LES NOMBRES COMPLEXES Site MathsTICE de Adama Traoré Lycée Technique Bamako

Save this PDF as:
Dimension: px
Commencer à balayer dès la page:

Download "LES NOMBRES COMPLEXES Site MathsTICE de Adama Traoré Lycée Technique Bamako"

Transcription

1 LES NORES OPLEXES Ste thstie de dm Troré Lycée Techqe mko I Défto: Défto : Sot le ombre mgre té tel qe ² O ppelle esemble des ombres complexes, l esemble oté et déf pr : { b ( b ε R²} est ppelé l prte réelle de otée Re( b est ppelé l prte mgre de otée Im( Églté de dex ombres complexes : Soet dex ombres complexes b et Ʌ Ʌ bʌ 3 Opértos ds : ddto : Re( Re( b b Im( Im( Sot b et Ʌ Ʌ bʌ o ( ( b b b ltplcto: ( b ( b ( bb (b b c Dvso: b ( b( b vec ( b ( 0 0 b ( ( b (, est grope béle (*, est grope commttf L mltplcto est dstrbtve pr rpport à l ddto ds, d où (,, est corps II ojgé d ombre complexe: Défto : O ppelle cojgé d ombre complexe b le complexe b Exemples: Proprétés: Sot b et Ʌ Ʌ bʌ U complexe est réel Im ( 0 U complexe est mgre pr 0 et Re ( 0 0 ( ( vec 0 ors Nombres omplexes Pge sr 3 dm Troré Professer Lycée Techqe

2 III odle d ombre complexe: Défto 3: O ppelle modle d ombre complexe b, le réel postf déf pr b ( lre modle de Exemples : sot 3 ( Proprétés d modle: ( vec 0 ( 0 0 ( S lors s b lors b IV rgmet d ombre complexe o l: Le pl P est m d repère orthoormé drect ( O v tot ombre complexe b o ssoce le pot b b b b r v o Le ombre complexe b est ppelé l ffxe d pot ( b o d vecter O ( b Le pot et le vecter O sot ppelés respectvemet le pot mge et le vecter mge d ombre complexe O d (O ² b² (modle de S et sot dex pots d pl d ffxes respectves et lors le vecter por ffxe ( et ors Nombres omplexes Pge sr 3 dm Troré Professer Lycée Techqe

3 rgmet d ombre complexe o l : O ppelle rgmet de oté rg(, le réel égl à e mesre de l gle ( O L rgmet de est défe à k près k rg( k où est l détermto prcple de l rgmet O écrt : rg( vec ε ] ] S 0 lors tote mesre de l gle ( O est ppelée rgmet de (Vor fgre Forme lgébrqe Forme trgoométrqe d complexe o l : Forme lgébrqe : b est l forme lgébrqe d ombre complexe b Forme trgoométrqe : Sot b b r v o b cos s O cos et O O b cos s o r cos s o : ( ( b O s L écrtre : I I (cos s,est ppelée forme trgoométrqe de c Relto etre Forme Trgoométrqe et Forme lgébrqe : Sot b de modle b et d rgmet cos s b ( cofère cercle trgoométrqe ors Nombres omplexes Pge 3 sr 3 dm Troré Professer Lycée Techqe

4 3 Proprétés de l rgmet d ombre complexe o l : P Sot ( εr, s >0 lors rg( 0 s <0 lors rg( P Le ombre complexe l ps d rgmet P 3 Sot b (b εr, s b >0 lors rg( s <0 lors rg( P Soet [ ] et Ʌ [ Ʌ Ʌ] rg( Ʌ rg( rg(ʌ Ʌ Remrqe : S [ ] lors ² [ ² ] [ ] P 5 rg rg( rg( S [ ] et Ʌ [ Ʌ Ʌ] lors P 6 rg( rg( P 7 rg rg( Notto Expoetelle : Sot [ ] o covet de oter cos s e ette écrtre est ppelée l forme expoetelle de Doc r(cos s re 5 Formle de ovre Formle d Eler : Formle de ovre : ε N*, ( cos s ( cos s b Formle d Eler : cos s e cos s e cos e e e e e e cos s ors Nombres omplexes Pge sr 3 dm Troré Professer Lycée Techqe

5 V Lérsto: lcl de cos(x et s(x e focto de cosx et sx : Por d près l formle de ovre ( cos x s x cosx s x D près l formle d bôme de Newto cos x s x (cos x s x (s xcos x ( Pr detfcto o : cos(x cos x s x et s(x s xcos x ême procédé por 3 5 Lérsto : cosx sx cosx sx cosx sx cosx sx cosx sx cos x ( s x ( cos ( ( x x e e x s x x x ( ( e e De cos( x s( x et cos( x s( x o dédt qe x x e e cos( x x x e e s( x Remrqe: cos x s x et 3 Exemple: Lérser cos x et s x ors Nombres omplexes Pge 5 sr 3 dm Troré Professer Lycée Techqe

6 VI Rce ème d ombre complexe: Sot eter trel strctemet spérer à Défto : U étt ombre complexe o l, o ppelle rce ème de U tot ombre complexe tel qe U Posos [ r ] r (cos s et [ρ x ] ρ (cosx sx [ρ ρ r ρ r x] [ r ] k d où x k x k k k r cos s vec 0 k Exemple : o k r e k Détermer totes les rces cbqes de l té c est à dre résodre 3 Plcer les pots mges des soltos ds le pl complexe et e dédre l tre d trgle k orrecto 3 [ 0 ] 3 k k cos s vec 0 k 3 3 S k 0 lors 0 ( 0 S k lors S k lors cos s 3 3 cos s d où le trgle est éqltérl 3 3 Théorème : Tot ombre complexe o l U dmet exctemet rces ème S k est e rce ème de U lors k vec 0 k - U et rg ( k rg( U k ors Nombres omplexes Pge 6 sr 3 dm Troré Professer Lycée Techqe

7 Théorème : S 0 est e rce ème de U lors o obtet totes les tres rces de U e mltplt 0 sccessvemet pr les rces èmes de l té o Exemple : Détermer les soltos ds de l éqto ( 3 orrecto 0 3 est e solto prtclère de l éqto omme les rces qtrème de sot : : lors les soltos de l éqto ( 3 sot: L esemble des soltos est S { 3 } VII Éqtos d secod degré: s où les cœffcets sot des réels : Sot l éqto : b c 0 ( 0 éthode de résolto lcler le dscrmt b² c oclre svt le sge de -/ s > 0 lors l éqto dmet dex rces b b et b b-/ s 0 lors c-/ s < 0 lors l éqto dmet dex rces b b et Exemple : résodre ds ² 0 l résolto doe comme esemble de solto S { 3 3 } Rce crrée d ombre complexe : Soet et U dex ombres complexes O ppelle rce crrée d ombre complexe U tot ombre complexe tel qe U ( est rce crrée de U ( U ors Nombres omplexes Pge 7 sr 3 dm Troré Professer Lycée Techqe

8 Tot ombre complexe o l dmet dex rces crrées opposées Soet x y et U b ( U éqvt à Exemple : x y x y xy b b Détermer les rces crrées d ombre complexe 5 orrecto Sot δ x y le ombre complexe tel qe : δ² et δ ² o modle de est 5 3 x² y² 3 x² y² 5 xy ( ( x ² x o x ( ( (3 Por x, (3 y 3 doc δ 3 Por x, (3 y 3 doc δ 3 δ et δ sot les rces crrées de 5 3 s où les coeffcets sot des ombres complexes : S le dscrmt est ombre complexe de rces crrées δ et δ lors les soltos de l éqto b c 0 ( 0 sot : b δ b δ et Exemple résodre ds : (² 3 ( herchos les rces crrées de sot δ x y tel qe : δ² et δ ² O 7 ors Nombres omplexes Pge 8 sr 3 dm Troré Professer Lycée Techqe

9 ors Nombres omplexes Pge 9 sr 3 dm Troré Professer Lycée Techqe (3 8 ( 5 ² ² ( 7 ² ² xy y x y x ( ( x² x o x S x lors (3 doe y doc δ S x lors (3 doe y doc δ 3 3 L esemble des soltos de l éqto est : S VIII pplctos géométrqes: Iterprétto géométrqe d lgge complexe : Soet tros ombres complexes dstcts d mges respectves et ds le pl complexe P rg ( D tre prt rg ( (, k rg( ( k E prtcler : lors rg 678 Trdctos complexes de certes cofgrtos selles : Vecters orthogox Vecters coléres : Sot les complexes et d mges respectves - Les vecters et sot orthogox ( [ ] [ ] o est mgre pr - Les vecters et sot coléres ( [ ] [ ] 0 o est réel

10 ors Nombres omplexes Pge 0 sr 3 dm Troré Professer Lycée Techqe c Exemple : Sot les complexes d mges respectves les pots Détermer le modle et l rgmet de E dédre l tre d trgle orrecto ( ( ( ( ( ( ( rg rg rg rg rg rg ( ( s cos rg où d k - Ntre d trgle [ ], rg 78 6 k De fço loge o : ( [ ] [ ], rg( rg rg 678 [ ], rg 678 D où est trgle rectgle et socèle

11 IX Nombres complexes et trsformtos: Trsltos Soet et dex pots d ffxes respectfs et Le vecter d ffxe 0 Détermos l écrtre complexe de l trslto t de vecter q trsforme e t (, est l écrtre complexe de l trslto de vecter Exemple : Sot t l trslto de vecter d ffxe Détermer l écrtre complexe de l trsformto t Sot le pot d ffxe, mge de d ffxe pr l trsformto t t ( ( L écrtre complexe de l trslto t est : L Homothéte : Soet et dex pots d ffxes respectfs et Sot pot d pl d ffxe Détermos l écrtre complexe de l homothéte h de cetre et de rpport k q trsforme e h k k k k ( ( k ( k ( k k ( o k ( k, est l écrtre complexe de l homothéte de cetre et de rpport k ors Nombres omplexes Pge sr 3 dm Troré Professer Lycée Techqe

12 ors Nombres omplexes Pge sr 3 dm Troré Professer Lycée Techqe Exemple : Sot h l homothéte de cetre d ffxe et de rpport Détermer l écrtre complexe de l trsformto h - Sot le pot d ffxe, mge de d ffxe pr l homothéte h ( ( h ( ( 3 6 L écrtre complexe de l homothéte h est : L Rotto : Soet et dex pots d ffxes respectfs et Sot pot d pl d ffxe Détermos l écrtre complexe de l rotto r de cetre et d gle q trsforme e ( ( ( r rg [ ] rg ( cos s ( ( ( e s cos (cos s ( o e (, est l écrtre complexe de l rotto de cetre et d gle

13 Exemple : Sot l rotto r de cetre d ffxe l écrtre complexe de l trsformto r 3 et d gle Détermer - Sot le pot d ffxe, mge de d ffxe pr l rotto r r ( et ( k b( vec b cos s e Doc b( 3 ( ( 3 3 L écrtre complexe de l rotto r est : ( Recherche des lex géométrqes : Soet I (x 0 y 0 et (x y des pots d pl S les pots (x y d pl vérfet : lors l esemble (E des pots cherchés est : x by c 0 L drote (D d éqto : x by c 0 x b y vec c 0 L hyperbole (H d éqto: cx d x b y cx d ( x x ( 0 y y0 r Le cercle (V de cetre I (x 0 y 0 et de ryo r L drote ( médtrce d segmet [] 0 Le cercle (V de dmètre le segmet [] y x bx c L prbole (P d éqto : y x bx c ors Nombres omplexes Pge 3 sr 3 dm Troré Professer Lycée Techqe

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Commande Prédictive Robuste d un Système MIMO utilisant un modèle BOG et les techniques LMI

Commande Prédictive Robuste d un Système MIMO utilisant un modèle BOG et les techniques LMI La cqèe Coférece Iteratoae d Eectrotechqe et d Atoatqe -4 Ma 8 aaet se Coade Prédctve Robste d Systèe MIMO tsat odèe BOG et es techqes LMI Jae Ghab A Do et assa Messaod Ecoe atoae d Igéers de Moastr Re

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

e x dx = e x dx + e x dx + e x dx.

e x dx = e x dx + e x dx + e x dx. Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+

Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+ 01 / 24 0 0!( 10 10 20 20 02 / 24 20 20 30 30 40 40 Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) 03 / 24 40 40 50 50 60 60 60 60 04 / 24 70 70 80 80 80 80 Système de Repérage

Plus en détail

Microphones d appels Cloud avec message pré-enregistrés intégré

Microphones d appels Cloud avec message pré-enregistrés intégré Microphones d appels Clod avec message pré-enregistrés intégré Clearly better sond Modèles PM4-SA et PM8-SA Description générale Les microphones d appels nmériqes Clod de la gamme PM-SA ont été développés

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE Diocèses de Paris, Nanterre, Créteil et Saint-Denis JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE FAITES DE VOS BIENS

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

L Analyse Factorielle des Correspondances

L Analyse Factorielle des Correspondances Aalyse de doées Modle 5 : L AFC M5 L Aalyse Factorelle des Corresodaces L aalyse factorelle des corresodaces, otée AFC, est e aalyse destée a tratemet des tableax de doées où les valers sot ostves et homogèes

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

Fiche technique. " Cible/Echantillon " Mode de recueil " Dates de terrain

Fiche technique.  Cible/Echantillon  Mode de recueil  Dates de terrain v, r v «L qé d»? q c pr v Sfr dg d é d r Pré TNS Fch chq " Cb/Ech " Md d rc " D d rr 1001 ré cf ccpé Âgé d 18 p I d p TNS Sfr 267 000 dr Frc L rprévé d c éch ré pr méhd d q : âg, x, prf d rvwé, cr d cvé

Plus en détail

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Les qualifications INSTALLATEURS ÉNERGIES RENOUVELABLES. Forage géothermique. Solaire thermique. Aérothermie et géothermie

Les qualifications INSTALLATEURS ÉNERGIES RENOUVELABLES. Forage géothermique. Solaire thermique. Aérothermie et géothermie INSTALLATEURS ÉNERGIES RENOUVELABLES Les qalifications Edition jillet 2014 Solaire thermiqe Forage géothermiqe Solaire photovoltaïqe Bois énergie Aérothermie et géothermie Les énergies renovelables : des

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents

Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Mercredi 5 novembre 2014 Enjeux et contraintes de la mutualisation des ressources pour les collectivités et les agents Hervé PETTON, Directeur Territorial 35 ans d expérience professionnelle en collectivités

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Plan de formation pour l Ordonnance sur la formation professionnelle initiale réalisateur publicitaire

Plan de formation pour l Ordonnance sur la formation professionnelle initiale réalisateur publicitaire 79614 Plan de formation por l Ordonnance sr la formation professionnelle initiale réalisater pblicitaire Partie A Compétences opérationnelles Partie B Grille horaire Partie C Procédre de qalification Partie

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

l u N D I 15 M D I D I 3 17 J u D I N D D I I M N C h COuPE Du PrEsIDENT OPEN 104 FEuChErOllEs EAuBONNE s1 20h15 COuPE Du OPEN 104 EAuBONNE s2 20h15

l u N D I 15 M D I D I 3 17 J u D I N D D I I M N C h COuPE Du PrEsIDENT OPEN 104 FEuChErOllEs EAuBONNE s1 20h15 COuPE Du OPEN 104 EAuBONNE s2 20h15 6-boc caendie 220415_6 agenda 2006 p218-237 23/04/2015 15:36 Page 1 1 6-boc caendie 220415_6 agenda 2006 p218-237 23/04/2015 15:36 Page 2 36 31 août PTB 2015 37 38 7 14 1 8 15 OP 104 1 2015 OP PT Té BO

Plus en détail

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com

Décoration, équipement. de la Maison. Janvier 2013 sans prix. Printemps / Été. SADY s TRADING WOOD TRADING. www.sadys-trading.com Dreo Aeropor Mrselle Provee D 9 SADY s TRADING WOOD TRADING Déoro, équpeme de l Mso www.sdys-rd.om Jver 2013 ss prx Premps / Éé ZI Les Bols Dreo Mrselle - Ax ZI Les Esroubls SADY s TRADING Les ouveués

Plus en détail

PRÉSENTATION DU CONTRAT

PRÉSENTATION DU CONTRAT PRÉSENTATION DU CONTRAT 2 L ASSURANCE VIE UN FANTASTIQUE OUTIL DE GESTION PATRIMONIALE Le fait qe l assrance vie soit, depis plsiers décennies, le placement préféré des Français n est certes pas le frit

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

AMC2 - (Contrôleur d'accès modulaire - Access Modular Controller)

AMC2 - (Contrôleur d'accès modulaire - Access Modular Controller) Engineered Soltions AMC2 - (Contrôler d'accès modlaire - Access Modlar Controller) AMC2 - (Contrôler d'accès modlaire - Access Modlar Controller) www.boschsecrity.fr Gestion intelligente des accès por

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :

La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins : La complémentaire santé des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ la réponse santé adaptée à vos besoins por faciliter votre accès ax soins : avec le tiers payant por ne pls avancer vos frais

Plus en détail

AVEC LA DOUANE PRODUIRE EN FRANCE. # produireenfrance. Présentation des entreprises participant aux tables rondes. Octobre 2014 - Bercy

AVEC LA DOUANE PRODUIRE EN FRANCE. # produireenfrance. Présentation des entreprises participant aux tables rondes. Octobre 2014 - Bercy 16 Octobre 2014 - Bercy PRODUIRE EN FRANCE AVEC LA DOUANE Présentation des entreprises participant ax tables rondes # prodireenfrance Live tweet sr le compte officiel de la doane @doane_france la doane

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

IUT Béthune Génie Civil Année Spéciale RDM COURS : STATIQUE

IUT Béthune Génie Civil Année Spéciale RDM COURS : STATIQUE IUT Béthe Géie Civil ée Spéciale RD CURS : STTIQUE I) Gééralités :.) Itrodctio : La statiqe et la écaiqe des Strctres ot por bt d epliqer les phéomèes régissat le dimesioemet des costrctios. Ces matières

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Votre expert en flux documentaires et logistiques. Catalogue des formations

Votre expert en flux documentaires et logistiques. Catalogue des formations Votre expert en flx docmentaires et logistiqes Cataloge des formations Qelles qe soient les entreprises, les salariés pevent sivre, a cors de ler vie professionnelle, des actions de formation professionnelle

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Onveutetudierl'equationdierentiellesuivante

Onveutetudierl'equationdierentiellesuivante Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

LBC 341x/0 - Enceintes

LBC 341x/0 - Enceintes Systèmes de commnications LBC 41x/ - Enceintes LBC 41x/ - Enceintes www.boschsecrity.fr Reprodction vocale et msicale hate fidélité Plage de fréqences étende Entrées 8 ohms et 1 V réglables Enceinte compacte

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

L'important C'est la rose

L'important C'est la rose L'important 'est la rose Gilbert ecaud rr: M. de Leon opista: Felix Vela 200 Xiulit c / m F m m 7 9. /. m...... J 1 F m.... m7 ro - se. rois - ro - se. rois - ro - se. rois - ro - se. rois - oi qui oi

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

IGE G 4 E 87 M o M d o é d lisation o n de d s ba b ses de d do d n o n n é n es S ma m ine n 7

IGE G 4 E 87 M o M d o é d lisation o n de d s ba b ses de d do d n o n n é n es S ma m ine n 7 IGE48 Modélsto ds bss d doés Récupérto d l bs d doés Dogo Plo Pl d l s Récupérto Pourquo l récupérto? Typs d ps Log d trsctos Ms à jour d doés Roll bck ds trsctos Chckpot chés d récupérto Bckup t récupérto

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'INTÉRIEUR, DE L'OUTRE-MER ET DES COLLECTIVITÉS TERRITORIALES Connaître Rédire Aménager Informer

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

INTENTION LES PROCESSUS MATHÉMATIQUES

INTENTION LES PROCESSUS MATHÉMATIQUES INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :

Plus en détail

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. david.madore@enst.fr. 29 mai 2015 et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech david.madore@enst.fr 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Le travail c est la santé... bien se positionner devant son écran, c est aussi la conserver!

Le travail c est la santé... bien se positionner devant son écran, c est aussi la conserver! Santé et travail sr poste informatisé bonnes postres et bonnes pratiqes Le travail c est la santé... bien se positionner devant son écran, c est assi la conserver! www.simt.fr Santé et prévention a bénéfice

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Votre succès notre spécialité!

Votre succès notre spécialité! V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Soutenue publiquement le Mardi 04/Mai/2010 MEMBRES DU JURY

Soutenue publiquement le Mardi 04/Mai/2010 MEMBRES DU JURY Répblqes Algéree Démocratqe et Poplare Mstère de l Esegemet Spérer et de la Recherche Scetfqe Uversté MENTOURI Costate Faclté des Sceces de l'igéer Départemet de Gée Mécaqe N d ordre : /MAG/ Sére : /GM/

Plus en détail

Incertitudes expérimentales

Incertitudes expérimentales U N I O N D E S P R O F E S S E U R S D E P H Y S I Q U E E T D E C H I M I E 995 Icerttudes érmetales par Fraços-Xaver BALLY Lcée Le Corbuser - 93300 Aubervllers et Jea-Marc BERROIR École ormale supéreure

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements

La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS TIPI Titres Payables par Internet Un novea service por faciliter les paiements Un moyen de paiement adapté à la vie qotidienne TIPI :

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Les deux points les plus proches

Les deux points les plus proches MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Lors e cette séance, nous allons nous téresser au problème suivant :

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

ISC-PDL1-W18x Détecteurs TriTech Série Pro

ISC-PDL1-W18x Détecteurs TriTech Série Pro Systèmes d'alarme intrsion ISC-PDL-W8x Détecters TriTech Série Pro ISC-PDL-W8x Détecters TriTech Série Pro www.boschsecrity.fr Covertre de détection 8 m x 5 m, avec ne sélection de covertre rédite à 8

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat P R O F E S REPUBLIQUE DEMOCRATIQUE DU CONGO ENSEIGNEMENT SUPEREIEUR ET UNIVERSITAIRE INSTITUT SUPERIEUR DE GESTION INFORMATIQUE DE GOMA /I.S.I.G-GOMA DEVELOPPEMENT ISIG M A T I O N COURS DE MATHEMATIQUE

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Extrait du poly de Stage de Grésillon 1, août 2010

Extrait du poly de Stage de Grésillon 1, août 2010 MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW

EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW Version 1.2 Gide de conception et de mise en œvre H12388.2 Copyright 2013-2014 EMC Corporation. Tos droits réservés. Pblié

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2 EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2 Version 1.3 Gide de conception et de mise en œvre H12347.3 Copyright 2013-2014 EMC Corporation. Tos droits réservés. Pblié en Mai, 2014

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema «À l utomne 97 le présdent Non nnoncé que le tu d ugmentton de l nflton dmnué C étt l premère fos qu un présdent en eercce utlst l dérvée terce pour ssurer s réélecton» Hugo Ross, mtémtcen, à propos d

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

International : les références d Ineo Systrans

International : les références d Ineo Systrans International : les références d Ineo Systrans Ineo Systrans Références SAEIV* *Système d Aide à l Exploitation et d Information des Voyageurs ZONE EUROPE BELGIQUE Bruxe l les Liège Mons ROYAUME-UNI Edimbourg

Plus en détail

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010

Lot 4: Validation industrielle. Youness LEMRABET Pascal YIM, 19/11/2010 Lot 4: Validation industrielle Youness LEMRABET Pascal YIM, 19/11/2010 Partenaires Lot 1 Modèle du processus métier L4.1 Modèles PSM Lot 2 Guide d implantation L4.2 Développement & Recette prototype Lot

Plus en détail