Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)"

Transcription

1 SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues sur ], [ don le + dénominaeur ne s annule pas sur ], [. Quand end vers, f( + f( e comme la foncion f( es inégrable sur ], ], il en es de même de la foncion f( +. Quand end vers, f( + f( de la foncion f( +. Finalemen, e comme la foncion f( >, la foncion f( es inégrable sur ], [. + es inégrable sur [, [, il en es de même. a. Quand end vers, f( ln(ln e donc > qui n es pas inégrable au voisinage de car ln d = ln(ln ln f n es pas dans E. b. f es coninue sur ], [. Quand end vers par valeurs supérieures, f ( = ln( + se prolonge par coninuié en e es donc inégrable sur ], ]. Quand end vers, f( ln ( = o car 3/ ln 3/ = ln e donc la foncion f( es inégrable sur [, [. On en dédui que f es dans E. 3. a. f es coninue sur ], [, la foncion f( = Arcan négligeable devan en. Donc f E. Soi >. On peu poser u = e on obien se prolonge par coninuié en e f( = Arcan 3 es F( = Arcan u u( + u du = Arcan( ( + d = Arcan( ( + d. f E e >, F( = Arcan( ( + d. hp :// c Jean-Louis Rouge, 8. Tous drois réservés.

2 b. Posons Ψ : [, [ ], [ R. (, ϕ(, = Arcan( ( + Pour ou réel de [, [, la foncion Ψ(, es coninue sur ], [ e inégrable sur ], [, car es prolongeable par coninuié en (par e dominée en à qui es inégrable au voisinage de. 3 De plus, Ψ adme sur [, [ ], [ une dérivée parielle par rappor à sa première variable à savoir : La foncion Ψ (, [, [ ], [, vérifie les propriéés suivanes : Ψ (, = ( + ( +. pour ou réel de ], [, la foncion Ψ (, es coninue sur ], [ ; pour ou réel de ], [, la foncion Ψ (, es coninue par morceau sur ], [ ; pour (, ], [ ], [, Ψ (, = + ( + = ϕ(, où ϕ es une foncion coninue, + posiive e inégrable sur ], [. D après le héorème de dérivaion sous le signe somme (ou héorème de Leibniz, G es de classe C sur ], [ e, c. Pour e, G ( =, G ( = Par coninuié de G en, l égalié G ( = Ψ (, d = ( + ( + d = ( + ( + d. ( + + d = [Arcan Arcan(] = π ( = π ( +. π ( + [, [, G ( = rese valable pour =. π ( +. d. Mais alors, pour, puis, G( = G( + G ( d = π + d = π ln( +, [, [, F( = π ln( +. e. La foncion à inégrer es coninue sur ], [, prolongeable par coninuié en e équivalene en à π 4. Cee foncion es inégrable sur ], [. Soien ε e A deu réels els que < ε < A. Les deu foncions e Arcan son de classe C sur le segmen [ε, A]. On peu donc effecuer une inégraion par paries qui fourni : A ε [ Arcan d = ] A A Arcan + ε ε + Arcan d = A Arcan A Quand ε end vers e A end vers, on obien : + Arcan ε ε ( Arcan Arcan d = ( + d = G( = π ln. A Arcan + ε ( + d hp :// c Jean-Louis Rouge, 8. Tous drois réservés.

3 ( Arcan d = π ln. 4. a. f es coninue sur ], [, f( = cos( es prolongeable par coninuié en e f( en e donc es inégrable au voisinage de. De nouveau = cos es dominée par b. Pour n N, on a ϕ ( = n n n cos d = + f E. cos(u/n + u du (en posan = u n. Pour n N e u [, [, posons g n (u = cos(u/n + u. chaque foncion g n es coninue e inégrable sur [, [ ; la suie de foncions (g n converge simplemen sur [, [ vers la foncion g : : u qui es coninue + u sur [, [ ; Pour chaque n N e chaque u [, [, on a g n (u sur [, [. = g(u où g es une foncion inégrable + u D après le héorème de convergence dominée, ( lim ϕ = lim g n (u du = g(u du = [Arcanu] π/ n n n = π. ( lim ϕ = π n n. c. Pour >, en posan u =, on obien Par suie, pour >, ϕ( = cosu + u du = cos( + d = cos( + d. ϕ( cos( + d + d = π. d. Pour (, ], [, D aure par, ( ( + = ( +, puis ϕ es bornée sur R +. ( ( + = ( + + ( ( ( = ( + ( + = ( +, puis ( + = ( 3 ( + 3. = ( + + ( ( ( ( + 3 = ( 3 ( + 3. e finalemen, (, ], [, ( ( =. hp :// 3 c Jean-Louis Rouge, 8. Tous drois réservés.

4 Pour >, on a ϕ( = ( ( = (erreur d énoncé probable + cos d. On a aussi au vu des rôles symériques joués par e. Soien a e A deu réels els que < a < A. On peu appliquer deu fois le héorème de Leibniz sur [a, A] (e finalemen sur ], [ car pour (, [a, A] [, [, ( + = ( + + ( + = + a + = ϕ (, puis ( + = ( 3 ( + 3 A ( + = 6A ( + 6A (a + = ϕ (, où ϕ e ϕ son des foncions coninues e inégrables sur [, [ ϕ es donc de classe C sur [, [ e pour >, ϕ ( = ( + cos d = Soi alors A >. Deu inégraions par paries fournissen A Quand A end vers, on obien ( [ ( ] A + cos d = + cos [ ϕ ( = A = ( + A cosa + A + ( + cos d. ( + sin + ] A A = ( + A cosa + + A sin A ( + cos d = >, ϕ ( = ϕ(. A sin d A cos d + cos d + cos d = ϕ(. + e. Par suie, il eise deu réels A e B els que ], [, ϕ( = Ae + Be. ( La condiion : ϕ es bornée sur ], [ fourni A = e la condiion lim ϕ n n >, ϕ( = π e e donc = π fourni B = π. Par suie >, cos πe d = +. PARTIE II. On suppose que T es sricemen posiif. Pour k, u k (k+t f( d = T f( d ( f éan T-périodique. Or, la foncion f es coninue, posiive e kt kt kt T T non nulle sur [, T] e donc f( d >. On en dédui que la série de erme général f( d diverge e il en es kt de même de la série de erme général u k. La série de erme général u k diverge. hp :// 4 c Jean-Louis Rouge, 8. Tous drois réservés.

5 . (on suppose oujours que T > Puisque la foncion f( es coninue e posiive sur [T, [, cee foncion es inégrable au voisinage de [ si e seulemen si la série de erme général u k converge (comparaison série-inégrale, ce qui n es pas. Donc, la foncion f( n es pas inégrable au voisinage de e ( y 3. Soi y > T. Posons p = E. On a T p h(y = Mainenan, my E ce qui monre que D aure par, k= Ainsi, la foncion y. (k+t kt y f( d + f( d = ( y T mt my + mt e donc, f / E. p T k= E( y T mt my y ( y y f( d + f( d = E mt + f( d. T + T y, ( y my E mt end vers quand y end vers. T y y Finalemen, quand y end vers, h(y my y f( d f( d (p+t f( d = f( d es bornée au voisinage de, e donc end vers ou encore h(y my. y my T y f( d. f( d end vers quand y end vers 4. Soien > e A >. Les deu foncions h( e + son de classe C sur [, A]. On peu donc effecuer une inégraion par paries qui fourni A Quand A end vers, par, [ ] A f( h( A + d = ( h( + ( + d = Ah(A A + A ( h( ( + d. Ah(A + A A ma A = m e donc Ah(A a une limie réelle quand A end vers. D aure + A ( h( ( + m 4 = m >. Cee dernière foncion n éan pas inégrable au voisinage de, il en es de même de la foncion ( h( ( +. A ( h( Mais alors, cee foncion éan de signe consan au voisinage de, ( + d n a pas de limie réelle quand A f( A end vers, e finalemen d n a pas de limie réelle quand A end vers Supposons m =. Dans ce cas, le calcul fai en 3. fourni h(y = y y f( d f( d (p+t f( d = T f( d. hp :// 5 c Jean-Louis Rouge, 8. Tous drois réservés.

6 La foncion h es donc bornée au voisinage de. Mais alors, quand A end vers, Ah(A pariculier, end vers. + A D aure par, quand end vers, ( h( ( + = O ( ( Ah(A + A = O A ( h( e la foncion ( + es inégrable au voisinage A ( h( A f( de. On en dédui que ( + d a une limie réelle quand A end vers, e finalemen que + d a une limie réelle quand A end vers.. Pour (, (,, Puis, ( + i ( i + i ( + i( i ( k k k k + ( + ( PARTIE II = ( i i + i ( ( k k! ( i k+ ( k k! ( + i k+ = i k! i k+ + k! i k+ k N, (, R \ {(, }, k k. Mais alors, pour k N, = ( +. k! ( + (k+/. k! ( + (k+/. e en. a Posons Φ : ], [ ], ] R. f( (, + On sai déjà que, pour chaque ], [ la foncion Φ (, es coninue e inégrable sur ], ]. Φ adme sur ], [ ], ] des dérivées parielles à ou ordre de la forme où P es un polynôme à deu variables. Ensuie, k ( Φ k f( (, = k k + (, = P k(, ( + f(, k+ - pour chaque ], ], la foncion k Φ (, es coninue sur ], [ ; k - pour chaque ], [, la foncion k Φ (, es coninue sur ], ] ; k -enfin, pour majorer k Φ (, k uniformémen en, on fie deu réels a e A els que < a < A. On minore P k (, le dénominaeur de ( + k+ par (a k+, on majore le numéraeur par une somme de valeurs absolues où chaque epression en es majorée par une epression en A. Il rese k Φ (, k Q k( f( = ϕ k (, où Q k es un polynôme. Par suie, quand end vers, ϕ k ( = O(f( e donc ϕ k es une foncion coninue e inégrable sur ], ]. Le ravail précéden éan valable pour ou choi de a e A, le héorème de Leibniz généralisé, l applicaion ( f( + d es de classe d k f( C sur ], [ e >, d k + d d k ( f( = d k + d. b Posons Φ : ], [ [, [ R. f( (, + Le ravail es idenique à celui effecué pour Φ sauf la majoraion. La quesion précédene monre que pour (, ], [ [, [, hp :// 6 c Jean-Louis Rouge, 8. Tous drois réservés.

7 k Φ (, k k! k! f( f( ( + (k+/ k+ f( = ϕ k (, avec encore une fois ϕ k coninue e inégrable sur [, [. Par suie, l applicaion d k ( f( sur ], [ e >, d k + d d k ( f( = d k + d. Finalemen F es de classe C sur ], [ e k N, ], [, F (k ( = f( d es de classe C + k ( k + d. PARTIE IV. Pour chaque [, [, l applicaion f( es coninue par morceau sur [, [ ; + Pour haque [, [, l applicaion f( es coninue sur [, [ ; + Pour (, [, [ [, [, f( + f( = f( = ϕ(. Puisque ϕ es coninue e inégrable sur [, [, le héorème de coninuié des inégrales à paramères perme d affirmer que Φ es coninue sur R +.. Soi >. Les deu foncions f( e ln( + son de classe C sur le segmen [, ]. On peu donc effecuer une inégraion par paries e on obien [ ] + f( d = ln( + f( ln( + f ( d = f( ln( + f(ln ln( + f ( d. Quand end vers, on a déjà f( ln( + f(ln = f(ln + O(. Ensuie, f es de classe C sur R + e en pariculier, f es bornée sur [, ]. On noe M un majoran de f sur [, ]. On suppose de plus ], ]. Pour [, ], on a alors ln ln( + ln( + e donc { ln( + f ( ma M ln, M } ln( + = g(. Chacune des deu foncions g : M ln e g : M ln( + es coninue e inégrable sur ], ] e donc g : (g + g + g g l es aussi. Ainsi, pour ou [, ], ln( + f ( d ln( + f ( d g( d <. Mais alors, quand end vers, on a ln( + f ( d = O( e on en dédui que + f( d = f(ln + O(. Enfin, puisque Φ es coninue sur R +, Φ es en pariculier bornée au voisinage de e donc quand end vers, F( = + f( d + + f( d = f(ln + O( + Φ( = f(ln + O(. Comme la foncion ln n es pas bornée au voisinage de e que f(, on a finalemen F( f(ln. hp :// 7 c Jean-Louis Rouge, 8. Tous drois réservés.

8 [ 3. a. Pour >, + d = Arcan ] = Arcan. >, + d = Arcan. b. Soi >. F( = f( + d + = Arcan + f( + d = + d (f( d + Φ( = π Arcan + Φ( + π Puisque φ es coninue en, on a déjà lim Arcan +Φ( = π > (f( d + Φ(. Il rese à vérifier que lim > + (f( d. + (f( d =. Soi ε >. Puisque f( équivau à quand end vers, a ], [ el que, pour ], a], f( ε. Pour ou réel π >, on a alors a + (f( d + (f( d + a + (f( d ε a π + d + a + (f( d ε π + d + ε π Arcan + a + (f( d ε + a + (f( d. Mainenan, pour chaque [, [, la foncion + la foncion + (f( es coninue sur [, [. Enfin, à fié, d que à fié, l epression (, [, [ [a, ], avec ϕ foncion coninue e inégrable sur [a, ]. + croî sur [, ] de à puis décroî sur [, [ de a + (f( d (f( es coninue sur [a, ] e pour chaque [a, ], ( d + = ( +. Ce qui monre + (f( f( = ϕ(, à. On en dédui que pour ou Le héorème de coninuié des inégrales à paramères monre que la foncion foncion a + (f( d es coninue sur R + e en pariculier, lim a + (f( d = a + (f( d =. Par suie, il eise α > el que pour ], α[, + (f( d < ε. Pour ], α[, on a alors donc que a + (f( d < ε + ε lim F( = π. = ε. On a monré que lim + (f( d = e hp :// 8 c Jean-Louis Rouge, 8. Tous drois réservés.

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1.

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1. L3 Inégraion 1 212-213 TD 4 : correcion Eercice 1. Foncions presque nulles } On considère la suie d ensembles mesurables A n = Rf( 1. n Par hypohèse, ils son ous de mesure nulle : = f dλ 1 A n n µ(a n.

Plus en détail

PARTIE I - Exemple 1

PARTIE I - Exemple 1 PRELIMINAIRES ² On noera qu'il es di dans la roisiµeme parie que N (f ) N (f ), ce qui donne un conr^ole (rµes pariel) des calculs des deux premiµeres paries. ² Dans ou le problµeme je noe Á les foncions

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite.

Examen Final - 16 mai 2013 Durée : 2 heures. L utilisation de documents, de calculatrice ou de tout autre appareil électronique est interdite. Universié Toulouse 3 Année -3 L Mahémaiques/Mécanique TC4 - Calcul inégral Examen Final - 6 mai 3 Durée : heures. L uilisaion de documens, de calcularice ou de ou aure appareil élecronique es inerdie.

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Concours commun polytechnique concours DEUG

Concours commun polytechnique concours DEUG première parie : Polynômes de Bernoulli Concours commun polyechnique concours DEUG. a) B =, donc B = X + K avec K consane. e donc B = X + KX + C avec C consane. La condiion B () = B () donne + K + C =

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

INTÉGRALES DÉPENDANT DE

INTÉGRALES DÉPENDANT DE 7 décembre 8 7 décembre 8 INTÉGRALES DÉPENDANT DE PARAMÈTRES Table des maières JPB 7 décembre 8 I Rappels e noaions Noaions 3 Rappels 3. Sur les foncions d une variable................. 3 II Inerversion

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Recueil d exercices d analyse pour une remise à niveau

Recueil d exercices d analyse pour une remise à niveau Recueil d exercices d analyse pour une remise à niveau Suies e Séries numériques Exercice (Cesaro e sinus iéré). Théorème de Cesaro Soi (u n ) n une suie réelle convergene de limie l. Monrer que la suie

Plus en détail

Développements limités

Développements limités BTS DOMOTIQUE Développemens limiés 8- Développemens limiés Table des maières I Foncion eponenielle I. Développemen limié d ordre................................... I. Développemen limié d ordre...................................

Plus en détail

I Préliminaires, définition de la transformation L

I Préliminaires, définition de la transformation L SESSION Concours commun Cenrle MATHÉMATIQUES. FILIERE PSI I Préliminires, définiion de l rnsformion L I.A - Soi R. On si que si l foncion fe λ es inégrble sur R + lors l inégrle converge. Donc E E. fe

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x).

a f (t)dt. Alors F est continue sur [a,b]. De plus, si f est continue en un point x de [a,b], alors F est dérivable en x et F (x) = f (x). Eercices : Brbr Tumpch Relecure : Frnçois Lescure Eo7 Inégrles générlisées e héorie de l mesure Rppel Définiion. Soi f : (,b R une foncion Riemnn-inégrble sur ou segmen [α,β] (,b (on dme les cs où = e/ou

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 EXERCICE 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 EXERCICE 1 SESSION CONCOURS COMMUN POLYTECHNIQUE (ENSI FILIERE MP MTHEMTIQUES. Pour n, on pose n = Pr suie, n+ n n EXERCICE n. L suie ( n n e pour n, n =. D près l règle de d lember, R =. n R =. n+ n = n (n +.. Soi

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PC MATHEMATIQUES 2. Partie I : le polylogarithme

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PC MATHEMATIQUES 2. Partie I : le polylogarithme SESSION CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PC MATHEMATIQUES Partie I : le polylogarithme I-.. Soit α R. Pour n N, posons a n = n α. Alors, pour tout n N, a n α puis D après la règle de d Alembert,

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

Le théorème des nombres premiers

Le théorème des nombres premiers Le héorème des nombres premiers A Inroducion On sai depuis Euclide que l'ensemble des nombres premiers es inni. En effe, si p es premier, le plus pei diviseur premier de + p! dépasse p. La répariion des

Plus en détail

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/??

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/?? PCSI-PCSI DNSn 4 Corrigé 4-5 Eercice ENTRAINEMENT PERSONNEL R R Déerminer les soluions y: de chacune des équaions différenielles suivanes : y(). y +y +y=++e Soluion. (E c ): r +r+=, soluions complees,

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac

Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac Chapire : Produi de convoluion Disribuion e peigne de Dirac UNVERSTE DE TULN UT DE TULN DEPARTEMENT GE Cours de Mahémaiques Chapire : Produi de convoluion Disribuion e peigne de Dirac Enseignane : Sylvia

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

INTEGRATION SUR UN INTERVALLE QUELCONQUE 1

INTEGRATION SUR UN INTERVALLE QUELCONQUE 1 -- 3 J.F.C. IG p. INTEGRATION SUR UN INTERVALLE QUELCONQUE P menionne des résuls priculièremen uiles e souven oubliés dns l priques des inégrles sur un inervlle quelconque... menionne des erreurs à ne

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Triangularisation, jordanisation, exponentielle de matrices

Triangularisation, jordanisation, exponentielle de matrices Triangularisaion, jordanisaion, exponenielle de marices 1 Triangularisaion Soien E un espace vecoriel de dimension n e ϕ un endomorphisme de E de marice A dans une base donnée. On suppose que le polynôme

Plus en détail

Etude de fonctions définies par une intégrale

Etude de fonctions définies par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Eude de foncions définies par une inégrale Eercice [ 53 ] [correcion] Soi f : d + 3 + 3 a) Monrer que f es définie sur R +. b) A l aide du changemen

Plus en détail

INTÉGRALES GÉNÉRALISÉES

INTÉGRALES GÉNÉRALISÉES Mathématiques 3 (L) Quelques eercices supplémentaires INTÉGRALES GÉNÉRALISÉES. Calcul d intégrales généralisées par primitivation........ Nature d intégrales généralisées................ 3 3. Eercices

Plus en détail

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan Fiche de Biosaisique Exercices d'algèbre Soluions proposées par C. BAJARD e S. CHARLES Plan INDÉPENDANCE, GÉNÉRATEUR, DIMENSION, BASES... MÉTHODE DU PIVOT...4 PRODUITS SCALAIRES... 6 ORTHONORMALISATION...

Plus en détail

Suites réelles et complexes. () Suites 1 / 36

Suites réelles et complexes. () Suites 1 / 36 Suites réelles et complexes () Suites 1 / 36 1 Limites et relation d ordre 2 Comparaison des suites 3 Suites de nombres complexes () Suites 2 / 36 Plan 1 Limites et relation d ordre 2 Comparaison des suites

Plus en détail

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire

Catherine Bruneau. Année Produit scalaire, orthogonalité et projection orthogonale. y! hx; yi est linéaire Cours de mahémaiques appliquées à la nance Produi scalaire, orhogonalié Séparaion des convexes e lemme de Farkas Applicaion: évaluaion par arbirage en déerminise Caherine Bruneau Année 2009-2010 1 Produi

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

TD 13 : Intégrales dépendant d un paramètre

TD 13 : Intégrales dépendant d un paramètre TD 3 : Inégrals dépndan d un paramèr Éuds d foncions Exrcic Enraînmn Oral Pis mins, PC, 5. On défini f x = a Dérminr l domain d définiion d f. b Éudir la régularié d f. c Qull s la limi d f x lorsqu x

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Exercices - Transformation de Fourier : corrigé. Fonctions intégrables

Exercices - Transformation de Fourier : corrigé. Fonctions intégrables Foncions inégrables Exercice 1 - Foncion riangle - Troisième année - Sans déailler les calculs, e en faisan noammen une inégraion par paries, on a : De même, on rouve 1 1 (1 + x)e 2iπξx dx = i 2πξ + 1

Plus en détail

Corrigé de Banque PT 2015 Épreuve C

Corrigé de Banque PT 2015 Épreuve C Lycée Laeiia Boapare Spé PT Corrigé de Baque PT 5 Épreuve C Parie I Les focios f e g so maifeseme paires, il suffi doc de les éudier sur R + pour coaîre leurs propriéés sur R a) O a, pour ou réel x, f

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES PC Dae de créaion 006 Cours, Exercices, Aueur (s) de la ressource pédagogique : FACK Hélène [FACK Hélène], [04], INSA de Lyon, ous drois réservés. Sommaire EQUATIONS DIFFERENTIELLES

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1 Eercice.. 2. 3. e 2 ln = e 2 ( 2 ) /2 } ln {{ / } (ln ) 3 2 2 = (ln ) 3 / 2 / /(2) 2 }{{} sin 0 car sin est bornée et 0. 0 4. e (aucune difficulté!) 5. Il faut distinguer 0 et 0. 6. (croissances comparées)

Plus en détail

Exercices : Série 1 Corrigés

Exercices : Série 1 Corrigés Exercices : Série 1 Corrigés 1 Durée nécessaire pour doubler le PIB par habian Déniions : y 0 : PIB par ravailleur au débu y T : PIB par ravailleur après T années g : aux de croissance [%] r : aux de croissance

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux.

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux. SESSION CONCOURS ESIM FILIERE MP MATHEMATIQUES Préliminaire - Quand t tend vers, ft) t t t =. Par suite, f est prolongeable par continuité en. f étant d autre part continue / sur ], ], f est intégrable

Plus en détail

PARTIE I : ETUDE DE F

PARTIE I : ETUDE DE F Concours ESIM 999 ÉPREUVE DE MATHÉMATIQUES I - ANALYSE Durée : 3 heures Filière PC PRELIMINAIRES. f(, est défini si et seulement si :, et ( + ( + >. Le plan étant rapporté à un repère orthonormé (O, i,

Plus en détail

Mathématiques Financières

Mathématiques Financières Mahémaiques Financières ------------------------------------------------------- 4 ème parie - Marchés financiers en emps coninu & modélisaion des acions Universié de Picardie Jules Verne Amiens Jean-Paul

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

(ln x) 3 + x. x+ 1 x. xe 1 x

(ln x) 3 + x. x+ 1 x. xe 1 x Calculs et entraînement. Eercice 1. [limites ] Calculer les limites suivantes : 1. lim + e + ln. lim + (ln ) 3 + sin 3. lim + 1 + + 4. lim + e 1 sin + cos 7. lim + + 1 1 10. lim + 1 13. lim 5. lim e 1

Plus en détail

Concours Mines-Ponts 2001 PC/PSI - Sujet 2 - Corrigé

Concours Mines-Ponts 2001 PC/PSI - Sujet 2 - Corrigé Concours Mines-Pons PC/PSI - Suje - Corrigé Cee correcion a éé rédigée par Frédéric Bayar e es disponible à l adresse suivane : hp://mahweb.free.fr Si vous avez des remarques à faire, ou pour signaler

Plus en détail

MATHEMATIQUES Option économique 5 mai 2015 de 8h à 12h

MATHEMATIQUES Option économique 5 mai 2015 de 8h à 12h ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD Concours d'admission sur classes préparaoires MATHEMATIQUES Opion économique 5 mai 5 de 8h à h La présenaion, la lisibilié, l'orhographe, la qualié de la rédacion,

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

Epreuve E3A Maths 2 PSI- corrigé Préliminaires 1. u = 2 cos(θ/2)e iθ/2. On distingue trois cas : Si θ = π, alors u = 0 et u n a pas d argument.

Epreuve E3A Maths 2 PSI- corrigé Préliminaires 1. u = 2 cos(θ/2)e iθ/2. On distingue trois cas : Si θ = π, alors u = 0 et u n a pas d argument. Epreuve E3A Maths 2 PSI- corrigé Préliminaires. u = 2 cos(θ/2)e iθ/2. On distingue trois cas : Si θ = π, alors u = et u n a pas d argument. si θ < π, u = 2 cos(θ/2) et arg(u) θ/2 (2π) ; si θ < π, u = 2

Plus en détail

Jean-Louis CAYATTE

Jean-Louis CAYATTE Jean-Louis CAYATTE hp://jlcayae.free.fr/ jlcayae@free.fr Chapire 4 La durée du chômage Quand on parle de la durée du chômage, si l on n y prend pas garde, on confond facilemen la durée moyenne du chômage

Plus en détail

Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et continuité - Correction des exercices

Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et continuité - Correction des exercices Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et continuité - Correction des eercices Tatiana Labopin-Richard 28 janvier 205 Problèmes de limites Eercice : Trouver les limites suivantes

Plus en détail

Un corrigé du concours Centrale-supélec Math-II a k ) = , la série de Riemann 1. n + n r

Un corrigé du concours Centrale-supélec Math-II a k ) = , la série de Riemann 1. n + n r Cerale-supélec - 5 U corrigé du cocours Cerale-supélec Mah-II- 5 Filière MP I- Représeaio iégrale de sommes de séries Proposé par Mr : HAMANI Ahmed I-A. I-A-, a = d = + l = + o Doc a e par suie la série

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Fiche d exercices 12 : Lois normales

Fiche d exercices 12 : Lois normales Fiche d exercices 1 : Lois normales Exercice 1 Loi normale cenrée e réduie N (0,1) Une variable aléaoire Z sui la loi N (0,1). On donne P ( Z 1,8 ) 0, 964 e P ( Z,3) 0, 989. Calculer les probabiliés suivanes

Plus en détail

La transformée de Laplace

La transformée de Laplace a ransformée de alace Méhode mahémaique ayan our objecif: Conourner la difficulé de résoluion des équaions différenielles Offrir une résoluion algébrique Très bien adaée à l élecronique Commen le cours

Plus en détail

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé.

Examen Final EL40. Durée : 1H40. Calculatrice non autorisée car inutile. Aucun document personnel n'est autorisé. NOM : Examen Final EL4 Noe : Durée : H4. Calcularice non auorisée car inuile. Aucun documen ersonnel n'es auorisé. Pour chaque réonse, on exliquera la démarche qui condui au résula roosé. Les exressions

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

2 Intégrales impropres

2 Intégrales impropres COURS L, -. SUITES, SÉRIES, INTÉGRALES IMPROPRES Inégrles impropres. Générliés Soi R[, b] l ensemble des foncions inégrbles (u sens de Riemnn) sur l inervl compc (=segmen) [, b]. Pr définiion, ces foncions

Plus en détail

et est finie, on dit que l intégrale généralisée converge et on note f(t)dt =lim F (x). x b f(t)dt lorsque f est définie continue sur ]a, b].

et est finie, on dit que l intégrale généralisée converge et on note f(t)dt =lim F (x). x b f(t)dt lorsque f est définie continue sur ]a, b]. Chpire 7 Inégrles générlisées 7. Inroduion Pour ou inervlle fermé orné I =[, ] ve e réels, e pour oue fonion f oninue ou oninue pr moreux sur I, il es possile de définir l inégrle de Riemnn f()d omme limie

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10 CPI - ANALYSE CORRECTION Eercices Chapitre 3 - Limites et fonctions continues Eercice 3 Correction : { Soit E 3 + 75 }, R et + 36 3 On a + 36 3 9 3 On pose f 3 + 75 Comme f est impaire, il suffit de l

Plus en détail

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI ÉLÉMENTS DE CORRECTION CCP TSI MATHS Concours Communs Polytechniques Épreuve de Mathématiques n TSI. a) On a f ) + Eercice donc f ) + +. b) L application f est dérivable et même de classe C ) sur R comme

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS. Fonctions de plusieurs variables

Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS. Fonctions de plusieurs variables Universié Paris 7 Denis Didero Année 2005/2006 Licence 2 MIAS MI4 1 Noions de dérivée 1.1 Prologue Foncions de plusieurs variables Avan d expliquer les noions de dérivées pour les foncions de plusieurs

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B =

d 2 X dt 2 = F 2KX (14) M B ω 2 X + 2K X = F X = ω B = 1. Couplage par inerie e amorisseur accordé a b α m k F F x 0 0 (a Bâimen de masse sans le disposiif d amorissemen Les forces qui s appliquen au bâimen son : - la force due aux rafales de ven, - la force

Plus en détail

Annexe A: dérivées et intégrales : un bref survol

Annexe A: dérivées et intégrales : un bref survol Annexe A: érivées e inégrales : un bref survol Bien que vous ayez éjà vu une parie e ces sujes au niveau collégial e qu'en MAT-5 ils seron revus en éails, on peu néanmoins examiner rapiemen ce que représene

Plus en détail

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui Rappels de cours M1 Enseignement, Analyse M71 Rachid Regbaoui 2 Chapitre 1 Rappels sur les suites et séries numériques 1.1 Suites numériques 1.1.1 Généralités Dans la suite K désignera le corps des réels

Plus en détail

Intégrale dépendant d'un paramètre

Intégrale dépendant d'un paramètre ntégrale dépendant d'un paramètre Contents 1 Continuité d'une intégrale à paramètre 3 1.1 Théorème.......................................... 3 1.1.1 Enoncé....................................... 3 1.1.2

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE CHAPITRE 4 FONCTIONS D UNE VARIABLE RÉELLE On appelle fonction numérique une application définie sur une partie D de R, à valeurs dans R. 1 Bornes d une fonction Définition 4.1 Soient D R et f : D R. f

Plus en détail

Le problème de Cauchy. Résultats fondamentaux.

Le problème de Cauchy. Résultats fondamentaux. Le problème de Cauchy. Résulas fondamenaux. 1. Noion de soluion maximale. Problème de Cauchy. 1.1 Forme normale d une équaion différenielle y = f(x,y). On éudie ici les équaions différenielles (ou sysèmes

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail