap 5 : noes de cours Dérivabilié des foncions de variable réelle à valeurs vecorielles Définiion, e héorème : dérivabilié en un poin d une foncion de variable réelle à valeurs

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

CONCOURS D ADMISSION 2004

CONCOURS D ADMISSION 2004 A 4 Mah MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Feuilles de TD du cours d Analyse S4

Feuilles de TD du cours d Analyse S4 Universié Paris I, Panhéon - Sorbonne Licence M.A.S.S. 23-24 Feuilles de TD du cours d Analyse S4 Jean-Marc Barde (Universié Paris, SAMM) Email: barde@univ-paris.fr Page oueb: hp://samm.univ-paris.fr/-jean-marc-barde-

Plus en détail

x k = x + x x n.

x k = x + x x n. PCSI DEVOIR de MATHÉMATIQUES n pour le 9/11/00 EXERCICE 1 : Pour ou n IN e x IR +, on pose f n (x) = n x k = x + x + + x n. 1. Monrer que l équaion f n (x) = 1 adme une unique soluion, noée u n, dans IR

Plus en détail

Exemple de calcul d intégrale

Exemple de calcul d intégrale . Corrigés Devoir Libre n 7 (Pr. Pae) Inégrales à paramère Eemple de calcul d inégrale MP- Blague du jour C es un ype qui se promène dans la rue, e accroché sur la pore d une enrée d un jardin, il voi

Plus en détail

b f(t)e ixt dt = [ eixt e ixt ix f(t)]b a = i eixb f(b) e ixa f(a)

b f(t)e ixt dt = [ eixt e ixt ix f(t)]b a = i eixb f(b) e ixa f(a) DS - Corrigé Parie I cf dernier DL On peu obenir les deux limies à la fois en écrivan que b a b fe ix [ eix e ix ix f]b a a ix f i eixb fb e ixa fa + i x x b a e ix f Le module du premier erme es majoré

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it)

Lycée du Parc PCSI Devoir surveillé 3 corrigé. + e it (t) = 2i e 2it + 6 4e 2it + e 4it) ( e 2it e 2it) Lycée du Parc PCSI 84 15-16 Devoir surveillé corrigé Eercice 1 1 En uilisan les formules d Euler, on linéarise 4 (cos ( : ( e 4 (cos i e i 4 ( e i + e i ( = i = 1 ( e 4i 6 4e i + 6 4e i + e 4i ( e i +

Plus en détail

CORRIGÉ DE L ÉPREUVE MATHS 1 CENTRALE On aura souvent besoin dans ce problème du critère continu de convergence dominée de Lebesgue :

CORRIGÉ DE L ÉPREUVE MATHS 1 CENTRALE On aura souvent besoin dans ce problème du critère continu de convergence dominée de Lebesgue : CORRIGÉ DE L ÉPREUVE MATHS CENTRALE 4 On aura souven besoin dans ce problème du crière coninu de convergence dominée de Lebesgue : si lim f(x, ) = g(), s il exise ϕ inégrable sur I elle que I, f(x, ) ϕ()

Plus en détail

Équations différentielles

Équations différentielles V. Équaions différenielles 1 Primiive d une foncion Définiion 1. On appelle primiive d une foncion f une soluion de l équaion différenielle y = f. Exercice 1. Déerminer une soluion de l équaion différenielle

Plus en détail

Rappels sur les suites.

Rappels sur les suites. UFR SFA, Licence 2 e année, MATH326 Rappels sur les suies. Dans oue la suie, K désigne R ou C. 1. Généraliés sur les suies. Définiion. Une suie à valeurs dans K es une applicaion u de N, privé évenuellemen

Plus en détail

Les calculatrices sont autorisées. ****

Les calculatrices sont autorisées. **** Les calcularices son auorisées B Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené à repérer ce qui peu lui sembler êre une erreur

Plus en détail

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique.

LEÇON N 47 : Courbes définies par des équations paramétriques dans le plan. Vecteur dérivé et tangente ; interprétation cinématique. LEÇON N 47 : Courbes définies par des équaions paramériques dans le plan. Veceur dérivé e angene ; inerpréaion cinémaique. Pré-requis : Foncions R R : limies, coninuié, dérivabilié,... ; Norme d un veceur

Plus en détail

1 Problème d analyse : intégrale de Dirichlet

1 Problème d analyse : intégrale de Dirichlet Arnaud de Sain Julien - MPSI Lycée La Merci 16-17 1 Corrigé du Concours blanc DS 8 du mercredi 31 mai Durée : 4 heures de 8h à 1h. Les calcularices son inerdies. Les copies illisibles ou mal présenées

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

CCP PSI 1 un corrigé.

CCP PSI 1 un corrigé. CCP PSI n corrigé. I. Qelqes eemples de calcls de longers I.. Si f : [, ], le graphe de f es le segmen d origine (, ) e d eremié (, ) e sa longer es. C es cohéren avec I.. On a ici + sh () d = d = ch()

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0.

1) Déterminer la solution générale de l'équation différentielle E : y' 5y = 0. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES Exercice 1 Au cours de la raversée d'un milieu ransparen, l'énergie lumineuse es d'une par absorbée par le milieu, d'aure par diffusée (effe Compon). La variaion

Plus en détail

Corrigés ou indications : Séries de Fourier

Corrigés ou indications : Séries de Fourier Chapire 4 Corrigés ou indicaions : Séries de Fourier Exercice 4.5 Remarquons que la série C'es une série rigonomérique exponenielle (n!) 2 ein n'es pas une série rigonomérique ordinaire. c n e inω bien

Plus en détail

UE LM336 Année Feuille de TD 4

UE LM336 Année Feuille de TD 4 Universié Pierre & Marie Curie Licence de Mahémaiques L3 UE LM336 Année 2013 14 Feuille de TD 4 Exercice 1 Reprendre l exercice 2 de la feuille 1 de manière rigoureuse Concrèemen, pour chacune des équaions

Plus en détail

FICHE TD 1 Corrigé de l exercice 2

FICHE TD 1 Corrigé de l exercice 2 Universié Lyon PCSI L Année 3/4 Mahémaiques 4 Prinemps 4 I = FICHE TD Corrigé de l exercice Disribuions e d. La foncion e es coninue sur (l inervalle fermé en [, [, donc il fau éudier l inégrabilié vers

Plus en détail

e3a PC Mathématiques 3

e3a PC Mathématiques 3 e3a PC Mahémaiques 3 Problème Le exe définissai une norme sur l espace vecoriel des marices réelles à p lignes e q colonnes, p, q e demandai d admere une inégalié sur ces normes. Si dans on considère les

Plus en détail

Mathématiques MP - Corrigé du DS 3

Mathématiques MP - Corrigé du DS 3 Mahémaiques MP - Corrigé du DS 3 Exercice a d C (R e, d ( = sin( d es donc croissane sur R On a donc, d( d( e donc >, cos( De plus pour >, cos( car cos b δ es de classe C sur R e, δ ( = sin( e δ ( = cos(

Plus en détail

Développements limités

Développements limités BTS DOMOTIQUE Développemens limiés 8- Développemens limiés Table des maières I Foncion eponenielle I. Développemen limié d ordre................................... I. Développemen limié d ordre...................................

Plus en détail

ROYAUME DU MAROC المملكة المغربية. Ministère de l'enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique

ROYAUME DU MAROC المملكة المغربية. Ministère de l'enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique ROYAUME DU MAROC المملكة المغربية Minisère de l'enseignemen Supérieur, de la Formaion des Cadres e de la Recherche Scienifique Présidence du Concours Naional Commun 15 École Naionale Supérieure d Élecricié

Plus en détail

BTS BLANC de : Mathématiques

BTS BLANC de : Mathématiques décembre 2008 MAI 2 Durée : 2 H Coefficien : 2 BTS BLANC de : Mahémaiques La qualié de la rédacion ainsi que la claré e la précision des raisonnemens enreron pour une par imporane dans l'appréciaion des

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

e t e itx e t e itx x (x, t) = i te t e itx. x te t

e t e itx e t e itx x (x, t) = i te t e itx. x te t Correcion ES-Analyse - ES - - 15-16 - Correcion - Analyse I Exercice 1. On remarque d abord que f es bien définie pour ou x. En effe, on a : e e ix e. Cee foncion es inégrable sur [, + [, car en elle es

Plus en détail

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm.

Sujet 4 (Bac S) Le plan est rapporté à un repère orthonormal (O ; i r, r j ), l unité graphique étant 1 cm. Suje 4 (Bac S) Exercice 1 (Courbes paramérées) Le plan es rapporé à un repère orhonormal (O ; i r, r j ), l unié graphique éan 1 cm. 1) Soi (C) la courbe don une représenaion paramérique es : = = 1 2 x

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Pondichéry mai Partie A

Pondichéry mai Partie A Exercice 6 poins Les paries A e B peuven êre raiées de façon indépendane. Dans une usine, un four cui des céramiques à la empéraure de 000 C. À la fin de la cuisson, il es éein e il refroidi. On s inéresse

Plus en détail

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x.

x x 2y y 4x 3y. en mettant en évidence un système fondamental de solutions. Indication : éliminer C par dérivation par rapport à x. Universié Aboubekr Belkaïd Tlemcen A.U. 2018/2019 Faculé des Sciences / Déparemen de Mahémaiques Final : Equaions Différenielles [Licence L3 S5] 14 janvier 2019 2h00 Exercice 1: Soi l edo écrie sous la

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail