Les composants électroniques de commutation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les composants électroniques de commutation"

Transcription

1 Les composans élecronques de commuaon 2 ème année opon élecronque année 00/01

2 Chapre I : Inroducon Chapre I INTRODUCTION Sommare 1 GNRALITS STRUCTURS DS MONTAGS A COMMUTATION Monage ulsan un nerrupeur en commuaon Monage ulsan une combnason d'nerrupeur Crcus logques CARACTRISTIQUS DS INTRRUPTURS SCHMA QUIVALNT DS COMPOSANTS CIRCUIT RC SOUMIS A UN CRNAU TUD D'UN CAS GNRAL Calcul de la réponse lbre ou de la soluon générale de l'ssm s g () Calcul de la réponse orcée ou de la soluon parculère de l'asm s p () Déermnaon de la soluon générale de l'équa d. (1) Tracé de e() e s() xpresson analyque de emps caracérsques Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 2/12

3 Chapre I : Inroducon Les composans élecronques de commuaon Chapre I INTRODUCTION 1 Généralés Nous avons à nore dsposon de nombreux composans élecronques qu nous permeen de réalser une nné de monages. Ceux c peuven êre répars selon deux grandes amlles : - les monages à onconnemen lnéare, - les monages à onconnemen Tou Ou Ren (TOR). Les monages à onconnemen lnéare serven en général à ransormer de açon connue des phénomènes physques en sgnaux élecrques. xemples : * la vox d'un chaneur es capée par un mcrophone pus, elle es plus ou mons amplée pour êre resuée par des encenes acousques. * Un hermomère élecronque donne en permanence les varaons de empéraure. Dans ce ype d'applcaon la sore es proporonnelle à l'enrée e de açon grossère elles son relées par un gan. L'normaon es radue en connu, c'es ce que l'on a couume d'appeler l'élecronque analogque. Les monages à onconnemen TOR ulsen des composans qu ne donnen qu'une normaon bnare; vra ou aux. Ils son souven appelés INTRRUPTURS. Aenon: ce qu ne sgne pas oblgaoremen une sore numérque. On souhae que la sore recope au meux l'enrée mas le rappor es consan e peu mporan. La melleure mage que l'on pusse rouver ben qu'elle ne so pas élecronque es le relas. Ic, l'normaon es dscrèe, elle es ssue de la commuaon d'un ou pluseurs composans (généralemen de pussance). Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 3/12

4 Chapre I : Inroducon xemples : * élecronque de pussance, hacheur, onduleur, redresseur, gradaeur (varaeur de lumère), * élecroechnque, Commande de relas, relas saque, * élecronque able couran, crcus logques, déecon (démodulaon à échanllonnage). Cerans composans son plus dédés à l'un ou l'aure ype de monage, mas dans la plupar des cas, les composans dscres (dode, ranssor, ) peuven êre ulsés en onconnemen lnéare ou en commuaon. Donc de açon analogue à l'élecronque analogque, l es mpéra en commuaon de déermner les caracérsques de onconnemen d'un composan ulsé en nerrupeur. Ils es donc nécessare de are une éude sysémaque pour déermner le dmensonnemen d'un composan e de son radaeur en oncon des empéemens générés par la commuaon. 1.1 STRUCTURS DS MONTAGS A COMMUTATION Monage ulsan un nerrupeur en commuaon On me en relaon une source (enson ou couran) e une charge à l'ade d'un nerrupeur. Le schéma es alors le suvan : Inerrupeur Source Charge Fgure 1 : Monage à un seul nerrupeur Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 4/12

5 Chapre I : Inroducon Monage ulsan une combnason d'nerrupeur On me en relaon une source (enson ou couran) e une charge à l'ade d'une combnason d'nerrupeurs. Le monage le plus connu es le pon en H (dû à sa srucure) don la représenaon es la suvane: Q1 Q3 V Charge Q2 Q4 Fgure 2 : Srucure ou pon en H. Supposons que la charge so un moeur à couran connu. Deux onconnemens son possbles. So les nerrupeurs ormen les couples Q1, Q4 e Q3,Q2. S le couple Q1,Q4 es ermé, Q3,Q2 es ouver e la charge vo la enson V. S le couple Q3,Q2 es ermé, Q1,Q4 es ouver e la charge vo la enson -V. La enson aux bornes de la charge peu êre modulée par ouverure e ermeure successves de l'un ou des deux nerrupeurs ermés. Au repos Q2 e Q4 son ermés. So on ouvre Q2 e l'on erme Q1 la charge vo V, so on ouvre Q4 e on erme Q3, la charge vo V. Mas la plupar du emps on erme par mpulsons Q1 (respecvemen Q3) e évdemmen on ouvre par mpulsons complémenares Q2 (respecvemen Q4), le ranssor Q4 (respecvemen Q2) rese ermé. Ans on réalse une modulaon de 0 à V (respecvemen de 0 à -V ) au pon chaud de la charge. So les nerrupeurs ormen les couples Q1,Q2 e Q3,Q4. Dans ous les cas la charge peu recevor une enson don la valeur moyenne es varable e don la polaré peu êre nversée. Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 5/12

6 Chapre I : Inroducon Remarque 1 : Quand le moeur es en roaon, on peu le rener rapdemen en ouvran les nerrupeurs Q1 e Q3 e en erman Q2 e Q4. Remarque 2 : On perço aclemen que ce asuceux monage demande une geson rgoureuse des nsans de commuaon de chaque nerrupeur. n ee, les empéemens de Q1 e Q2 par exemple peuven êre aals aux composans. Les consruceurs (Lnear echnologes, Toshba, ) nous proposen des crcus spécaux appelés Drvers pour dempon ou pon en H. Ce ype de pon es rès souven ploé par une Modulaon en Largeur d'impulson (MLI) don l'équvalen anglo-saxon es : Pulse Wdh Modulaon (PWM). Dans la plupar des cas, les srucures peuven se ramener, pour une plage de emps donné, à un crcu à un seul nerrupeur. L'usage des héorèmes de Thévenn e de Noron aclera ben souven l'éude Crcus logques Avec ces crcus l'ulsaeur n'es pas maîre des commuaons. Par conséquen, cee éude es ae vue de l'exéreur en prenan en compe les normaons dsponbles sur les daa shee élaborés par les consruceurs. 1.2 CARACTRISTIQUS DS INTRRUPTURS L'nerrupeur déal se erme e s'ouvre nsananémen. Lorsqu'l es ermé, la enson à ses bornes es nulle (R on nulle). Lorsqu'l es ouver, l n'y a aucun couran qu le raverse (R o nne). L'nerrupeur réel es dén par : un emps de ermeure on, un emps d'ouverure o, une enson de déche à la ermeure, V on 0 (bpolare), R on 0 (MOS), Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 6/12

7 Chapre I : Inroducon un couran de ue à l'ouverure, I ue 0 (bpolare), R o (MOS). Ces paramères on des valeurs qu dépenden des maéraux ulsés (sem-conduceurs). n a, ls radusen des réssances, des condensaeurs e des nducances parases. L'éude des commuaons passe oblgaoremen par la connassance d'un schéma équvalen du composan. Ce derner perme d'éablr les ormes d'ondes (dépendan des caracérsques nrnsèques de l'nerrupeur e du crcu exéreur) présenes aux bornes du composan. La connassance analyque de ces sgnaux perme de calculer les emps de commuaon e les peres par commuaon. 1.3 SCHMA QUIVALNT DS COMPOSANTS Tous les composans élecronques de commuaon son abrqués à parr de semconduceurs qu apparennen au groupe IV de la classcaon pérodque de Mendéléev (chaque aome possède quare élecrons de valence). Ils possèden une ou pluseurs joncons PN qu admeen un champ élecrque qu'elles soen bloquées, passanes ou non relées à un crcu exéreur. P p barrère de poenel e N P p e N P p e N a) b) c) Fgure 3 : champ élecrque d'une joncon PN, a) lbre, b) bloquée e c) passane. Le champ élecrque a qu'à chaque exrémés de la joncon PN nous avons une concenraon de charges de sgne opposé. Ces charges "rées" e dsanes son répares de açon analogue à ce que l'on rouve dans un condensaeur. Par conséquen une joncon PN présene oujours un ee capac. Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 7/12

8 Chapre I : Inroducon Lorsque la joncon es passane, l exse un couran qu dépend du champ élecrque mas auss de la srucure crsallne du semconduceur. n ee, la moblé des charges (hermque ou élecrque) ben que rès grande n'es pas nne. Auremen d, les élecrons de la bande de conducon son accélérés sous l'acon du champ élecrque applqué e von se heurer aux aomes de la srucure crsallne du composan, ce qu ralen peu ou prou leur vesse. Tou se passe comme s le barreau du semconduceur présena une réssance. On parle de réssance sére du composan. Ces joncons pour êre ulsables doven êre relés aux paes du boîer chos. Pluseurs echnques exses, la plus courane consse à reler la puce aux paes par l'nermédare de ls d'alumnum 1 ou d'or 2. Or ou l possède un ee nduc (1µH/m dans l ar) par conséquen, un composan en commuaon peu présener égalemen un ee nduc. Donc on pourra oujours, même pour des composans mulcouches, ramener le composan en commuaon à un crcu relavemen smple composé essenellemen de condensaeurs e de réssances, vore d'nducances. 2 Crcu RC soums à un CRNAU Consdérons le crcu suvan : K () R F e() C s() or Fgure 4 : ude d'un crcu RC soums à une excaon en créneau c () dq()/d; q()cv c (); c() cdv c ()/d 1 Wedge bondng, ulrason à empéraure ambane (c besson p 70). 2 Ball bondng, ulrason enre 150 e 180 C (c besson p 70). Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 8/12

9 Chapre I : Inroducon e d'où S() Vc() e() R() S() e() RcdVc()/d Vc() (1) C'es une équaon dérenelle du 1 er ordre à coecens consans. 2.1 TUD D'UN CAS GNRAL So un créneau quelconque susammen long devan le emps de commuaon du composan de elle sore qu'l so vu pour ce nsan précs comme un échelon. Alors nous le dénssons comme su : e() Fgure 5 : chelon applqué au crcu RC Que deven la sore s()? Pour le savor, l su de résoudre l'équaon dérenelle (1). Dans un premer emps résolvons cee équaon de açon classque en gnoran les ransormées de LAPLAC Calcul de la réponse lbre ou de la soluon générale de l'ssm s g (). Cee soluon dépend des condons nales. L'équaon (1) deven : dsg ( ) RC sg ( ) 0 d posons τ RC dsg ( ) dsg ( ) 1 τ sg ( ) so encore d d s τ Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 9/12 g

10 Chapre I : Inroducon nous pouvons applquer sur chaque membre de cee équaon l'opéraeur négrale. ds ( ) 1 d s τ g g cec es équvalen à : ln( s g ) K τ ' So en mulplan cee égalé par la oncon exponenelle on oben : g ' K s ( ) e τ τ e so encore : s ( ) Ke (2) g avec K calculé grâce aux CI Calcul de la réponse orcée ou de la soluon parculère de l'asm s p (). L'équaon (1) es prse dans son négralé, c'es-à-dre : ds p ( ) τ s d p ( ) e( ) Pour 0 e() consane. Par conséquen la soluon S p () es une soluon parculère sasasan l'équaon (1) Déermnaon de la soluon générale de l'équa d. (1). La soluon générale de l'équaon (1) es la somme de la soluon générale s g () e la soluon parculère s p (). τ s ( ) Ke Déermnaon de la consane K A 0 on a : s() s(0) K Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 10/12

11 Chapre I : Inroducon d'où K D'où τ s ( ) ( ) e (3) S le créneau possède un reard o alors : 0 τ s ( ) ( ) e (3') Tracés de e() e s() s() e() x x Fgure 6 : Tracés de e() e s() xpresson analyque de emps caracérsques Calcul de x ms pour aendre une valeur x comprse enre ], [ s ln ou encore x x x e τ x ( ) ( ) so x τ x τ ln x rappel : -ln(a) ln(1/a) xpresson analyque du emps de réponse r Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 11/12

12 Chapre I : Inroducon Cours de commuaon verson du 19/01/06 à 13:01 Dder Magnon Page 12/12 r à 10% r e s r τ ) ( 0,9 ) ( d'où r 0,1 ln τ r à 5% r e s r τ ) ( 0,95 ) ( d'où r 0,05 ln τ xpresson analyque du emps de descene d On s'néresse au emps de descene après un ron descendan du créneau d'enrée. Le emps de descene d correspond au emps que me la sore s() du crcu RC pour passer de la valeur à 0. Fgure 7 : Temps de descene d d e s d τ ) ( 0 ) ( d'où d ln τ e() s() d

TD2 Ener3 Exercices : hacheurs

TD2 Ener3 Exercices : hacheurs Exercces : hacheurs 1 217-218 Hacheur quare quadrans Une machne à couran connu es almenée par le conversseur don le schéma es représené cdessous. Les ordres d'ouverures e de fermeures des nerrupeurs commandés

Plus en détail

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique :

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique : Termnale STI hacheur sére Hacheur sére. Présenaon e hacheur es un conersseur saque connu-connu Symbole synopque : Tenson connue fxe Tenson connue réglable Ou plus exacemen : enson oujours de même sgne,

Plus en détail

Régimes transitoires

Régimes transitoires ÉLECTOCINÉTIQUE chapre 3 égmes ransores En régme connu, les composanes capacves e nducves d un crcu son analogues respecvemen à un crcu ouver e à un cour-crcu. Elles n on donc aucun nérê. Cependan, s un

Plus en détail

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les L essenel du cours proposé par Mahmoud Gazzah Le condensaeur, le dpôle Descrpon sommare d un condensaeur Défnon e symbole : Un condensaeur es consué de deux armaures méallques séparées par un solan appelé

Plus en détail

Les dispositifs de commutation

Les dispositifs de commutation Les dsposfs de commuaon 1. Les dsposfs de commuaon élecronques des sgnaux Les dsposfs élecronques de commuaon des sgnaux fonconnen en mode «ou ou ren» (mode bnare). Les deux éas possbles du composan son

Plus en détail

Chapitre 1 Convertisseurs alternatif/continu

Chapitre 1 Convertisseurs alternatif/continu Lycée La Fayee Page CPGE AS cours de scences ndusrelles géne élecrque Chapre Conversseurs alernaf/connu. GENERALIES n conversseur alernaf/connu perme d almener une arge sous une enson connue évenuellemen

Plus en détail

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π edressemen monophasé commandé C.P.G.E-SI-SAFI edressemen monophasé commandé Inroducon : Un monage redresseur commandé perme d obenr une enson connue réglable à parr d une enson alernave snusoïdale. L ulsaon

Plus en détail

LES ONDULEURS. 1. Introduction

LES ONDULEURS. 1. Introduction 1. Inroducon 1.1. éfnon LS ONULURS L'onduleur es un conersseur saque prélean son énerge sur une source connue e la resuan à une charge sous une forme alernae à fréquence arable. 1.. Onduleurs auonomes

Plus en détail

AUTO INDUCTION ET BOBINES

AUTO INDUCTION ET BOBINES AUT INDUCTIN T BBINS I ) Inducon ) Mse en évdence du phénomène d'nducon e phénomène d nducon es l apparon d un couran élecrque à l néreur d un crcu ne comporan pas de généraeur. N S orsqu'on déplace un

Plus en détail

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur :

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur : Formulare d élecrcé Pons de cours Condensaeur Explcaons ou ulsaons Un condensaeur es composé de deux armaures méallques séparé par un solan appelé délecrque. S une armaure se charge posvemen, l aure es

Plus en détail

Intégrateur. v e. 20log T 0

Intégrateur. v e. 20log T 0 G. Pnson - Physque Applquée Foncons négraon e dérvaon - A22 / A22 - Foncons négraon e dérvaon τ = = τ ( )d éponse à un échelon (réponse ndcelle) Inégraeur : = E < : = = E τ E -a. éponse en fréquence =

Plus en détail

Chapitre 1.14 L intégrale en cinématique

Chapitre 1.14 L intégrale en cinématique Chapre.4 L négrale en cnémaque L négrale En mahémaque, on éfn l négrale une foncon f ( el que F( f ( e '( ( F F où F ( es la foncon qu onne la valeur e l are sous la courbe e la foncon f ( ans l nervalle

Plus en détail

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent ycée Gallée Gennevllers e dpôle, sére chap. Jallauren I. e solénoïde... résenaon... uo nducon... 3 Tenson aux bornes du solénoïde... 3 Symbole... 3 II. e dpôle, sére... 4 échelon de enson... 4 Inerpréaon

Plus en détail

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10 Laboraore géne élecrque ech ére d exercces Moeur pas à pas Page /0 Exercce Un moeur pas à pas à aman permanen ayan les caracérsques suvanes : phases au saor, deux pôles au roor, sa commuaon es bdreconnelle

Plus en détail

2 LES DIPOLES PASSIFS ELEMENTAIRES

2 LES DIPOLES PASSIFS ELEMENTAIRES ES DPOES PASSFS EEMENTAES. nroducon es composans ulsés en élecronque présenen des bornes élecrques ou pôles permean leur connexon dans un réseau. On dsngue : - les dpôles ( pôles) comme les réssances,

Plus en détail

3 - Modélisation du Moteur à Courant Continu

3 - Modélisation du Moteur à Courant Continu Lycée Gusave Effel de Djon Classe préparaore P..S.. Année 213-214 Élecroechnque 3 - Modélsaon du Moeur à Couran Connu able des maères Fonconnemen d'un moeur à couran connu 1 1 Force de Laplace......................................

Plus en détail

Régimes transitoires

Régimes transitoires égmes ransores 1. nroducon 'éude des régmes permanens qu'ls soen connus ou pérodques ne suff pas à défnr complèemen un sysème élecronque. eranes ransons de sgnaux, par exemple le basculemen de l'éa bas

Plus en détail

CHAPITRE 1 LES CONVERTISSEURS ALTERNATIFS/CONTINUS

CHAPITRE 1 LES CONVERTISSEURS ALTERNATIFS/CONTINUS CHAPITRE ES CONERTISSEURS ATERNATIFS/CONTINUS ES MONTAGES REDRESSEURS NON COMMANDÉS Suppor de Élecronue de pussance - 9 - I.S.E.T de Bzere ES CONERTISSEURS ATERNATIFS/CONTINUS -INTRODUCTION ES MONTAGES

Plus en détail

Chapitre 1.1a Les oscillations

Chapitre 1.1a Les oscillations Chapre 1.1a Les oscllaons La cnémaque La cnémaque es l éue u mouvemen un obje en foncon u emps. Pour ce fare, nous avons recours au conceps e poson, vesse e accéléraon : Poson : ( uné : m Vesse : v ( uné

Plus en détail

t = effectif de la partie 100 effectif total

t = effectif de la partie 100 effectif total Chapre I : Pourcenages Exra du programme : - Coecen mulplca assocé à un pourcenage - Iéraon de pourcenages - Analyse des varaons de pourcenages - Comparason de pourcenage - Approxmaon lnéare dans le cas

Plus en détail

TD 2 Cinétique chimique

TD 2 Cinétique chimique TD Cnéque chmque Exercce Oxydaon de l ammonac L ammonac peu s oxyder ; l équaon sœchomérque de la réacon peu s écrre : 4 NH + 5 O NO + 6 H O S a un momen donné, l ammonac dsparaî à la vesse de, mol.l -.s

Plus en détail

Lire le début de la thèse

Lire le début de la thèse Lre le débu de la hèse CHAPITRE 5 : Mse en œuvre e caracérsaon de ules de pussance MOSFET-SC en fonconnemen onduleur de enson sur un banc d essa par «méhode d opposon» CHAPITRE 5 : Mse en œuvre e caracérsaon

Plus en détail

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE LECON & : LES CRCS A CORAN ALERNAF MONOPHASE LES CRCS A CORAN ALERNAF MONOPHASE - Dfférens formes de courans (e de enson Dans l'ensemble des formes de courans, nous pouvons effecuer une premère paron :

Plus en détail

Courant continu et courants alternatifs

Courant continu et courants alternatifs Classe : 2ME BEP Méers de l élecroechnque Couran connu e couran alernaf Leu : Salle de cours & salle de mesures Objecf Dfférencer les caracérsques d un couran connu e d un couran alernaf,. Savors : S.2

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

Chapitre 2. Le mouvement rectiligne

Chapitre 2. Le mouvement rectiligne Chapre Le mouvemen reclgne Objec nermédare 1. Employer les équaons du mouvemen reclgne unormémen accéléré (m.r.u.a.) à un corps lbre ou en chue lbre. Vesse moyenne La vesse moyenne v 1 (enre 1 e ) es déne

Plus en détail

Amplificateurs différentiels et opérationnels

Amplificateurs différentiels et opérationnels UNIVESITE MOHAMMED V Faculé des Scences, aba Amplfcaeurs dfférenels e opéraonnels Chapre 3 1 Amplfcaeur dfférenel L amplfcaeur dfférenel, pare à couplage par les émeeurs (BJT) (pare à couplage par les

Plus en détail

deux valeurs pour v 2 : v 2 = ou v 2 = donc v 2moy =, B or il nous faut v 2moy =.

deux valeurs pour v 2 : v 2 = ou v 2 = donc v 2moy =, B or il nous faut v 2moy =. Chapire.3.3 Conversion coninu alernaif 1 ) Principe 1.1) Généraliés C es un converisseur saique, qui perme des échanges d énergie enre une enrée coninue e une sorie alernaive. Symbole: Si la source coninue

Plus en détail

Décomposition d une fraction rationnelle en éléments simples

Décomposition d une fraction rationnelle en éléments simples Décomposon d une fracon raonnelle en élémens smples I Premère éape Dvson eucldenne de polynômes On rappelle que procéder à la dvson eucldenne d un polynôme A par un polynôme B non nul, c es écrre A BQ

Plus en détail

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique,

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique, Plan Défnon, Régresson Lnéare Mulple Massh-Réza Amn Technques d Analyse de Données e Théore de l Informaon Maser M IAD Parcours Recherche amn@polea.lp6.fr Hsorque, Inerpréaon géomérque de la soluon, Len

Plus en détail

Plan du chapitre 3 (suite):

Plan du chapitre 3 (suite): 4//5 Chapre3: Modèles non lnéares de la Fnance (sue) Plan du chapre 3 (sue): Modèles ARCH e prévsons Varanes des processus ARCH: ARCH-M (AuoRegressve Condonnal Heeroscedascy-n Mean) GARCH-M 4//5 Modèles

Plus en détail

Série d exercices N 5

Série d exercices N 5 GENIE ELECTRIQUE Sére d exercces N 5 Prof : Mr Raouaf Abdallah PARTIE N 1 : «A.L.I en mode lnéare» «Amplfcaeur Lnéare Inégré» Nveau : 4 ème Sc.Technque Mode lnéare :... L ALI es déal donc = = e =... Exercce

Plus en détail

Interaction d un système quantique à deux états avec des ondes électromagnétiques

Interaction d un système quantique à deux états avec des ondes électromagnétiques Ineracon d un sysème quanque à deux éas avec des ondes élecromagnéques Exemple de l ammonac NH 3 - Influence d un champ élecrque saque sur les nveaux d énerge. - Influence d un champ élecrque nhomogène

Plus en détail

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C...

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C... égme ransore Table des maères 1 Crc C sére soms à n échelon de enson 2 1.1 chelon de enson............................. 2 1.2 Charge d n condensaer......................... 2 1.2.1 Condons nales.........................

Plus en détail

Etude d un onduleur de tension autonome monophasé :

Etude d un onduleur de tension autonome monophasé : L ONDULUR AUONOM de d n ondler de enson aonome monophasé Défnon Un ondler es n conversser saqe conn alernaf. L ondler es d aonome qand l mpose sa propre fréqence à la charge (ce q es dfféren de l ondler

Plus en détail

COMPARATEURS ANALOGIQUES

COMPARATEURS ANALOGIQUES I/ RAPPEL COMPARATEURS ANALOGIQUES Page 1 Signal logique e signal On di qu'un signal élecrique es logique lorsqu'il. analogique V On di qu'un signal es analogique lorsque son évoluion (en général en foncion

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

LES ONDULEURS Convertisseurs DC/AC

LES ONDULEURS Convertisseurs DC/AC Chapire VI - Les onduleurs - LES ONDULEURS Converisseurs DC/AC I- Inroducion : L éude va porer sur les onduleurs : monophasés, de ension :Source d enrée (DC) = Source de Tension Source de sorie (AC) =

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE.- Hamlonen de spn On consdère une parcule de spn placée dans un champ magnéque saque B Bu e un champ ournan à la vesse angulare

Plus en détail

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS

MODULATION D'ÉNERGIE, VARIATION DE VITESSE I/ INTRODUCTION, DÉFINITIONS Piloage, conrôle e comporemen des sysèmes - n 8 Page 1 MODULAION D'ÉNRGI, VARIAION D VISS I/ INRODUCION, DÉFINIIONS Cerains sysèmes nécessien, en exploiaion, une variaion de puissance. Celle-ci peu êre

Plus en détail

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE ours hème VIII.3 ONVSION SAIQU D'ÉNGI 3- Famlles de conversseurs saques Suvan le ype de machne à commander e suvan la naure de la source de pussance, on dsngue pluseurs famlles de conversseurs saques (schéma

Plus en détail

Exercices sur la valeur moyenne, la valeur efficace et la puissance

Exercices sur la valeur moyenne, la valeur efficace et la puissance Exercces sur la valeur moyenne, la valeur cace e la pussance Ce documen es une complaon des exercces posés en devors survellés d élecrcé au déparemen Géne Elecrque e Informaque Indusrelle de l IU de Nanes.

Plus en détail

Commande d un moteur à courant continu

Commande d un moteur à courant continu Commande d un moeur à couran coninu 1. Généraliés Le hacheur es un disposiif classé dans la caégorie des converisseurs saiques d énergie coninu - coninu. l a pour rôle de ransférer l'énergie d'une source

Plus en détail

Distribution de l énergie

Distribution de l énergie Disribuion de l énergie S si Cours 1. La foncion «DISTRIBUER» L énergie fournie par l alimenaion, qu elle soi élecrique ou pneumaique, doi êre disribuée aux acionneurs du sysème. Cee disribuion d énergie

Plus en détail

LE REDRESSEUR MLI EN ABSORPTION SINUSOIDALE DE COURANT

LE REDRESSEUR MLI EN ABSORPTION SINUSOIDALE DE COURANT LE REDRESSEUR MLI EN ABSORPTION SINUSOIDALE DE COURANT Ncolas BERNARD, Bernard MULTON, Hamd BEN AHMED Ecole Normale Supéreure de Cachan, Anenne de Breagne Campus de er Lann 35 7 BRUZ nom@breagne.enscachan.fr

Plus en détail

Chapitre 8 : Onduleur autonome de tension

Chapitre 8 : Onduleur autonome de tension Terminale GT hapire 8 : Onduleur auonome de ension I / préambule : inerrupeurs en élecronique de puissance 1. diode à joncion 2. ransisor bipolaire II / principes des onduleurs auonomes 1. définiion 2.

Plus en détail

n 154 techniques de coupure des disjoncteurs BT Robert Morel «à mes amis de travail.»

n 154 techniques de coupure des disjoncteurs BT Robert Morel «à mes amis de travail.» n 154 echnques de coupure des dsjonceurs BT Rober Morel «à mes ams de raval.» Ingéneur ENSMM Besançon, enre chez Merln Gern en 1971 e se spécalse dans la concepon de l'apparellage élecrque Basse Tenson.

Plus en détail

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle Ulsaon des foncons -splnes pour modélser la surve relave non proporonnelle Roch Gorg Laboraore d Ensegnemen e de Recherche sur le Traemen de l Informaon Médcale Faculé de médecne de Marselle - Unversé

Plus en détail

Chapitre II- Le marché financier à l avenir incertain

Chapitre II- Le marché financier à l avenir incertain Chapre II- Le marché nancer à l avenr nceran Les agens économques qu achèen des res son movés par une espérance de renablé supéreure à celle que peu leur procura l épargne de sans rsque du marché monéare.

Plus en détail

MEMORISATION UNITAIRE

MEMORISATION UNITAIRE Mémorisaion uniaire Page 1 MEMORISATION I/ GÉNÉRALITÉS I.1/ Définiions UNITAIRE Une foncion de mémorisaion uniaire es capable de mémoriser un seul éa logique à la fois (un seul bi). Les srucures associées

Plus en détail

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ VITESSE DE ÉCTION I. INTODUCTION I. Équlbre e évoluon vers l équlbre On consdère une réacon chmque noée de façon générale : ν + ν +... + ν ν ' ' + ν ' ' +... + ν ' '. P P On peu la noer égalemen : ν +

Plus en détail

Chapitre 9 : Redressement

Chapitre 9 : Redressement Cors 9 M 2 Préamble 1. défnons 2. le hyrsor Chapre 9 : Redressemen pon de graez 4 Dodes 1. sr charge résse a. monage b. obseraon c. analyse de fonconnemen d. granders caracérsqes 2. monage sr charge RL

Plus en détail

Diode, thyristor : le redressement

Diode, thyristor : le redressement PAIE 11 FONCIONS 47, hyrisor : le redressemen La conversion d énergie appelée redressemen perme d obenir un couran unidirecionnel à parir d un couran alernaif sinusoïdal ne diode peu assurer cee foncion

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs

Chapitre 14. Circuits résistifs et réactifs. Sommaire. Introduction. Circuits résistifs et réactifs Circuis résisifs e réacifs Chapire 14 Circuis résisifs e réacifs Sommaire Elémens résisifs e réacifs Comporemen d une résisance en régime alernaif sinusoïdal Comporemen d un condensaeur en régime alernaif

Plus en détail

PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D

PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D PRODUIS DE AUX D IERE oèles e marché ESAE - DEA ASE Unversé Pars IX Dauphne- Séance 7 oez RAD Socéé Générale - R&D oez RAD / SG R&D Fxe Income 5//5 PA oèle bor Forwar ognormal G ou F. Défnon u moèle. Passage

Plus en détail

Les composants électroniques de commutation

Les composants électroniques de commutation es omposans éleroniques de ommuaion Chapire V es Ciruis d'aide à a Commuaion (CAC) Sommaire 1 ROE... 50 2 COMMUTATION SUR UNE CHARGE SEFIQUE... 50 2.1 ESTIMATION ES PERTES... 52 2.1.1 Peres quand l'inerrupeur

Plus en détail

Le redresseur MLI en absorption sinusoïdale de courant

Le redresseur MLI en absorption sinusoïdale de courant Le redresseur MLI en absorpon snusoïdale de couran Ncolas Bernard, Bernard Mulon, Hamd Ben Ahmed To ce hs verson: Ncolas Bernard, Bernard Mulon, Hamd Ben Ahmed. Le redresseur MLI en absorpon snusoïdale

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS ANNEXE - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS L'hypohèse d'une réparon des événemens démographques unforme sur l'année gnore la sasonnalé des décès e des nassances qu peu êre déermnée ans

Plus en détail

Bureaux d études en traitement des images

Bureaux d études en traitement des images Bureau d éudes en raemen des mages ESERB Fère Téécommuncaons 3 ème année Opon SC ESERB Fère Eecronque 3 ème année Opon TS AEE 4-5 M. DOAS Bureau d éudes en raemen des mages PARTE REDRESSEMET Dans cee pare

Plus en détail

Ch 12 : CONVERSION NUMERIQUE ANALOGIQUE ( CNA ). CONVERSION ANALOGIQUE NUMERIQUE ( CAN ).

Ch 12 : CONVERSION NUMERIQUE ANALOGIQUE ( CNA ). CONVERSION ANALOGIQUE NUMERIQUE ( CAN ). h 12 : ONVRSON NUMRQU ANALOGQU ( NA ). ONVRSON ANALOGQU NUMRQU ( AN ). 1. Définiion 1.1. Signal analogiue. Un signal analogiue es un signal don la valeur évolue coninûmen en foncion d'une variable coninue.

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Amplification de puissance

Amplification de puissance Académie de Marinique Préparaion Agrégaion Sciences Physiques B. Ponalier Amplificaion de puissance Objecifs Comparer les différenes classes d amplificaion du poin de vue: du foncionnemen du rendemen Classe

Plus en détail

U, I [V] [A] Il existe plusieurs types de courants ou de tensions pour lesquels nous pouvons tracer ces représentations :

U, I [V] [A] Il existe plusieurs types de courants ou de tensions pour lesquels nous pouvons tracer ces représentations : Régme alernaf snusoïdal Chapre 13 Régme alernaf snusoïdal Sommare Défnons des valeurs de courans alernafs Producon d une enson alernave Valeurs de crêe, moyenne e effcace Représenaons emporelles e vecorelles

Plus en détail

Afrique SCIENCE 01(2) (2005) ISSN X. Analyse des structures planaires multicouches à ferrite par la méthode des éléments finis

Afrique SCIENCE 01(2) (2005) ISSN X. Analyse des structures planaires multicouches à ferrite par la méthode des éléments finis Afrque SCIENCE () (5) 9 - ISSN 83-548X 9 Analyse des srucures planares mulcouches à ferre par la méhode des élémens fns M. Melan *, M. Feham, B. Benbakh Unversé de Tlemcen, Déparemen d Elecronque, B.P.

Plus en détail

ELP 304. Électronique numérique. Année scolaire PC4-PC5 Corrigé. Thèmes abordés

ELP 304. Électronique numérique. Année scolaire PC4-PC5 Corrigé. Thèmes abordés ELP 304 Élecronique numérique nnée scolaire 008-009 Majeure ELP PC4-PC5 Corrigé Thèmes abordés Temps de monée, de descene e de propagaion des opéraeurs CMO. ynhèse combinaoire en CMO. Esimaion de surface

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

LES REDRESSEURS MONOPHASES

LES REDRESSEURS MONOPHASES Chapre IV es redresseurs monophasés - ES EDESSEUS MONOPHASES I- Inroducon : es redresseurs son conçus pour fournr une enson connue fxe ou varable. Nous éuderons les redresseurs monophasés non commandés

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

CHAPITRE 4 HACHEURS. Convertisseur Continu (DC) - Continu (DC) Figure 4-1. Schéma de principe du hacheur. R 1. I d. U d

CHAPITRE 4 HACHEURS. Convertisseur Continu (DC) - Continu (DC) Figure 4-1. Schéma de principe du hacheur. R 1. I d. U d nversé e Savoe Lcence EEA Moue 6 Énerge e conversseurs 'énerge CHAPRE 4 HACHERS 1. nroucon - nérê es hacheurs Les hacheurs son es conversseurs saques connu-connu permean e fabrquer une source e enson connue

Plus en détail

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris Geson de producon cour erme en conee nceran EDF R&D École enrale Pars Geson de producon à cour erme Encadrans ndusrels : Gérald Vgnal - Jérôme Quenu Encadran académque : Yves Dallery-Mchel Mnou Snda Ben

Plus en détail

TABLE DES MATIERES 1 LA NOTION D ERREUR ET DE BRUIT DE MESURE 1 2 METHODES D ESTIMATION 3 3 EXEMPLES D ESTIMATION DE PARAMETRES 13

TABLE DES MATIERES 1 LA NOTION D ERREUR ET DE BRUIT DE MESURE 1 2 METHODES D ESTIMATION 3 3 EXEMPLES D ESTIMATION DE PARAMETRES 13 ves JAOT Oobre 5 TABLE ES MATIERES LA OTIO ERREUR ET E BRUIT E MESURE METHOES ESTIMATIO 3. Paramères lés par une relaon lnéare 4.. Méhode des mondres arrés lnéares 4.. Méhode de Gauss-Marov 6. Paramères

Plus en détail

Chapitre II. La diode en commutation. Sommaire

Chapitre II. La diode en commutation. Sommaire Chapire La ioe en commuaion Sommaire 1 NTODUCTON... 11 1.1 SCHEMA EQUVALENT... 11 1.1.1 Eue e V F < V 0... 11 1.1.2 Eue e V F V 0... 12 2 LA DODE EST ALMENTEE PA UNE SOUCE DE TENSON... 12 2.1 COMMUTATON

Plus en détail

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression Modélsaon e smulaon de l hydroformage de lners méallques pour le sockage d hydrogène sous haue presson J.C. Geln, C. Labergère,. Boudeau, S. Thbaud Insu FEMTO-ST, Déparemen Laboraore de Mécanque Applquée

Plus en détail

Amplification Linéaire à Transistor Bipolaire

Amplification Linéaire à Transistor Bipolaire UFM Préparaon APT Géne lerque Amplfaon néare à Transsor polare Sruure énérale d un ru d amplfaon : Snal à amplfer (as neau) X X Amplfaeur are (Hau neau) Soure de pussane (Fourne par ) X amplfaon ne onerne

Plus en détail

N.L.Technique HACHEUR SERIE et VARIATEUR DE VITESSE INDUSTRIEL S.CHARI. I. Hacheur série à transistor

N.L.Technique HACHEUR SERIE et VARIATEUR DE VITESSE INDUSTRIEL S.CHARI. I. Hacheur série à transistor N.L.Technqe ACU SI e AIATU D ITSS INDUSTIL S.CAI I. acher sére à ranssor I.1. Défnon Un hacher es n conversser saqe permean d almener ne charge (moer à coran conn) sos enson de valer moyenne réglable à

Plus en détail

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système.

Commande du plafonnier d'un véhicule. CO8.sin1. Rechercher et choisir une solution logicielle ou matérielle au regard de la définition d'un système. STI2D SIN V. Commande du plafonnier d'un véhicule. CO8.sin. Rechercher e choisir une soluion logicielle ou maérielle au regard de la définiion d'un sysème. BP / Clavier Sans conac IR / ILS A conac FC Capeur

Plus en détail

Etude numérique de l effet de température d entrée du fluide sur l établissement du régime turbulent dans un échangeur coaxial

Etude numérique de l effet de température d entrée du fluide sur l établissement du régime turbulent dans un échangeur coaxial Revue de géne ndusrel 2012, 8, 24-31 Revue de Géne Indusrel ISSN 1313-8871 hp://www.revue-gene-ndusrel.nfo Eude numérque de l effe de empéraure d enrée du flude sur l éablssemen du régme urbulen dans un

Plus en détail

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V

. Lorsque V>Vd >>V T, la résistance dynamique peut être approximée par la formule: r d = V Universié Mohammed Khidher Biskra A.U.: 204/205 Faculé des sciences e de la echnologie nseignan: Bekhouche Khaled Maière: lecronique Fondamenale Chapire 3 : La Diode 3.. Définiion, symbole e caracérisique

Plus en détail

Plan. Le timer 555. Présentation. Présentation. Anatomie du 555. Décomposition fonctionnelle. _ Présentation. _ Caractéristique statique

Plan. Le timer 555. Présentation. Présentation. Anatomie du 555. Décomposition fonctionnelle. _ Présentation. _ Caractéristique statique Plan _ Présenaion _ aracérisique saique _ Monage en monosable ou monovibraeur _ Monage en asable ou mulivibraeur ours d Elecronique, IGI, ENI, Bruno FANÇOI ours d Elecronique, IGI, ENI, Bruno FANÇOI Présenaion

Plus en détail

Simulation numérique de la convection naturelle tridimensionnelle par une méthode Meshless dans la formulation vitesse-vorticité

Simulation numérique de la convection naturelle tridimensionnelle par une méthode Meshless dans la formulation vitesse-vorticité Smulaon numérque de la convecon naurelle rdmensonnelle par une méhode Meshless dans la formulaon vesse-vorcé Eyad DABBORA * Hamou SADA Laboraore des éudes hermques Esp 40 Av du Receur Pneau - 860 Poers

Plus en détail

Etude paramétrique de trois différentes configurations de capteurs solaires photovoltaïques thermiques (PV/T)

Etude paramétrique de trois différentes configurations de capteurs solaires photovoltaïques thermiques (PV/T) 16 èmes Journées Inernaonales de ermque JIH 013 Marrakec Maroc, du 13 au 15 Novembre, 013 Eude paramérque de ros dérenes conguraons de capeurs solares poovolaïques ermques PV/ Oussama Rejeb, Moamed Houcne

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Redressement commandé

Redressement commandé Redressemen commandé Exercice 1 On donne ci-dessous le chronogramme de la ension aux bornes de la charge u C.( 1 V / div ) La fréquence du signal u issue du ransformaeur es de 5 Hz. De plus, on donne E

Plus en détail

1 - Etude d'une alimentation à découpage

1 - Etude d'une alimentation à découpage 1 - Eude d'une alimenaion à découpage BTS ELECTROTECHNIQUE - Session 1997 - PHYSIQUE APPLIQUEE Durée : 4 heures Coefficien : 3 Cee éude compore rois paries, liées enre elles, mais pouvan êre raiées indépendammen

Plus en détail

Modélisation de l atomisation d un jet liquide

Modélisation de l atomisation d un jet liquide nversé de Rouen Modésaon de aomsaon d un e qude Appcaon au sprays Dese Par Perre-Arnaud Beau CoRIA Écoe Docorae de nversé de Rouen nversé de Rouen nversé de Rouen CoRIA Cee hèse nuée : Modésaon de aomsaon

Plus en détail

Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S :

Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S : Comlémen VI. age /v Presson cnéque Nous allons rerendre le calcul de la resson cnéque en consdéran un modèle mons smlse que celu du chare VI. C es-à-dre en ne smlfan as l agaon moléculare. Nous commençons

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

Techniques d extensométrie

Techniques d extensométrie TRAVAUX PRATIQUES DE DIMENSIONNEMENT DES STRUCTURES Technques d eensoére TP n 1 : Module d Young e Coeffcen de Posson TP n 1 : Module d Young e coeffcen de conranes 1 Module d Young e coeffcen de Posson

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007

Réseau Continu. Mcc. Charge. v DRL. v H. c.o c.f. C.P.G.E-TSI Les hacheurs 2006/2007 C.P.G.E-S es hacheurs 2006/2007 es hacheurs. nrodion : e Hacheur es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Réseau Coninu

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus :

Figure 43. Des relevés effectués sur cette diode branchée en direct sont donnés dans le tableau ci-dessus : 1. Une dode est utlsée dans le montage c-dessous : 3,3 générateur + 2,5 =4,5 V V Fgure 43 Des relevés effectués sur cette dode branchée en drect sont donnés dans le tableau c-dessus : v (V) 0 0,6 0,7 0,8

Plus en détail

TP11: Redressement d un signal alternatif sinusoïdal 2013

TP11: Redressement d un signal alternatif sinusoïdal 2013 P11: edressemen d n sgnal alernaf snsoïdal 013 De nombrex apparels élecrqes : HI-FI, éléphone, élecroménager... son des apparels à coran conn fonconnan sos selemen qelqes ols. Or l élecrcé dsponble a nea

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Energie et puissance électrique

Energie et puissance électrique - 1 - Energe e pussance élecrque 1 Tes de saor : Valeur effcace a) So un sgnal () pérodque de pérode T. Défnr sa aleur effcace en radusan «R.M.S». Pus défnr sa aleur effcace sous forme d une négrale. b)

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPREILS DE MESURE EN COURANT ALTERNATIF I- PARAMETRES CARACTERISTIQUES D UN SIGNAL ALTERNATIF : Un signal alernaif es caracérisé par sa forme (sinus, carré, den de scie, ), sa période (

Plus en détail

Modélisation semi-analytique et choix optimal des procédés CRTM

Modélisation semi-analytique et choix optimal des procédés CRTM 9 ème Congrès Franças de Mécanque Marselle, 4-8 aoû 9 Modélsaon sem-analyque e chox opmal des procédés CRTM A. MAMONE a, A. SAOAB a, C. H. PARK a,t. OAHBI a a. Laboraore d Ondes e Mleux Complexes, FRE

Plus en détail