Chapitre 4 Lois discrètes

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 4 Lois discrètes"

Transcription

1 Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec p ] 0 ; 1 [. Ue variable aléatoire de Beroulli illustre toute expériece aléatoire ayat que deux issues possibles et effectuée ue seule fois. Traditioellemet le «succès» correspod à la valeur 1 et l «échec» à la valeur 0. E(X) = 1.p + 0.(1 p) = p V(X) = (0 p) 2 (1 p) + (1 p) 2 p = p (1 p) E résumé E(X) = p et V(X) = pq. 2. Loi biomiale B( ; p) 2.1. L expériece de référece stadard 2.2. Les résultats de base Ue ure cotiet deux catégories de boules : des blaches e proportio p et des oires e proportio 1 p. O effectue tirages successifs d ue boule avec remise. O appelle X le ombre de boules blaches obteues au cours de cette expériece. Loi de X : P(X = ) = C p (1 p), = 0;1;... ;. Espérace, écart-type. X peut être cosidérée comme la somme de variables de Beroulli X i où X i = 1 si la boule tirée au i-ème tirage est blache et X i = 0 sio. O a, pour tout i {1 ; 2 ; ; }, P(X i = 1) = p et P(X i = 0) = 1 p = q. E(X) = E Xi = E(X i) = p i= 1 i= 1 Les variables aléatoires X peuvet être cosidérées comme idépedates. Doc : V(X) = V Xi = ( V(X i) ) = pq. i= 1 i= 1 i 27/47

2 2.3. Fréquece biomiale X suit la loi B( ; p). X 1 1 pq La fréquece est la variable F = d'où E(F) = E(X) = p et V(F) = V(X) =. 2 E résumé : X suit la loi ( ; p). B P(X = ) = C p (1 p), = 0;1;... ; E(X) = p V(X) = pq σ (X) = pq X pq pq F = E(F) = p V(F) = σ (F) = 3. Loi Hypergéométrique H(N ; ; p) 3.1.Le modèle Ue ure cotiet deux catégories de boules : des blaches e proportio p et des oires e proportio q = 1 p. Si N est le ombre de boules das l ure, il y a N p boules blaches et N(1 p) boules oires. O effectue tirages successifs d ue boule sas remise. O appelle X le ombre de boules blaches obteues au cours de cette expériece. O sait que ce type de tirage est équivalet à u tirage exhaustif de boules. Ceci est à rapprocher du prélèvemet d u échatillo de boules das l ure La loi Np CN (1 p) C N C N [0 ; ], P(X = ) = ; E( X) = p ; V( X) = pq N 1 O peut remarquer que H(N ; ; p) et B( ; p) ot même espérace N mathématique. La variace e diffère que du coefficiet d exhaustivité N Covergece e loi O motre que, pour et p fixés et pour X N suivat H(N ; ; p), X N coverge e loi vers ue variable X qui suit B( ; p). C est-à-dire lim P(X = ) = P(X = ) N + L itérêt est éorme : si N est grad et petit par rapport à N, o peut remplacer la loi hypergéométrique (qui déped de trois paramètres) par la loi biomiale qui e déped que de deux paramètres et pour laquelle il existe des tables. E pratique, si < 0,1 N, o cosidère qu u tirage exhaustif (tirage u à u sas remise) est équivalet à u tirage o exhaustif (tirage u à u avec remise). N 28/47

3 4. Loi de Poisso 4.1.Le cadre d itervetio C est ue «loi limite». O verra que, sous certaies coditios, ue loi de Poisso est limite d ue loi biomiale. Das la pratique ue telle loi est utilisée pour approcher et décrire des phéomèes où les coditios d applicatio de la loi biomiale sot réuies (répétitios idépedates d ue même épreuve dichotomique), où la probabilité du cas favorable est faible et où le ombre d épreuves est grad La loi La variable aléatoire X suit la loi de Poisso de paramètre λ ( λ>0) lorsque : X a pour esemble de valeurs λ λ P(X = ) = e ( = 0 ;1 ;... ; ;...)! + + Alors : E(X) = P( X = ) =λ V(X) = ( λ ) P(X = ) =λ = 0 = /47

4 4.3. Extraits des tables de la loi de Poisso fouris lors les épreuves de BTS -l l P( X = ) = e. ; E( X) = V( X) =l! \λ 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0 0,8187 0,7408 0,6703 0,6065 0,5488 0,4966 0,4493 0, ,1637 0,2222 0,2681 0,3033 0,3293 0,3476 0,3595 0, ,0164 0,0333 0,0536 0,0758 0,0988 0,1217 0,1438 0, ,0011 0,0033 0,0072 0,0126 0,0198 0,0284 0,0383 0, ,0001 0,0003 0,0007 0,0016 0,0030 0,0050 0,0077 0, ,0000 0,0000 0,0001 0,0002 0,0004 0,0007 0,0012 0, ,0000 0,0000 0,0000 0,0001 0,0002 0, ,0000 0,0000 0, \λ 1 1, ,368 0,223 0,135 0,050 0,018 0,007 0,002 0,001 0,000 0,000 0, ,368 0,335 0,271 0,149 0,073 0,034 0,015 0,006 0,003 0,001 0, ,184 0,251 0,271 0,224 0,147 0,084 0,045 0,022 0,011 0,005 0, ,061 0,126 0,180 0,224 0,195 0,140 0,089 0,052 0,029 0,015 0, ,015 0,047 0,090 0,168 0,195 0,175 0,134 0,091 0,057 0,034 0, ,003 0,014 0,036 0,101 0,156 0,175 0,161 0,128 0,092 0,061 0, ,001 0,004 0,012 0,050 0,104 0,146 0,161 0,149 0,122 0,091 0, ,000 0,001 0,003 0,022 0,060 0,104 0,138 0,149 0,140 0,117 0, ,000 0,000 0,001 0,008 0,030 0,065 0,103 0,130 0,140 0,132 0, ,000 0,000 0,003 0,013 0,036 0,069 0,101 0,124 0,132 0, ,000 0,001 0,005 0,018 0,041 0,071 0,099 0,119 0, ,000 0,002 0,008 0,023 0,045 0,072 0,097 0, ,000 0,001 0,003 0,011 0,026 0,048 0,073 0, ,000 0,001 0,005 0,014 0,030 0,050 0, ,000 0,000 0,002 0,007 0,017 0,032 0, ,000 0,001 0,003 0,009 0,019 0, ,000 0,001 0,005 0,011 0, ,001 0,002 0,006 0, ,000 0,001 0,003 0, ,000 0,001 0, ,001 0, ,000 0, ,000 30/47

5 4.4. Quelques exemples Exercice 1 Das ue certaie usie il se produit, e moyee, ciq accidets par a. O suppose que le ombre d'accidets suit ue loi de Poisso. Calculer la probabilité pour qu'il e dépasse pas sept. Quelle est la probabilité d'avoir ue aée sas accidet? Solutio La variable aléatoire X égale au ombre d'accidets suit ue loi de Poisso de paramètre λ = 5. = P( X 7) = e 0,87! = P( X = 0) = e 6,7 10 Exercice 2 Pour ue femme ayat eu etre 50 et 52 as e l'a 2000, le ombre d'efats, oté X, suit ue loi de Poisso de paramètre icou λ. U échatillo de de ces femmes doe 135 femmes sas efat. 1. Doer ue estimatio de λ. 2. Estimer la proportio de ces femmes ayat plus de trois efats. Solutio Si o admet que l'échatillo est représetatif de la populatio, o a P(X = 0) = e l 0,135. Doc λ l(0,135) λ P(X > 3) = 1 P(X 3) = 1 e λ λ 1+λ+ + 0, Parmi les femmes qui ot eu etre 50 et 52 as e l'a 2000, il y e a doc eviro 145 sur 1000 qui ot plus de trois efats Loi biomiale et loi de Poisso Soit (X ) ue suite de variables aléatoires suivat la loi B( ; p ) avec lim p + Alors (X ) coverge e loi vers ue variable de Poisso P(λ). E pratique : Soit X ue variable aléatoire biomiale de paramètres et p. Si 30, p 0,1 et p < 15 alors X suit approximativemet la loi de Poisso de paramètre p. = λ. 31/47

6 Exemple 1 Ue usie fabrique des CD ROM e quatité importate. Ue étude statistique a motré que 2 % de ces CD étaiet défectueux. Pour effectuer u cotrôle de fabricatio, o prélève au hasard 150 CD. O ote X le ombre de CD défectueux das cet échatillo. 1. Quelle est la loi de probabilité suivie par la variable aléatoire X? E préciser les paramètres. 2. Par quelle loi de probabilité peut-o approcher la loi de X? Calculer P(X > 3) Solutio 1. Soit N est le ombre total de CD produits. L étude statistique motre que 2% des CD sot défectueux. O prélève u échatillo de 150 CD. Le ombre de CD défectueux das l échatillo suit doc la loi Hypergéométrique H(N ; 150 ; 0,02). Mais d ue part N est grad et d autre part o peut cosidérer que 150 est petit par rapport à N (< 0,1 N). Das ces coditios o peut assimiler le prélèvemet des 150 CD à u prélèvemet u à u avec remise et doc cosidérer que les 150 CD sot prélevés idépedammet les u des autres. X suit doc, à peu de choses près, la loi biomiale de paramètre = 150 et p = 0, est grad ( 30), p est faible ( p 0,1) et p = 3 est iférieur à 15. O peut doc utiliser la loi de Poisso de paramètre 3 comme approximatio. P( X > 3) 1 P( X = 0) P( X = 1) P( X = 2) P( X = 3) e , Exemple 2 O suppose qu ue ure cotiet 1 boule blache et 99 boules oires. O effectue tirages successifs d ue boule avec remise. Détermier pour que la probabilité de tirer au mois ue fois la boule blache soit supérieure ou égale à 0,95. Solutio Soit X la v.a. égale au ombre de fois où o tire la boule blache au cours de tirages. X suit B( ; 0,01). P( X 1) = 1 P( X = 0) = 1 0,99 Si o veut que P(X 1) 0,95, il faut (0,99) 0,05, soit i.e. 298,1 et doc 299. l(0,05) l(0,99) Il faut doc effectuer 299 tirages au mois pour être sûr, à 95 %, d avoir au mois ue boule blache. Calcul approché est grad, p est faible. O essaye d approcher X par ue variable de Poisso de paramètre. P( X 1) = 1 P( X = 0) = 1 e Doc, pour avoir P(X 1) 0,95, il faut e 100 0,05, soit 100.l(0,05) Doc 299,6 et par suite /47

7 4.6. Processus de Poisso Soit T ue période de temps que l'o subdivise e itervalles d'égale amplitude t. O a doc T = t. Si, à l'itérieur de chacu de ces itervalles, la probabilité qu'u évéemet A se produise est costate et égale à p, Si, de plus, o admet que l'évéemet A e peut se produire qu'au plus ue fois à l'itérieur de chaque itervalle, o dit alors que la réalisatio de l'évéemet A est u processus de Poisso. Exercice U stadard téléphoique reçoit, e moyee, 2 appels par miute. Les appels sot répartis au hasard das le temps. 1. Expliquer pourquoi le fait de recevoir u appel téléphoique peut être cosidéré comme u processus de Poisso. Préciser le paramètre de cette loi. 2. Quelle est la loi de probabilité régissat le ombre d'appels reçus e 4 miutes? Calculer la probabilité pour que ce ombre d'appel dépasse 10. Solutio 1. O peut fractioer la miute T e itervalles d ue secode t. Alors = 60 et t = 1. O admet alors que, chaque secode, la probabilité de recevoir u appel est 2 1 costate : p = = O admet aussi que, chaque secode, il e peut se produire au plus qu u appel et que, d ue secode sur l autre, les appels sot idépedats. Le fait de recevoir u appel est alors u processus de Poisso. Si X désige le ombre d appels reçus e ue miute, o peut cosidérer qu à chaque secode : le stadard reçoit u appel avec la probabilité avec la probabilité 29 q = 30 1 p = et qu il e reçoit pas 30 1 X suit la loi biomiale B 60 ; d espérace mathématique 2. Cette loi 30 peut être approchée par ue loi de Poisso de paramètre Sur ue période de quatre miutes, le partage e 240 secodes coduit à la 1 loi biomiale B 240 ; d espérace mathématique 8, ce qui permet ecore 30 ue approximatio par la loi de Poisso de paramètre 8. Si Y est la variable aléatoire qui suit la loi de Poisso de paramètre 8, o lit das la table que : P(Y 10) = 1 P(Y 9 0, NB : Si o utilise directemet la loi biomiale B 240 ;, o obtiet 0, /47

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

TS Intervalle de fluctuation et estimation Cours

TS Intervalle de fluctuation et estimation Cours Aée 2013/2014 TS Itervalle de fluctuatio et estimatio Cours est u etier aturel o ul et p est u réel de l itervalle 0 ; 1. I Itervalle de fluctuatio Cotexte : Das ue populatio, la proportio d idividus présetat

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles

BTS Mécanique et Automatismes Industriels. Statistiques inférentielles BTS Mécaique et Automatismes Idustriels Statistiques iféretielles, Aée scolaire 2005 2006 Statistiques iféretielles 1. Itroductio vocabulaire Pour étudier ue populatio statistique, o a recours à deux méthodes

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités.

PROBABILITÉS. A cette expérience aléatoire, on associe l ensemble des résultats possibles appelé univers. Ses éléments sont appelés éventualités. PROBABILITÉS I. PROBABILITÉS ( RAPPELS) a. Expérieces aléatoires et modèles Le lacer d ue pièce de moaie, le lacer d u dé sot des expérieces aléatoires, car avat de les effectuer, o e peut pas prévoir

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse

Séquence 9. Sommaire. 1. Pré-requis 2. Intervalles de fluctuation 3. Estimation 4. Synthèse de la séquence 5. Exercices de synthèse Séquece 9 Itervalles de fluctuatio, estimatio Objectifs de la séquece Das le chapitre 2, o étudie des itervalles de fluctuatio des variables aléatoires X F =, fréqueces des variables aléatoires biomiales

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont :

Estimation. Exemple Les statistiques des notes obtenues en mathématiques au BTS OL en France pour l année 2014 sont : Estimatio Objectifs Estimer poctuellemet ue proportio, ue moyee ou u écart type d ue populatio à l aide de la calculatrice ou d u logiciel, à partir d u échatillo Détermier u itervalle de cofiace à u iveau

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION

PROBABILITES à la STATISTIQUE - APPLICATIONS - Jean-Marie MARION Des PROBABILITES à la STATISTIQUE - APPLICATIONS - Jea-Marie MARION 1 STATISTIQUE DESCRIPTIVE (décrire ue populatio à l aide de caractéristiques et graphiques) STATISTIQUE INFERENTIELLE (étedre des résultats

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Probabilités & Statistiques L1: Cours. December 20, 2008

Probabilités & Statistiques L1: Cours. December 20, 2008 Probabilités & Statistiques L1: Cours December 20, 2008 Chapter 1 Déombremets I 1.1 Pricipes gééraux Règle du produit O fait deux expérieces, successives ou simultaées. Si la première doe 1 résultats possibles

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Test de validité et d'hypothèse

Test de validité et d'hypothèse Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

FLUCTUATION ET ESTIMATION

FLUCTUATION ET ESTIMATION 1 FLUCTUATION ET ESTIMATION Le mathématicie d'origie russe Jerzy Neyma (1894 ; 1981), ci-cotre, pose les fodemets d'ue approche ouvelle des statistiques. Avec l'aglais Ego Pearso, il développe la théorie

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire

Séquence 9. Lois normales, intervalle de fluctuation, estimation. Sommaire Séquece 9 Lois ormales, itervalle de fluctuatio, estimatio Sommaire 1. Prérequis. Lois ormales 3. Itervalles de fluctuatio 4. Estimatio 5. Sythèse de la séquece Séquece 9 MA0 1 Ced - Académie e lige Das

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1

Lucyna FIRLEJ IUT Mesures Physiques Statistiques C1 1 Statistique iferetielle. Relatios Iteratioales Lucya Firlej Pl. E.Bataillo, Bat.11, cc.06 34095 Motpellier cedex 5 Frace lucya.firlej@umotpellier.fr S3. Statistics. 30 h d eseigemet: 10 cours, 10 TD,

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a.

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a. Échatilloage 9 Pour repredre cotact Les réposes exactes sot : Répose c. Répose a. Répose c. 3 Répose a. 4 Répose b. Répose c. Activité. La populatio étudiée est la productio d automobiles. Le caractère

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

Formulaire de statistiques

Formulaire de statistiques Formulaire de statistiques E. Depiereux G. Vicke B. De Hertogh Javier 009 Formulaire de statistiques I. Statistiques descriptives : Moyee arithmétique : (populatio: m x = µ) (échatillo = x = M x ) 1 i

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression

1 Introduction. 2 Probabilités : Variables Aléatoires Continues. 3 Estimation. 4 Tests. 5 Régression Pla du cours Méthodes de statistique iféretielle. A. Philippe Laboratoire de mathématiques Jea Leray Uiversité de Nates Ae.Philippe@uiv-ates.fr 1 Itroductio 2 Probabilités : Variables Aléatoires Cotiues

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA AUTOMNE 2003 Date : Samedi 1 er novembre 2003, de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA AUTOMNE 2003 Date : Samedi 1 er novembre 2003, de 14h00 à 17h00 Uiversité du Québec à Motréal Départemet de mathématiques Corrigé MAT 080 MÉTHODES STATISTIQUES EAMEN INTRA AUTOMNE 003 Date : Samedi 1 er ovembre 003, de 14h00 à 17h00 Nom : Préom : Code permaet : Groupe:

Plus en détail

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1

Chapitre 11 Loi binomiale. Table des matières. Chapitre 11 Loi binomiale TABLE DES MATIÈRES page -1 Chapitre Loi biomiale TABLE DES MATIÈRES page - Chapitre Loi biomiale Table des matières I Exercices I-................................................ I-................................................

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

1. Probabilités sur les ensembles finis

1. Probabilités sur les ensembles finis . Probabilités sur les esembles fiis.. RAPPELS ET COMPLEMENTS. VOCABULAIRE DES EVENEMENTS Das ue expériece aléatoire, l'uivers Ω est l'esemble des résultats possibles. U évéemet est ue partie de l'uivers.

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Probabilités. Table des matières. Université Paris XI PCS0 Probabilités 2011/2012

Probabilités. Table des matières. Université Paris XI PCS0 Probabilités 2011/2012 Uiversité Paris XI PCS0 Probabilités 2011/2012 Probabilités Table des matières 1 Combiatoire 2 1.1 Choix............................................ 2 1.2 Les foctios cruciales du déombremet........................

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Distributions d échantillonage

Distributions d échantillonage Chapitre 3 Distributios d échatilloage 3.1 Gééralités sur la otio d échatilloage 3.1.1 Populatio et échatillo O appelle populatio la totalité des uités de importe quel gere prises e cosidératio par le

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS INTRODUCTION De ombreuses situatios pratiques peuvet être modélisées à l aide de variables aléatoires qui sot régies par des lois spécifiques. Il importe doc d

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail