I ECRITURE FRACTIONNAIRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I ECRITURE FRACTIONNAIRE"

Transcription

1 LES FRACTIONS OBJECTIFS : Compredre l écriture fractioaire Simplifier les fractios Additioer des fractios Soustraire des fractios 5 Multiplier des fractios 6Diviser des fractios I ECRITURE FRACTIONNAIRE ) Défiitio : Ue fractio est composée d u umérateur «a» et d u déomiateur o ul «b». La fractio est le quotiet du umérateur «a» par le déomiateur «b». O la ote : a b ) Lecture des fractios : : : : 5 : 5 : ) Ecriture des fractios : ciq quarts : huit euvième : cet vigt-et-u dixième : dix euf vigtième : ) Ue représetatio graphique des foctios : O peut représeter ue fractio e hachurat ou e coloriat les secteurs agulaires d u disque.

2 5 7 6 O a répodu à l objectif. II SIMPLIFICATION DES FRACTIONS ) Nombres premiers : U ombre premier est u ombre etier positif qui est divisible que par et par luimême. Exemples :,,, 5, 7,,, 7,, 9,, 7,,, 7, 5, 59, 6 Remarque : est pas u ombre premier car : = x x 7 ) Multiples : U multiple de est u ombre qui se termie par 0,,, 6, U multiple de est u ombre dot la somme des chiffres qui le compose est divisible par. 59 est u multiple de car 5++9+=, est divisible par U multiple de 5 est u ombre qui se termie par 0 ou 5 ) Décompositio de ombres e ombres premiers : Tout ombre qui est pas premier peut se décomposer e u produit de ombres premiers ) Fractios équivaletes : Si o multiplie le umérateur d ue fractio par u ombre o ul «c» et si o multiplie aussi le déomiateur par le même ombre «c», alors o obtiet deux fractios équivaletes : a b = a b x c c = a xc b xc

3 Exemple : = x = 6 soit = 6 Si o divise le umérateur d ue fractio par u ombre o ul «d» et si o divise aussi le déomiateur par le même ombre «c», alors o obtiet aussi deux fractios équivaletes : Exemple : 5) Simplificatio : a a c a : c b = b : c = b: c : = : = : = soit = Simplifier ue fractio reviet à diviser so umérateur et so déomiateur par u même ombre o ul. Exemple : 6 = O a répodu à l objectif 6) Exercice d applicatio : Simplifier : =... ( ) 6 0 =... ( 5 ) =... 5 ( 7 ) =... ( ) =... 7 ( ) III ADDITION DE FRACTIONS ) Approche : résistors brachés e parallèle O cosidère u circuit électrique composé de résistors brachés e parallèle. 5Ω A..B O peut remplacer les trois résistors par u seul résistor de résistace R, tel que :

4 R = Résoudre ce problème reviet à effectuer ue additio de fractios. ) Méthode calculatoire : o réduit chaque fractio au même déomiateur commu. Le déomiateur commu est = 6 0 ; = 6 0 ; 0 = 6 0 o additioe les umérateurs des fractios qui ot le même déomiateur. a b c a + b + c d + d + d = d = = o simplifie évetuellemet le résultat = O a doc R =, soit R = W ( résultat cherché à l approche ) O a répodu à l objectif ) Exercice d applicatio : Calculer : IV SOUSTRACTION DE FRACTIONS 0-5 ) Méthode calculatoire : o réduit chaque fractio au même déomiateur commu = 0 o chage le sige - devat la fractio e sige + et o chage le sige de chaque terme du umérateur = O obtiet alors ue additio de deux fractios que l o sait résoudre = 0 O a répodu à l objectif ) Exercice d applicatio : 5-7 ; ; ; - 0-5

5 V MULTIPLICATION DE FRACTIONS ) Approche : boîte à vitesses d ue Reault Clio E ère, le rapport de boîte de la Reault Clio est R = / et R = 6/57. La démultiplicatio totale D est doé par : D = R x R, soit : 6 D = x 5 7 Résoudre ce problème reviet à effectuer ue multiplicatio de fractios. ) Méthode calculatoire : O multiplie les umérateurs etre eux et les déomiateurs etre eux. a c a c b x d = b d x 5 7 = 7 o simplifie évetuellemet le résultat 7 6 e se simplifie pas. 7 O a répodu à l objectif 5 ) Exercice d applicatio : VOIR EXERCICE SUR LA BOITE A VITESSE DE LA VOITURE VI DIVISION DE FRACTIONS 9 : 5 ) Méthode calculatoire : O se ramèe à ue multiplicatio de fractios que l o sait calculer e appliquat la formule suivate : a c a d b : d = b x c 9 5 : 5 = x Remarque : 9 est la fractio iverse de 5. ) Exercice d applicatio : : 5 = 7 9 : 6 = 5 5 : 6 0 = 7 5 : 0 = 5 6 : 9 = O a répodu à l objectif 6 5

6 BOITE DE VITESSES D UNE VOITURE La documetatio relative à la boîte à vitesse d ue voiture doe les idicatios suivates : Combiaiso des vitesses Rappor t de boîte R première secode troisième 7 quatrième 0 9 ciquième 9 Réducteur R Démultiplicatio totale D = R xr 5 Démultiplicatio totale D e décimal 6 Tours effectués par la roue e ue miute si le moteur a u régime de 000 tr/mi T 7 Vitesse du véhicule e km/h V Vitess e du véhicu le e m/s V ) La démultiplicatio totale D s obtiet e faisat le produit de fractios : D = R x R Calculer D pour chaque combiaiso de vitesse et exprimer le résultat e écriture fractioaire. Compléter aisi la coloe. ) Exprimer D sous forme d u ombre décimal arrodi à 0,00 et compléter la coloe 5. ) Pour la première vitesse, o trouve D 0,075. Cela sigifie que lorsque le moteur a effectué 000 tours, la roue e a effectué 000 x 0,075 = 75 tours. Compléter la coloe 6 e idiquat le ombre de tours par miute T effectué par la roue sachat que le moteur a u régime de 000 tours par miutes. Arrodir à l uité. ) Le diamètre des peus est de 0,5 mètre. Calculer la distace L parcourue par tour. Calculer alors la vitesse V e kilomètres par heure ( arrodi à l uité ) pour chaque combiaiso de vitesses et compléter la coloe 7. 5) Calculer la vitesse V e mètres par secode ( arrodi à 0, ) pour chaque combiaiso de vitesses et compléter la coloe. 6

7 II - Puissace Racie carrée Objectifs : - savoir calculer la puissace d u ombre - savoir calculer la racie carrée d u ombre positif - coaître l écriture scietifique : Puissace d u ombre.: Activité Calculer l aire du carré. 5 cm. : Reteos O appelle puissace ième du décimal positif a le produit de facteurs égaux à a. a = a a a... a facteurs O utilise la touche x² pour calculer le carré d u ombre, et la touche ^ ( ou y x ou ) pour calculer ue puissace quelcoque. Remarque : a = a a 0 =. : Applicatio Calculer : (,5) 9, 7, : Les puissaces de 0. : Activité Calculer : 0² ² Quel rapport existe-til etre le ombre de zéros et la puissace?. : Reteos O ote = 0 ou = 0 = zéros zéros 0. : Applicatio Simplifier , , , ,0 : L écriture scietifique. : Activité 7

8 O peut remarquer que l o peut utiliser les puissaces de 0 pour écrire u ombre = 5. = =,6.. =,6 0 0,007 = 7 = 7 0 0,000 5 = 5, = 5, 0. : Reteos L écriture scietifique d u ombre est l écriture de ce ombre sous la forme a 0 où a est u chiffre uique o ul avat la virgule. Sur la calculatrice est iscrit : Il faut lire :,5 0.5 Iversemet, pour écrire sur la calculatrice,5 0 o doit taper :.5 EXP. : Applicatio a) E utilisat l écriture scietifique, exprimer les ombres suivats : ,005 0, 5, 0,000 5 b) Ecrire les ombres suivats : 5 0, 0 7, ,5 0-,5 0 : Racie carrée. : Activité Vous voulez disposer votre chambre comme l'idique le dessi ci-dessous. 0 Lit Bureau La chambre est carrée. Sa surface est de : 9 m Le lit mesure : m le bureau mesure :,5 m Commet motrer si ue telle dispositio peut être réalisée? Répose : = 9 La chambre fait m de coté. +,5 =,5 La chambre est trop petite pour que l'o effectue u telle dispositio.. : Reteos La racie carrée d u ombre a est le ombre qui, élevé au carré, doe a. Le symbole. : Applicatio ( a) = a s' appelle le radical. A l'aide de la calculatrice, compléter le tableau suivat : x Vx

9 III - ENCADREMENT ET APPROXIMATION. Iégalités Soiet a,b,c et d quatre ombres réels. a < b équivaut à. a < b et c < d équivaut à. a b et. équivaut à. a b et. équivaut à.. Ecadremets et itervalles Activité : Sur l axe xx, placer les poits M et N d abscisses respectives 5 6 et 5. x' x a_ Idiquer e vert la partie de l axe qui correspod aux ombres x tels que 5 6 < x < 5. Les ombres réels x tels que 5 6 < x < 5 formet l I, oté I=] 5 6 ; 5 [. Les ombres réels x tels que 5 6 x 5 formet l.. J, oté J=[ 5 6 ; 5 ]. b_ Quels ombres fot partie de J et pas de I?.. Coclusio : L itervalle Est l esemble des réels x tels que : Ouvert ] a ; b [ a < x < b Fermé [a ; b] a x b [ b ; + [ x b ] - ; a [ x < a Exercice: Ecrivez sous forme d itervalle 0 < x 5 ; - < x < 0 ; x ; x > -.. Valeur absolue, distace Activité : U étudiat doit se déplacer vers différets lieux : Logemet (L) L uiversité (U) à km de so logemet La piscie (P) à km de so logemet Le stade (S) à km de so logemet Le pla de la ville est le suivat : Logemet Stade Piscie Cetre culturel Uiversité Le logemet est pris comme poit de départ. a_ Placer sur u axe les poits L, U, P, C, S correspodats aux différets lieux. b_ P a pour -. C a pour abscisse c_ Calculer la distace etre l uiversité et la piscie : Calculer la distace etre le cetre culturel et l uiversité : Défiitios : Pour tout ombre réel x, o appelle. de x le ombre réel oté x tel que : si x 0 alors x = x si x 0 alors x = -x La distace etre deux réels a et b est : a b ; o dit. Exercice : Calculer la distace etre et ; etre et 7.. Valeur approchée 9

10 Activité : Affichage de π à la calculatrice : Doer u ecadremet au cetième de π... O a effectué u. de π d amplitude 0,0., est ue de π.à 0.,5 est ue de π.à 0. Défiitio : Pour détermier la. d'u ombre, il faut utiliser le chiffre qui suit : - si celui-ci est. - si celui-ci est. Exercice : Doez u ecadremet, puis la valeur arrodie, de à 0 près. 0

11

12 CONTROLE a Exercice : 5 Sachat que : a =, b = et c = ; calculer : a b, a c, b+c et a(b+c). 6 Commet cotrôler le derier résultat. Exercice : Complétez le tableau suivat : a a - Exercice : Doez l écriture scietifique des ombres décimaux suivats : ; 7,5 ; 0,00075 Doez l écriture décimale des ombres suivats : 7, 0 ; 0,5 0 ; 0 0 Complétez avec des puissaces de 0 : 0,0.= 00 ;...= Complétez : m² = cm² ; m =.cm ; L = dm Exercice : La masse d u électro est égale à 9, 0 kg, la masse du proto est celle du eutro égale à, kg. Le uméro atomique du sodium est, le ombre de masses est égale à, calculer : a- la masse du oyau de l atome de sodium ; b- la masse de l atome de sodium. Que peut-o e coclure? Exercice 5 : Soit u carré d aire 75 cm². a) Calculez la logueur du côté de ce carré. Doez le résultat à 0, cm près. b) Exprimez l aire de ce carré e m². c) Détermiez le rayo d u disque dot l aire est 5,6 cm²? Idicatios : π =, et A = π R². Exercice 6 : Relier les iégalités suivates, puis doez leur représetatio graphique. x < 6 x > - x < x < 6 - x < 9 x < Exercice 7 : Soit A = (x + )² - (x + )(6x 5) a) Développez, réduire et ordoer A suivat les puissaces croissates de x. b) Factorisez C. Exercice : Résolvez les équatios suivates : x + 9 = 0 x = x = x 5 5 x = 5x + (x ) = 5( + x) Exercice 9 : Soit u jardi rectagulaire dot la logueur est le triple de la largeur a ue aire de 96 m². Quelles sot les dimesios de ce jardi?

13 CONTROLE b Exercice : 5 Sachat que : a =, b =, et c = ; calculer : a b, a c, b+c et a(b+c). 6 Commet cotrôler le derier résultat. Exercice : Complétez le tableau suivat : a a -7 Exercice : Doez l écriture scietifique des ombres décimaux suivats : 000 ; 99,5 ; 0,0679 Doez l écriture décimale des ombres suivats : 5,0 0 ; 0,75 0 ; 0 0 Complétez avec des puissaces de 0 : 0,00.= 00 ;...= Complétez : m² = cm² ; L = dm ; m =.cm Exercice : La masse d u électro est égale à 9, 0 kg, la masse du proto est celle du eutro égale à, kg. Le uméro atomique du sodium est, le ombre de masses est égale à, calculer : a- la masse du oyau de l atome de sodium ; b- la masse de l atome de sodium. Que peut-o e coclure? Exercice 5 : Soit u carré d aire 65 cm². a) Calculez la logueur du côté de ce carré. Doez le résultat à 0, cm près. b) Exprimez l aire de ce carré e m². Détermiez le rayo d u disque dot l aire est 79,9 cm²? Idicatios : π =, et A = π R². Exercice 6 : Relier les iégalités suivates, puis doez leur représetatio graphique. -x < -6 x < x + < - x < -6 x < 9 x > Exercice 7 : Soit A = (x + )² - (x + )(6x 5) b) Développez, réduire et ordoer A suivat les puissaces croissates de x. c) Factorisez C. Exercice : Résolvez les équatios suivates : x + = 0 x = - x = x 5 5 x = 0x - 5 (x + ) = 7( - x) Exercice 9 : Soit u jardi rectagulaire dot la logueur est le triple de la largeur a ue aire de 96 dm². Quelles sot les dimesios de ce jardi?

2 Nombre et calcul. = a ; m n m. ( ) = où m et n sont des entiers relatifs où a et b sont des nombres non nuls b et m et n des entiers relatifs.

2 Nombre et calcul. = a ; m n m. ( ) = où m et n sont des entiers relatifs où a et b sont des nombres non nuls b et m et n des entiers relatifs. Nombre et calcul 1. Coaître et utiliser la valeur des chiffres e foctio de leur rag das l'écriture etier ou décimal.. Associer diverses désigatios d u ombre décimal : écriture à virgule, fractios décimales..

Plus en détail

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE

ENSEMBLE DE NOMBRES TD N 1 - CORRIGE ENSEMBLE DE NOMBRES TD N - CORRIGE Exercice A 8 7 B 7 7 - C 0 7 0 0 0 - Exercice ) ³ 8 ) 7 0 88 7 0 ) ) 00 00 0 7 77 7 x Exercice Le déomiateur commu est x 7 x 9 8 8 7 98 ; ; ; ; 7 9 9 L ordre croissat

Plus en détail

OMB-MAXI-Demi-finale-2010

OMB-MAXI-Demi-finale-2010 OM-MXI-Demi-fiale-00 ) Sas répose préformulée U carré a u périmètre de 0 cm ; quelle est so aire e cm? p= 4c 0 = 4c c= 0 cm ; = c = 0 = 900 cm ) Sas répose préformulée Quad o ajoute 7 au aturel o ul, o

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Eercices Page sur 6 RAN Calcul et raisoemet E - Rev 07 Calcul umérique. Défiitios de base Mathématiques

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1.

Définition un nombre complexe est un nombre de la forme x + i y, où x et y sont deux nombres réels et i est un nombre imaginaire vérifiant i 2 = 1. Nombres complexes TS 1. Nombre complexe Représetatio Défiitio u ombre complexe est u ombre de la forme x + i y, où x et y sot deux ombres réels et i est u ombre imagiaire vérifiat i = 1. L esemble des

Plus en détail

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 01 : EXERCICES D ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Techique Bamako 1) Démotrer par récurrece que : a) ε N*: 1+ + 3+ + = ( + 1) b) ε N*: 1+ 3+ 5+ + ( 1) = c) ε N*: 1 + 3+ 5 + +

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

Fiche 6 : Nombres complexes

Fiche 6 : Nombres complexes Nº : 3006 Fiche 6 : Nombres complexes Pla de la fiche I - Esemble des ombres complexes II - Nombre complexe cojugué III - Module et argumet IV - Les différetes écritures d u ombre complexe o ul V - Equatio

Plus en détail

Suites. Suites arithmétiques. Suites géométriques

Suites. Suites arithmétiques. Suites géométriques CHAPITRE Suites Suites arithmétiques Suites géométriques ACTIVITÉS Activité a) 8 + 7 coureurs b) x 9 + 0 d où x 78 L équipe a reçu les dossards umérotés de 9 à 78 x + d où x 6 0 0 + aées (page 8) a) itervalles,

Plus en détail

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS TD N 3 - CORRIGE

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS TD N 3 - CORRIGE ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS TD N - CORRIGE Exercice Les ombres divisibles par sot : ; 4 ; ; 4 9 ; 9 ; 4 ; 9 64. Exercice Les ombres divisibles par sot : ; 6 ; ; 4 ; 4 ;

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé

Bac blanc TS Non spécialité maths L usage de la calculatrice est autorisé Bac blac TS No spécialité maths L usage de la calculatrice est autorisé EXERCICE : (5 poits) Le pla complee est rapporté au repère orthoormal direct (O ; u, v ) O cosidère le poit I d affie i et le poit

Plus en détail

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c.

7. Soient A et B les points d affixes respectives 4 et 3 i. L affixe du point C tel que le triangle ABC soit isocèle avec. a. 1 4 i b. 3 i c. NOUVELLE CALEDONIE NOVEMBRE 2007 Exercice 4 poits Commu à tous les cadidats Pour chaque questio, ue seule des trois propositios est exacte. Le cadidat idiquera sur la copie le uméro de la questio et la

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Puissance d exposant entier relatif

Puissance d exposant entier relatif Activité (cahier d exercices) U laboratoire fait des recherches sur le développemet d ue populatio de bactéries. O a observé que le ombre N de bactéries a été multiplié par toutes les heures à partir du

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Bilan 16 : Systèmes de 2 équations à 2 inconnues

Bilan 16 : Systèmes de 2 équations à 2 inconnues Bila : Systèmes de équatios à icoues Résolutio par la méthode de substitutio La méthode par substitutio est utilisée quad ue des deux équatios permet facilemet d exprimer ue icoue e foctio de l autre.

Plus en détail

A) Forme algèbrique d un nombre complexe.

A) Forme algèbrique d un nombre complexe. A) Forme algèbrique d u ombre complexe. Théorème Il existe u esemble, oté,de ombres appelés ombres complexes, tel que : cotiet ; est mui d ue additio et d ue multiplicatio pour lesquelles les règles de

Plus en détail

Devoir de synthèse n 2

Devoir de synthèse n 2 Lycée IBN RACHIK RADES Mr ABIDI Farid Exercice 1: (6 poits) Devoir de sythèse 2 MATHEMATIQUES Classe : 3 SE 1 Durée : 3H Mai 2017 O cosidère la foctio f défiie sur 3, par fx 2x 2 x 3 u Soit la suite défiie

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes TS Eercices sur les octios puissaces et racies -ièmes Calculer sas utiliser la calculatrice e détaillat les étapes de calcul 4 4 A ; B 6 ; C 8 ) Développer et ) E déduire la valeur eacte de A 0 4 0 4 4

Plus en détail

STAGE DE MISE A NIVEAU EN MATHEMATIQUES

STAGE DE MISE A NIVEAU EN MATHEMATIQUES STAGE DE MISE A NIVEAU EN MATHEMATIQUES Les foctios racie carrée, valeur absolue ou partie etière Eercice Détermier la limite de + + quad ted vers Eercice Vérifier que ( 5) = 6 5 A-t-o l'égalité 6 5 =

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux.

Contrôle du mercredi 20 janvier 2016 (50 minutes) TS2 spécialité. II. (4 points) n n sont premiers entre eux. TS spécialité Cotrôle du mercredi 0 javier 016 (50 miutes) II. (4 poits) Démotrer que pour tout etier relatif, 1 et 1 sot premiers etre eux. Préom : Nom : Note :. / 0 Écrire très lisiblemet, sas rature

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Multiples et diviseurs Puissances

Multiples et diviseurs Puissances Multiples et diviseurs Puissaces Mise e pratique des touches :d,d,^,aet# et du mode 1 : Comp Défiitio : a et b désiget deux ombres etiers positifs avec b 0. Effectuer la divisio euclidiee de a par b sigifie

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

2. Correction : Limites, continuité, dérivabilité

2. Correction : Limites, continuité, dérivabilité Correctio : Limites, cotiuité, dérivabilité Exercices de base U algorithme a est la valeur de la variable x pour laquelle o cherche ( x ), p est la précisio utilisée das le calcul : plus o avace das la

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi.

Exo7. Fractions rationnelles. 1 Fractions rationnelles. 2 Décompositions en éléments simples. Corrections de Léa Blanc-Centi. Exo7 Fractios ratioelles Correctios de Léa Blac-Ceti. Fractios ratioelles Exercice Existe-t-il ue fractio ratioelle F telle que ( F() ) = ( + ) 3? Idicatio Correctio Vidéo [006964] Exercice Soit F = P

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Contrôle du mardi 5 avril 2016 (50 minutes) 1 ère S1. II. (4 points)

Contrôle du mardi 5 avril 2016 (50 minutes) 1 ère S1. II. (4 points) ère S Cotrôle du mardi 5 avril 06 (50 miutes) Préom : Nom : Note : / 0 II (4 poits) Pour retrer au port e A, u bateau doit passer par C car la profodeur est isuffisate etre B et A Il avace à la vitesse

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Séries d exercices Aritmetiques

Séries d exercices Aritmetiques Séries d exercices Aritmetiques ème Maths Maths au lycee Ali AKIR Site Web : http://maths-akirmidiblogscom/ EXERCICE N )Quel est le reste de la divisio par 7 du ombre ) Quel est le reste de la divisio

Plus en détail

Synthèse de cours PanaMaths Introduction au calcul matriciel

Synthèse de cours PanaMaths Introduction au calcul matriciel Sythèse de cours PaaMaths Itroductio au calcul matriciel Défiitios Notio de matrice O appelle «matrice de dimesio p» ou «de type (, p )» u tableau de ombres réels comportat liges et p coloes ( et p sot

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

b-on a: Or le pgcd(n+1,3)=1 ou pgcd(n+1,3)=3 Donc d=n+1 ou d=3(n+1)

b-on a: Or le pgcd(n+1,3)=1 ou pgcd(n+1,3)=3 Donc d=n+1 ou d=3(n+1) Exercices d arithmétiques corrigés Exercice N 1 : 1-Etablir que pour tout (a,b,q) 3,pgcd(a,b) = pgcd(b,a-bq) 2-Motrer que pour tout, pgcd(5 3 -,+2) = pgcd(+2,38) 3-Détermier l esemble des etiers relatifs

Plus en détail

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014 UNIVERSITE D ANGERS Mathematiques L. Devoir. Corrigé sur le web le 1/10/014 O traitera au choix l u des deux exercices ou. Exercice 1 : ci-dessous : Détermier la ature de chacue des 6 séries dot le terme

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Document n 1. Pourquoi les incertitudes? erreur absolue de lecture Document n 2. Incertitude absolue ou relative.

Document n 1. Pourquoi les incertitudes? erreur absolue de lecture Document n 2. Incertitude absolue ou relative. LES INCERTITUDES Documet 1. Pourquoi les icertitudes? U résultat issu d ue mesure e peut pas avoir ue précisio absolue. Il y a plusieurs types d erreurs possibles commises par les istrumets ou les expérimetateurs

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications.

Racines n-ièmes d un nombre complexe. Racines de l unité. Applications. DOCUMENT 14 Racies -ièmes d u ombre complexe. Racies de l uité. Applicatios. Das u documet précédet, o a itroduit le corps des ombres complexes afi que tout ombre réel ait ue racie carrée. O va voir ici

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

Second degré Équations et inéquations

Second degré Équations et inéquations Secod degré Équatios et iéquatios I - Triôme ère leço Triôme et sige du triôme Propriété Soit P() = a² + b + c, u triôme du secod degré, où a, b, c sot des ombres réels avec a 0. Le discrimiat de ce triôme

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

Feuille d exercices: Calcul matriciel.

Feuille d exercices: Calcul matriciel. Feuille d exercices : Calcul matriciel : Exercice 2 3 ) Soit A = 0 0, motrer que A est la matrice das la 2 6 base caoique de R 3 d ue projectio dot o precisera le oyau et l image 2) Doer la matrice das

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

C.B. Analyse : solutions

C.B. Analyse : solutions l( ) ) La foctio f C.B. Aalyse : solutios Partie I : Etude de la foctio L a) Par théorème géérau, f est de classe C sur ], [ {}. E, o motre simultaémet les deu propriétés e obteat u D.L. de f e. O sait

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Module et argument. [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

Module et argument. [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 10 juillet 014 Eocés 1 Module et argumet Exercice 1 [ 0030 ] [correctio] Détermier module et argumet de z = + + i Exercice 8 [ 0646 ] [correctio] Si x, y, z) R 3

Plus en détail

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2.

BAC BLANC DE MATHEMATIQUES EN TM1 et TM2. BAC BLANC DE MATHEMATIQUES EN TM et TM2. L ordre des exercices a pas d importace. La clarté de la rédactio et des raisoemets iterviedrot pour ue part importate das l appréciatio des copies. La calculatrice

Plus en détail

Chapitre 1. Arithmétique. Partie 5 : PGCD

Chapitre 1. Arithmétique. Partie 5 : PGCD Chapitre 1 Arithmétique Partie 5 : PGCD Propriété/Défiitio : (PGCD) O se doe deux etiers relatifs a et b o uls. L esemble des diviseurs positifs commus à a et b admet u plus grad élémet que l o PGCD a

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

1. Activité. La légende du jeu d échec

1. Activité. La légende du jeu d échec . Activité La légede du jeu d échec O place sur la première case d u échiquier u grai de riz, sur la e case, deux grais de riz, sur la troisième, quatre grais de riz, et aisi de suite e doublat à chaque

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Fiche sur suites et calculatrices pour les calculatrices TI

Fiche sur suites et calculatrices pour les calculatrices TI Fiche sur suites et calculatrices pour les calculatrices TI Objectifs : O doe ue suite. O veut obteir : - u tableau de valeurs des termes de la suite ; - ue représetatio graphique des termes de la suite.

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007

Correction du baccalauréat S Nouvelle-Calédonie novembre 2007 Durée : 4 heures Correctio du baccalauréat S Nouvelle-Calédoie ovembre 007 EXERCICE 1 Commu à tous les cadidats 4 poits 1 Avec z = x+ iy, z+ z = 9+i x+ iy+ x iy = 9+i x+ iy = 9+i et par ideticatio x =,

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Comportement asymptotique

Comportement asymptotique Comportemet asymptotique NB: Les phrases écrites etre guillemets e italique sot écessaires à la compréhesio de la otio de ite, mais sot peu utilisées das la pratique où l o fait plutôt appel au propriétés

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2009

Correction du baccalauréat S Pondichéry 16 avril 2009 Correctio du baccalauréat S Podichéry 6 avril 009 EXERCICE 7 poits La foctio f est défiie sur l itervalle [0 ; + [ par : f (x)=xe x. Partie. a. O remarque que, pour tout x> 0, f (x)= x x e. x lim x + x

Plus en détail

1 ) si la suite (u n ) diverge, alors la suite ((u n) )... n... n+2

1 ) si la suite (u n ) diverge, alors la suite ((u n) )... n... n+2 Javier 06 ( heures et 30 miutes). a) Défiir: - sous-esemble fermé de IR et sous-esemble ouvert de IR - poit itérieur de A, sous-esemble o vide de IR ( pt.) b) Démotrer que si A est u esemble ouvert, alors

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

TD : Suites récurrentes et complexité

TD : Suites récurrentes et complexité Licece Iformatique L3 aée 008-009 Parcours : Iformatique fodametale TD -- : Suites récurretes et compleité 3 types d eercice : les eercices * sot absolumet à faire e TD, ils peuvet être complétés par les

Plus en détail

I. La numération décimale

I. La numération décimale ISN Codage biaire et quatité d iformatios I. La umératio décimale Das le système décimal, o utilise 10 chiffres :..Le système décimal est doc u système de umératio de base 10. Aisi les ombres se décomposet

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

Problèmes numériques et algébriques

Problèmes numériques et algébriques Prolèmes umériques et lgériques I Ecriture décimle d u omre : Ds le omre déciml 12 56,589 : - 12 56 est l prtie etière du omre déciml - 589 est l prtie décimle du omre déciml. Plcer ce chiffre ds l coloe

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail