Informatique TP2 : Calcul numérique d une intégrale CPP 1A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Informatique TP2 : Calcul numérique d une intégrale CPP 1A"

Transcription

1 Iformatique TP : Calcul umérique d ue itégrale CPP 1A Romai Casati, Wafa Johal, Frederic Deveray, Matthieu Moy Avril - jui Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer le zéro d ue foctio f par dichotomie (f est défiie au début du code) : import math def f(x): retur math. si (x) def zero_ dichotomie ( a, b, epsilo ): while b - a > epsilo : pivot = (a + b) / value = f( pivot ) if value <= 0: a = pivot else : b = pivot retur a prit (" Solutio :", math.pi / 6) prit (" Approximatio à pres :", zero_dichotomie (-1, math.pi /, )) prit (" Erreur :", math.pi / 6 - zero_dichotomie (-1, math.pi /, )) Exercice 1 Vérifiez que l exemple foctioe bie. Est-ce que zero_dichotomie foctioe bie pour toute foctio f et pour tout itervalle de départ [a, b : Que se passe-t-il si f(a) et f(b) sot de même sige? Si la foctio a deux zéros ou plus etre a et b? Aucu zero (p.ex. f(x) = 1/x, a =, b = 1)? Si elle est pas décroissate? Proposez des modificatios permettat de corriger ces problèmes ou de déclecher ue erreur s il est impossible d arriver à u résultat (raise RutimeError("raiso de l erreur")). Pour compredre le comportemet de zero_dichotomie, o pourra utiliser le débogueur (cf. TP1) ou afficher les valeurs des variables à chaque itératio (ce qui est recommadé pedat l écriture d u programme, mais la versio fiale de la foctio doit seulemet retourer la valeur fiale et surtout e rie imprimer). Das le cas où f(a) > 0 et f(b) 0, ue astuce est d iverser les valeurs de a et b avat de démarrer le calcul. L algorithme de recherche par dichotomie marche si b < a à u détail 1

2 près : la coditio d arrêt de la boucle doit maiteat porter sur la valeur absolue de b a, et o sur b a (qui serait toujours égatif). E Pytho, la valeur absolue de x est obteue avec abs(x). Listes e pytho Ue liste e pytho est ue suite de valeurs. Les élémets de la liste peuvet être de types quelcoques (etiers, flottats, chaîes de caractères), et sot repérés par leur positio das la liste, aussi appelé idex. Le premier élémet d ue liste a a l idex 0, et sa valeur peut être obteue par l expressio a[0. Le ombre d élémets d ue liste s obtiet avec la foctio le(). Le derier élémet de la liste a a pour idex le(a)-1, et pour valeur a[le(a)-1, mais o peut y accéder égalemet e utilisat u idex égatif : a[-1 est le derier élémet, a[- l avat-derier, etc. Les élémets d ue liste peuvet être modifiés. O peut ajouter u élémet 13.5 à la fi d ue liste a avec a.apped(13.5). Exemple : = [ 1.5, 7., 10., 0.7 [1.5, 7., 10.0, 0.7 >>> le(a) 4 [ 10.0 [4 Traceback (most recet call last): File "<pyshell#7>", lie 1, i <module> a[4 IdexError: list idex out of rage [ [3 = 13.5 [1.5, 7., 10.0, 13.5.apped(7.8) [1.5, 7., 10.0, 13.5, 7.8 Affectatio et passage comme paramètre : Si a est ue liste, alors l istructio b=a e recopie pas la liste. a et b désiget alors la même liste (o parle d alias). Ue modificatio de la liste désigée par b modifie doc la liste désigée par a. Il e est de même lorsqu o passe ue liste comme paramètre d ue foctio, le paramètre effectif est u alias vers la liste défiie par l appelat de la foctio : si o modifie la liste à l itérieur de la foctio, alors la liste de l appelat est modifiée. = [0, 1,, 3 >>> b = a >>> b [0, 1,, 3 >>> b[ = 4

3 >>> b [0, 1, 4, 3 [0, 1, 4, 3 >>> def f(l): l[3 = 67 >>> f(a) [0, 1, 4, 67 Utilisatio avacée : (o écessaire pour le TP) Des élémets d ue même liste peuvet avoir des types différets. O peut utiliser ue liste pour doer l esemble des valeurs que doit predre la variable de boucle das ue boucle for : das la boucle for i i [1,3.14, abc :, il y aura 3 itératios, et la variable i predra successivemet les valeurs 1, 3.14, et abc. D autres foctioalités liées aux listes sot décrites das datastructures.html 3 Méthode des trapèzes Le calcul umérique d ue itégrale par la méthode des trapèzes cosiste à calculer ue valeur approchée de l itégrale b a f(x)dx e utilisat ue iterpolatio liéaire de f par itervalles. Sur u itervalle [a, b, la valeur de l itégrale peut être approchée par la surface du trapèze passat par les poits [a, 0, [a, f(a), [b, f(b), [b, 0 : [ b f(a) + f(b) f(x)dx (b a) a O motre que cette méthode est d ordre 1 (tout comme la méthode du poit milieu vue e cours), c est-à-dire qu elle doe u résultat exact si f est u polyôme de degré au plus 1 (la méthode de Simpso est d ordre 3). Pour calculer ue meilleur approximatio de cette itégrale, o découpe l itervalle [a, b e itervalles plus petits, de taille b a, et o calcule la somme des aires (sigées) des trapèzes : b a f(x)dx b a [ ( f a + (k 1) b a ) + f ( a + k b a Exercice Écrivez tous les termes de la somme ci-dessus pour = 3, et observez qu il est possible de faire le calcul avec exactemet + 1 = 4 appels à la foctio f. Écrire ue foctio pytho itegrale_trapezes(a, b, ) qui calcule l itégrale de la foctio f(x) de a à b avec itervalles, e faisat au plus + 1 appels à la foctio f. O souhaite maiteat calculer ue itégrale par la méthode des trapèzes à partir d ue liste de mesures physiques : o dispose d u appareil mesurat la vitesse d u mobile à des istats doés, et o souhaite calculer sa positio e itégrat la vitesse par la méthode des trapèzes. Les dates et les vitesses sot doées par les listes t et v. La première date est toujours 0 (t[0 == 0.), et les dates sot strictemet croissates. Les deux listes ot le même ombre d élémets : v[ est la vitesse à la date t[. O suppose que la positio du mobile à la date t = 0 est x = 0. 3 )

4 Exercice 3 Écrivez la foctio pytho positio_mobile_idex(dates, vitesses, idex) qui calcule la positio du mobile à la date dates[idex e itégrat la vitesse par la méthode des trapèzes (iutile d optimiser les accès à la liste vitesses comme à la questio précédete, l accès à u élémet d ue liste est mois coûteux que le calcul d ue foctio compliquée). Vérifiez que positio_mobile_idex(dates, vitesses, 0) vaut toujours 0. Exercice 4 Écrivez la foctio pytho idex_date(dates, t) qui revoie l idex i de la derière date telle que dates[i<=t. La foctio doit foctioer même si t > dates[-1 (la derière date). Exercice 5 Écrivez la foctio pytho positio_mobile_date(dates, vitesses, t) qui calcule la positio du mobile à la date t e itégrat la vitesse par la méthode des trapèzes. O suppose que 0 <= t < dates[-1 (la derière date). Remarquez qu o peut utiliser idex_date et positio_mobile_idex pour calculer presque toute l itégrale, et qu o doit seulemet traiter séparémet le cas du derier trapèze. Pour traiter le cas du derier trapèze, commecez par calculer la vitesse à la date t par iterpolatio liéaire. Doées de test : t = [0., 3., 3.5, 5., 10. v = [1., 0., 1.5,., 0. positio_mobile_idex (t, v, 0) = 0 positio_mobile_idex (t, v, 1) = 1.5 positio_mobile_idex (t, v, ) = idex_date (t, 0.) = 0 idex_date (t, 1.) = 0 idex_date (t, 3.) = 1 idex_date (t, 3.5) = idex_date (t, 5.) = 3 idex_date (t, 6.) = 3 positio_ mobile_ date ( t, v, 0.) = 0.0 positio_ mobile_ date ( t, v, 1.) = positio_ mobile_ date ( t, v, 3.) = 1.5 positio_mobile_date (t, v, 3.5) = positio_ mobile_ date ( t, v, 5.) = 4.5 positio_ mobile_ date ( t, v, 6.) = Solutio des exercices Exercice 1 : Ajouter au début de la foctio zero_dichotomie : fa = f(a) fb = f(b) if fa * fb > 0: # f(a) et f(b) de même sige raise RutimeError ("f(a) et f(b) sot de meme sige, impossible de trouver u zero") if fa > 0: # f decroissate : echage a et b c = b b = a a = c et remplacer la coditio du while par while abs ( b - a) > epsilo : 4

5 Exercice : E posat δ = b a, la formule peut se ré-écrire : b f(x)dx δ [ f (a + (k 1)δ) + f (a + kδ) a = δ [ 1 f (a + kδ) + f (a + kδ) k=0 [ = δ f(a) + [ f(a) = δ f (a + kδ) + 1 f (a + δ) + f(b) f (a + kδ) + f(b) Ituitivemet, das la somme, o fait apparaître successivemet le bord droit d u trapèze (divisé par deux) et le bord gauche du trapèze suivat (divisé par deux égalemet). E groupat ces termes, o obtiet u seul bord de trapèze, qui est plus divisé par deux. Le code Pytho correspodat est : def itegrale_trapezes (a, b, N): res = f(a) / delta = (b - a) / N for i i rage (1, N): res = res + f( a + i * delta ) res = res + f(b) / retur res * delta Note : comme pour zero_dichotomie, o la foctio itegrale_trapezes suppose qu o a défii ue foctio f. Pour exécuter la foctio itegrale_trapezes, il faudrait égalemet u programme pricipal qui appelle cette foctio, par exemple, prit(itegrale_trapezes(0, 3.5, 100)). Exercice 3 : def positio_mobile_idex ( dates, vitesses, idex ): res = 0 for i i rage ( idex ): res = res + ( dates [i+1 - dates [i) * ( vitesses [i+ vitesses [i +1) / retur res Exercice 4 : O doe ici la solutio avec ue recherche liéaire. Les dates état croissates, o pourrait aussi aller plus vite avec ue recherche par dichotomie. def idex_date ( dates, t): i = 0 l = le ( dates ) while i < l ad dates [ i <= t: i = i + 1 # ici, soit i == l, soit dates [ i > t retur i - 1 # o doit retourer l idex precedet, t. q. dates [ i <= t Exercice 5 : def positio_ mobile_ date ( dates, vitesses, t): # precoditio : t < dates [ -1 i = idex_date ( dates, t) res = positio_mobile_idex ( dates, vitesses, i) # ici, o a dates [i <= t < dates [i +1 # Derier trap è ze : x va de dates [ i à t, y va de vitesses [ i à lastv lastv = vitesses[i+(vitesses[i+1-vitesses[i)*(t-dates[i)/(dates[i+1-dates[i) retur res + (t- dates [i) * ( vitesses [i + lastv ) /. 5

Informatique TP3 : Calcul numérique d une intégrale CPP 1A

Informatique TP3 : Calcul numérique d une intégrale CPP 1A Iformatique TP3 : Calcul umérique d ue itégrale CPP 1A Djamel Aouae, Frédéric Deveray, Matthieu Moy mars 015 1 Zéro de foctio O doe le code suivat (vu e cours), qui permet de calculer le zéro d ue foctio

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

1 Programme de l agrégation interne

1 Programme de l agrégation interne Séries umériques Programme de l agrégatio itere Partie 0b : Séries de ombres réels ou complexes Séries à termes positifs La série coverge si et seulemet si la suite des sommes partielles est borée Étude

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Terminale S (2014-2015) Suites numériques

Terminale S (2014-2015) Suites numériques Termiale S (04-05) Suites umériques Raisoemet par récurrece. Itroductio E Mathématiques, u certai ombre de propriétés dépedet d u etier aturel. Par exemple, la ( + ) somme des etiers aturels de à est égale

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède).

f(t)dt = 0. On pose a = min f et b = max f. 0 1 + x 2 dx = 3 + 1 7 π. 2) En déduire un encadrement de π (meilleur que celui d'archimède). #4 Itégrale de Riema Khôlles - Classes prépa Thierry Sageaux, Lycée Gustave Eiel Exercice Soit f ue foctio cotiue sur [, ] telle que Motrer que f ab f(t)dt = O pose a = mi f et b = max f Exercice x ) Motrer

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations

Feuille 2 : dérivabilité, théorème de Rolle et des accroissements finis, étude des variations UPMC 1M001 Aalyse et algèbre pour les scieces 013-014 Feuille : dérivabilité, théorème de Rolle et des accroissemets fiis, étude des variatios Les eercices sas ( ) sot des applicatios directes du cours.

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

MA401 : Probabilités TD3

MA401 : Probabilités TD3 MA : Probabilités Exercice Ue compagie aériee étudie la réservatio sur l u de ses vols. Ue place doée est libre le jour d ouverture de la réservatio et so état évolue chaque jour jusqu à la fermeture de

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan.

Notations Soit I un intervalle de R. Soit f une fonction définie sur I, à valeurs dans R. Notons représentative de f dans un repère du plan. Foctio réciproque d'ue octio cotiue, d'ue octio dérivable FNCTIN RECIPRQUE D'UNE FNCTIN CNTINUE, D'UNE FNCTIN DERIVABLE EXEMPLES N SE LIMITERA AUX FNCTINS NUMERIQUES DEFINIES SUR UN INTERVALLE DE R Notatios

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE

DÉTERMINATION DE L INDICE DE RÉFRACTION D UN LIQUIDE TP O. Page /5 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET O. Ce documet compred : - ue fiche descriptive du sujet destiée à l examiateur : Page /5 - ue fiche descriptive

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a.

Échantillonnage. Pour reprendre contact Les réponses exactes sont : Activité 1. Activité 2. 1 Réponse c. 2 Réponse a. Réponse c. 3 Réponse a. Échatilloage 9 Pour repredre cotact Les réposes exactes sot : Répose c. Répose a. Répose c. 3 Répose a. 4 Répose b. Répose c. Activité. La populatio étudiée est la productio d automobiles. Le caractère

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Loi de Bernoulli et loi binomiale, cours, première S

Loi de Bernoulli et loi binomiale, cours, première S Loi de Beroulli et loi biomiale, cours, classe de première S Loi de Beroulli et loi biomiale, cours, première S 1 Loi de Beroulli Déitio : Soit p u ombre réel tel que p [0; 1]. Soit X ue variable aléatoire.

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Codes détecteurs et correcteurs d erreurs

Codes détecteurs et correcteurs d erreurs Codes détecteurs et correcteurs d erreurs Lorsque des doées umériques sot stockées ou trasmises, des perturbatios (par exemple électromagétiques) peuvet les edommager. Les codes détecteurs et correcteurs

Plus en détail

Décomposition d'un nombre en fractions égyptiennes, conjecture de Sierspinski

Décomposition d'un nombre en fractions égyptiennes, conjecture de Sierspinski Décompositio d'u ombre e fractios égyptiees, cojecture de Sierspiski Stage "Mathématiques et iformatique" - Ouagadougou février 999 Sommaire. Historique : l œil oudjat. Décompositio d u ombre e fractios

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n.

DROITES, TABLEAUX, FORMULES. Location de voitures. - Pour chaque société déterminer k et f et exprimer P en fonction de n. 1/8 Situatios Des essais de locatio de voitures ot été effectués das trois sociétés de locatio différetes. our chaque essai, la voiture 'a été louée qu'ue jourée. Société Aimatour J'ai payé u jour 34 pour

Plus en détail

Examen Programmation ENSAE première année 2008 (rattrapage) Examen écrit (1 heure) Tous documents autorisés.

Examen Programmation ENSAE première année 2008 (rattrapage) Examen écrit (1 heure) Tous documents autorisés. Examen Programmation ENSAE première année 2008 (rattrapage) Examen écrit (1 heure) Tous documents autorisés. 1 0.0.1 Suite récurrente (Fibonacci) * Réécrire la fonction u de façon à ce qu elle ne soit

Plus en détail

Application du logiciel Excel

Application du logiciel Excel Applicatio du logiciel Ecel Utilisatio du Solver du logiciel Ecel Table de matiers Lacemet du logiciel... Optimisatios... Programmatio liéaire... Problème du trasport... 8 Problème de programmatio quadratique...

Plus en détail

Automates 1 Présentation

Automates 1 Présentation Automates Présetatio Présetatio d u automate 2 Ue maière de désiger l automate de l exemple 3 Défiitio géérale 4 U exemple d automate 5 Mot costruit sur l alphabet C 6 L esemble de tous les mots das u

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

PC* Structure de pile

PC* Structure de pile Structure de pile I. Définition........................................... 2 I.1 Introduction..................................... 2 I.2 Opérations caractérisant une structure de pile...................

Plus en détail

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique

Université de Picardie Jules Verne 2006-2007 Faculté de Mathématiques et d Informatique Uiversité de Picardie Jules Vere 006-007 Faculté de Mathématiques et d Iformatique Licece metio Mathématiques - Deuxième aée - Semestre 4 Probabilités Elémetaires Exame du ludi 4 jui 007 Durée h00 Documet

Plus en détail

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) :

Dénombrement. Le nombre de p-listes d éléments distincts d un ensemble à n éléments est Le nombre d injections de E p dans F n : (n p) : Filière E Deis Pasquigo Résumé du cours : 1. Esembles fiis Déombremet Défiitios E et F sot équiotets si il existe ue bijectio de E sur F. E est déombrable si E est équiotet à N. E est u esemble fii si

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Intervalles de fluctuation et de confiance

Intervalles de fluctuation et de confiance Chapitre 9 Itervalles de fluctuatio et de cofiace Sommaire 9.1 Itervalle de fluctuatio................................... 157 9.1.1 Quelques rappels..................................... 157 9.1.2 Itervalle

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE

Thème : PHENOMENES VIBRATOIRES. Chap 2 : REFLEXION ET REFRACTION DE LA LUMIERE Thème : PHENOMENES VIBRATOIRES hap : REFLEXION ET REFRATION DE LA LUMIERE 1) Itroductio : La lumière est de l éergie qui se propage sous forme de rayoemet. Das u milieu homogèe, liéaire, isotrope (mêmes

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

LSM 3.053 Informatique - Statistique : TP n 1 et 2

LSM 3.053 Informatique - Statistique : TP n 1 et 2 LSM.05 Iformatique - Statistique : TP et Ce TP couple les otios de statistiques descriptives abordées e cours avec l'utilisatio avatageuse du tableur Excel. Le tableur est utilisé pour effectué les calculs

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson.

Travaux dirigés G33 Dimensionnement 2 séances Enseignant : Anthony Busson. Travaux dirigés G33 Dimesioemet 2 séaces Eseigat : Athoy Busso. Exercice 1 : O cosidère u web switch et 3 serveurs web. Le web switch reçoit les requêtes http proveat des cliets et les répartit de maière

Plus en détail

2 Exercice 15 : les intégrales de Wallis

2 Exercice 15 : les intégrales de Wallis Exercice sur les itégrles Exercice 5 : les itégrles de Wllis O pose si xdx ) Clculer I et I ) Motrer que l suite ( ) coverge 3) Etblir ue formule de récurrece etre et 4) Motrer que le produit ( + ) + est

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail