Opérations sur les variables aléatoires Lois limites
|
|
|
- Jean-Sébastien Pierre
- il y a 9 ans
- Total affichages :
Transcription
1 Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles d eau de marques A et B. O ote :, la variable aléatoire mesurat le ombre de packs d eau de marque A achetés ;, la variable aléatoire mesurat le ombre de packs d eau de marque B achetés ; La probabilité P( = x i et = y i ) est doée das le tableau suivat Totaux 1 0,1 0,2 0,2 2 0,1 0,3 0,1 Totaux Défiitio. Soit et deux variables aléatoires discrètes O pose : (Ω) = {x 1, x 2,..., x i,..., x } (Ω) = {y 1, y 2,..., y j,..., x m } et sot deux variables aléatoires idépedates si et seulemet si : P( = x i et = y j ) = P( = x i ) P( = y j ) Ce qui s écrit ecore : P(( = x i ) ( = y j )) = P( = x i ) P( = y j ) Exemple 2. Repreos l exemple 1. Les variables et sot-elles idépedates? Calculos par exemple P( = 1) P( = 2) et comparos avec P( = 1 et = 2) Coclusio : Les deux résultats sot, les variables aléatoires et
2 Exemple 3. O doe la loi de probabilité du couple de variables aléatoires et Totaux 10 0,08 0, ,20 0, ,12 0,18 Totaux 1 Compléter le tableau. 2 Pour tout i {1, 2, 3} et j {1, 2} comparer P( = x i et = y j ) P( = x i ) P( = y j ) 3 Coclusio : B. Opératios sur les variables aléatoires. B.1. Somme de deux variables aléatoires. Exemple 4. Repreos l exemple1. O s itéresse au ombre de packs d eau achetés par le cliet O obtiet ue ouvelle variable aléatoire S égale à la somme des variables et. Défiissos cette variable aléatoire S. Das le tableau iséros das chaque case la somme : s = 2 0,1 s = 3 0,2 s = 4 0,2 2 s = 3 0,1 s = 4 0,3 s = 5 0,1 Les valeurs de S sot 2, 3, 4 et 5. O associe à chacue de ces valeurs la somme des probabilités qui lui correspodet. O défii aisi la loi de probabilité de S présetée das u tableau Valeurs de s i P(S = s i )
3 B1.1. Défiitio. Soit et deux variables aléatoires. La somme + est ue variable aléatoire S : S = +. La loi de probabilité de S est obteue e associat à chaque valeur s de S, la somme des probabilités correspodats à tous les couples dot la somme des termes est égale à s. B.1.2. Espérace mathématique de la somme de deux variables aléatoires. Propriété. Soit et deux variables aléatoires. Exemple 5. L espérace mathématique de la somme + est égale à la somme des espéraces mathématiques de et de. E( + ) = E( ) + E() Repreos l exemple1 et calculos E(), E() et E( + ). E() = E() = E( + ) = Coclusio : Exercice 6. Repreos l exercice 3 ; s = 0,08 s = 0,12 20 s = 0,20 s = 0,30 30 s = 0,12 s = 0,18 1 Défiir la loi de probabilité de S = +. 2 Calculer E(), E() et E( + ), et vérifier l égalité E( + ) = E( ) + E() 1 O précise d abord la loi de probabilité de la somme S = + par le tableau suivat : Valeurs de s i P(S = s i ) 2 E() = E() = E( + ) = Coclusio :
4 B.1.3. Variace de la somme de deux variables aléatoires. Propriété. Si et sot deux variables aléatoires idépedates, alors la variace de la somme + est égale à la somme des variaces de et de. V( + ) = V( ) + V() {La réciproque est fausse!} Exercice 7. 1 Repreos l exemple1 et calculos V(), V() et V( + ). 2 L égalité V( + ) = V( ) + V() est- elle vérifiée. Que peut-o coclure? 1 V() = E(²) [E()] 2 = Σ p i x 2 i [E()] 2 = V() = E(²) [E()] 2 = Σ q i y i 2 [E()] 2 = V( + ) = Σ P(S = s i ) s 2 i [E( + )] 2 2 Exercice 8. Repreos l exemple 2. Calculer V( ), V() et V( + ) V() = E(²) [E()] 2 = Σ p i x 2 i [E()] 2 = V() = E(²) [E()] 2 = Σ q i y i 2 [E()] 2 = V( + ) = Σ P(S = s i ) s i 2 [E( + )] 2 = B.2. Différece de deux variables aléatoires. Défiitio. Soit et deux variables aléatoires. La différece est ue variable aléatoire D. La loi de probabilité de D est obteue e associat à chaque valeur d de D, la somme des probabilités correspodats à tous les couples dot la différece des termes est égale à d. Propriété. Soit et deux variables aléatoires. E( ) = E( ) E() Si et sot idépedates, alors V( ) = V( ) + V()
5 Exercice 9. La loi de probabilité du couple (, ) est doée par le tableau Totaux 0 0,12 0,24 0,24 1 0,08 0,16 0,16 Totaux 1 Détermier la loi de probabilité de. 2 Calculer les ombres E( ), E() et E( ) et les comparer. 3 Calculer les ombres V( ), V() et V( ) et les comparer. Justifier Lerésultat.
6 C. Lois limites. C.1.Théorèmes admis.. Théorème de Beroulli (Loi faible des grads ombres). Soit ue variable aléatoire et variables 1, 2,....,, de même loi de probabilité que celle de. Si o pose : S = et = S. alors pour tout ε > 0, lim P( E() < ε) = 1. + Sigificatio de ce théorème. Soit ue expériece aléatoire qui coduit à deux résultats : succès échec O lace u dé. Si o obtiet 6, c est gagé et o marque 1 poit, sio c est perdu, o marque 0 poits. O lui associe la variable aléatoire suivate : Ω [0 ; 1] ω 1 {succès} ω 0 {échec} E() = p ombre fixé e théorie O répète fois cette même expériece. (6) = 1 (1) = (2) = (3) = (4) = (5) = 0. O lace u dé 30 fois E() = 1 6 Les variables aléatoires 1, 2,....,, ot la même loi de probabilité. E( 1 ) = E( 2 ) =.... = E( ) = E() = p. Pour coaître le ombre de succès, o étudie la variable aléatoire : : «Fréquece des succès» = Nombre de succès Nombre d'éxpérieces aléatoires = Nombre de 6 Nombre de lacers = E( ) = E( 1) + E( 2 ) E( ) Est-o éloigé du résultat théorique? = p p = p Pour le savoir, o étudie la différece p Soit ε u réel positif tel que p < ε Il y a peu de chace que l o trouve le résultat théorique 1 6. O lace le dé 1000 fois : 1000 = Nombre de Le théorème affirme que : lim + P( E() < ε) = 1 Le théorème dit que plus est grad, plus se rapproche de la valeur théorique p. Ituitivemet, ce résultat semble simple.
7 Théorème de la limite cetrée. Si 1, 2,....,, sot des variables aléatoires idépedates de même loi de probabilité, de même espérace mathématique m et de même variace σ 2, alors lorsque est «suffisammet grad» o admet : La loi de probabilité de la variable aléatoire S = , qui mesure la somme des variables aléatoires suit approximativemet «la loi ormale de moyee m et d écart type σ, otée N( m, σ ) La loi de probabilité de la variable aléatoire = S qui mesure la moyee des variables aléatoires suit approximativemet «la loi ormale» N m, σ. C.2. Applicatio : lois d échatilloage. E statistique, il est e gééral impossible d étudier u caractère sur toute ue populatio de taille N élevée. Avat d aborder le problème de l estimatio de valeurs caractéristiques icoues das la populatio (ce problème sera traité das le chapitre qui suit : statistique iféretielle), il est idispesable de commecer par l étude de la théorie de l échatilloage. Das ce cas les paramètres du caractère étudié das la populatio sot cous et o e déduit les propriétés sur l esemble des échatillos prélevés das la populatio. Nous evisageros das cette partie que des échatillos aléatoires, c'est-à-dire que tout élémet de l échatillo est choisi au hasard, et de plus, les choix sot idépedats car supposés avec remise. L esemble des échatillos de taille est appelé échatilloage de taille. C.2.1. Loi d échatilloage des moyees. État doé ue populatio de taille N et ue variable aléatoire défiissat le caractère étudié telle que : E() = m et σ() = σ. Pour prélever les échatillos de taille, o a procédé à épreuves idépedates auxquelles correspodet variables aléatoires 1, 2,...., de même loi que. La variable aléatoire = échatillo. associe à tout échatillo de taille la moyee de cette Populatio (N, m, σ) Echatillos x 1 x 2... x k σ 1 σ 2 σ k
8 Quad est suffisammet grad, la loi d échatilloage de la variable aléatoire = qui mesure la moyee des échatillos de taille suit d après le théorème de la limite cetrée, approximativemet ue loi ormale. O retrouve les valeurs caractéristiques de cette loi e calculat E( ) et σ( ). E( ) = E V( ) = V = 1 E( ) = 1 [ E( 1) + E( ] 2 ) E( ) = 1 E() E( ) = E() = m = 1 2 V( ) = 1 [ ] 2 V( 1 ) + V( 2 ) V( ) V( ) = 1 2 V() = = 1 V() = 1 σ2 d où σ() = σ Théorème. La loi d échatilloage de taille de la moyee, quad deviet grad ( 30), peut être approchée par la loi ormale N m, σ C.2.2. Loi d échatilloage des fréqueces. O étudie sur ue populatio de taille N Soit u caractère à deux résultats : O cosidère la variable aléatoire associée : Ω [0 ; 1] ω 1 si ω possède le caractère {succès} ω 0 sio Das cette situatio : E() = p est la probabilité de succès et V() = p(1 p) Pour costituer chacu des échatillos de taille, o répète fois la même épreuve de maière idépedate. O obtiet variables aléatoires 1, 2,...., de même loi que. Cosidéros la variable aléatoire S = qui mesure le ombre succès O a : E(S ) = E() = p et V(S ) = V() = p(1 p) Quad deviet suffisammet grad, la loi d échatilloage de f = S qui mesure la fréquece des succès das les échatillos de taille peut être approchée par ue loi ormale d après le théorème de la limite cetrée. O retrouve les valeurs caractéristiques de cette loi e calculat : E(f ) = E S = 1 E(S ) = 1 p = p V(f ) = V S = 1 2 V(S ) = 1 2 p(1 p) = p(1 p) = pq avec q = (1 p) et doc σ(f ) = pq Théorème. La loi d échatilloage de taille de la fréquece f, quad deviet grad ( 30), peut être approchée par la loi ormale N pq p,
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015
Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME
Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par
Principes et Méthodes Statistiques
Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
Cours 5 : ESTIMATION PONCTUELLE
Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014
Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1
II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
Statistique Numérique et Analyse des Données
Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï
INTRODUCTION AUX MATRICES ALÉATOIRES par Djalil Chafaï Résumé. E cocevat les mathématiques comme u graphe, où chaque sommet est u domaie, la théorie des probabilités et l algèbre liéaire figuret parmi
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
Risque de longévité et détermination du besoin en capital : travaux en cours
Risque de logévité et détermiatio du besoi e capital : travaux e cours Frédéric PLANCHET ISFA Laboratoire SAF Versio.6 / Septembre 2008 Sommaire La prise e compte de l expériece propre au groupe das l
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
Échantillonnage et estimation
Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos
RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)
RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) *) Uiversité de Blida Faculté des scieces Départemet de Mathématiques. BP 270, Route de Soumaa. Blida, Algérie. Tel &
Simulations interactives de convertisseurs en électronique de puissance
Simulatios iteractives de covertisseurs e électroique de puissace Jea-Jacques HUSELSTEIN, Philippe ENII Laboratoire d'électrotechique de Motpellier (LEM) - Uiversité Motpellier II, 079, Place Eugèe Bataillo,
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
Initiation à l analyse factorielle des correspondances
Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique
RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION
RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables
Les études. Recommandations applicables aux appareils de levage "anciens" dans les ports. Guide Technique
es Cetre d Etudes Techiques Maritimes et Fluviales Les études Recommadatios applicables aux appareils de levage "acies" das les ports Guide Techique PM 03.01 Cetre d Etudes Techiques Maritimes et Fluviales
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
MESURE DE L'INFORMATION
MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE
Chaînes de Markov. Arthur Charpentier
Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Les nouveaux relevés de compte
Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),
Des résultats d irrationalité pour deux fonctions particulières
Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: [email protected] Received
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
Télé OPTIK. Plus spectaculaire que jamais.
Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise
Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?
Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres
Mécanismes de protection contre les vers
Mécaismes de protectio cotre les vers Itroductio Au cours de so évolutio, l Iteret a grademet progressé. Il est passé du réseau reliat quelques cetres de recherche aux États-Uis au réseau actuel reliat
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
Comment les Canadiens classent-ils leur système de soins de santé?
Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté
n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...
Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
LE WMS EXPERT DE LA SUPPLY CHAIN DE DÉTAIL
LE WMS EXET DE LA SULY HAIN DE DÉTAIL QUELS SNT LES ENJEUX DE LA SULY HAIN? garatir la promesse cliet es derières aées, la distributio coaît ue véritable mutatio avec l évolutio des modes de cosommatio.
Neolane Leads. Neolane v6.0
Neolae Leads Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette publicatio
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR
Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets
Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation
Tempêtes : Etude des dépedaces etre les braches Automobile et Icedie à l aide de la théorie des copulas Topic Risk evaluatio Belguise Olivier Charles Levi ACM Guy Carpeter 34 rue du Wacke 47/53 rue Raspail
Gérer les applications
Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces
La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de
Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012
Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre
Le chef d entreprise développe les services funéraires de l entreprise, en
Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.
Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus
Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio
Working Paper RETAIL RÉGIONAL RESPONSABLE
«BANQUE DE DÉTAIL DE MASSE» : COMMENT LES CAISSES D ÉPARGNE EN AFRIQUE, ASIE ET AMÉRIQUE LATINE PEUVENT FOURNIR DES SERVICES ADAPTÉS AUX BESOINS DES POPULATIONS DÉFAVORISÉES Travailler avec les caisses
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
La fibre optique arrive chez vous Devenez acteur de la révolution numérique
2 e éditio Edité par l Autorité de régulatio des commuicatios électroiques et des postes RÉPUBLIQUE FRANÇAISE DÉCEMBRE 2010 La fibre optique arrive chez vous Deveez acteur de la révolutio umérique Petit
